29.11.2014 Views

A chromosomal analysis of seven Cameroonian Acrididae species (Orthoptera: Acridinae, Oedipodinae and Spathosterninae) based on published data

So far, the karyotypes of seven Acrididae species from Cameroon have been reported. These species included: Acrida turrita, Chirista compta, Coryphosima stenoptera producta, Oxycatantops spissus (Acridinae), Paracinema luculenta, Morphacris fasciata (Oedipodinae) and Spathosternum pygmaeum (Spathosterninae). Karyotype and meiosis relationships among these species were analysed from published data. The species had a common karyotype made up of 23 acrocentric chromosomes (males), the sex mechanism in all seven species was XX♀-XO♂ and meiosis was normal and chiasmate. The chromosomes in the species occurred in three size groups of long, medium and short. The number of chromosomes per size group however varied among the species (A. turrita = 4LL:5MM:2SS; C. compta =4LL:4MM:3SS; C. stenoptera product=2LL:6MM:3SS; O. spissus =5LL:3MM:3SS; P. luculenta = 6LL:2MM:3SS; M. fasciata = 6LL:2MM:3SS; and S. pygmaeum = 2LL:7MM:2SS). The X chromosome was long in the Oedipodinae, medium in the Acridinae and short in the Spathosterninae. Total length of chromosomal material was in the series C. compta > O. spissus > P. luculenta > S. pygmaeum > A. turrita > M. fasciata > C.s. producta.

So far, the karyotypes of seven Acrididae species from Cameroon have been reported. These species included: Acrida turrita, Chirista compta, Coryphosima stenoptera producta, Oxycatantops spissus (Acridinae), Paracinema luculenta, Morphacris fasciata (Oedipodinae) and Spathosternum pygmaeum (Spathosterninae). Karyotype and meiosis relationships among these species were analysed from published data. The species had a common karyotype made up of 23 acrocentric chromosomes (males), the sex mechanism in all seven species was XX♀-XO♂ and meiosis was normal and chiasmate. The chromosomes in the species occurred in three size groups of long, medium and short. The number of chromosomes per size group however varied among the species (A. turrita = 4LL:5MM:2SS; C. compta =4LL:4MM:3SS; C. stenoptera product=2LL:6MM:3SS; O. spissus =5LL:3MM:3SS; P. luculenta = 6LL:2MM:3SS; M. fasciata = 6LL:2MM:3SS; and S. pygmaeum = 2LL:7MM:2SS). The X chromosome was long in the Oedipodinae, medium in the Acridinae and short in the Spathosterninae. Total length of chromosomal material was in the series C. compta > O. spissus > P. luculenta > S. pygmaeum > A. turrita > M. fasciata > C.s. producta.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology<br />

An Internati<strong>on</strong>al Scientific Research Journal<br />

Original Research<br />

A <str<strong>on</strong>g>chromosomal</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>Camero<strong>on</strong>ian</str<strong>on</strong>g> <str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (<str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>, <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>) <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>published</strong> <strong>data</strong><br />

Authors:<br />

Seino Richard Akwanjoh 1,2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo T<strong>on</strong>leu Ingrid 1 .<br />

Instituti<strong>on</strong>:<br />

1. Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Ecology (LABEA),<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal<br />

Biology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dschang,<br />

P.O. Box 353, Dschang,<br />

Camero<strong>on</strong>.<br />

2. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological<br />

Science, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bamenda,<br />

P.O. Box 39, Bamenda,<br />

Camero<strong>on</strong>.<br />

ABSTRACT:<br />

So far, the karyotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> from Camero<strong>on</strong> have been<br />

reported. These <str<strong>on</strong>g>species</str<strong>on</strong>g> included: Acrida turrita, Chirista compta, Coryphosima<br />

stenoptera producta, Oxycatantops spissus (<str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>), Paracinema luculenta,<br />

Morphacris fasciata (<str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> Spathosternum pygmaeum (<str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>).<br />

Karyotype <str<strong>on</strong>g>and</str<strong>on</strong>g> meiosis relati<strong>on</strong>ships am<strong>on</strong>g these <str<strong>on</strong>g>species</str<strong>on</strong>g> were analysed from<br />

<strong>published</strong> <strong>data</strong>. The <str<strong>on</strong>g>species</str<strong>on</strong>g> had a comm<strong>on</strong> karyotype made up <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 acrocentric<br />

chromosomes (males), the sex mechanism in all <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> was XX♀-XO♂<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> meiosis was normal <str<strong>on</strong>g>and</str<strong>on</strong>g> chiasmate. The chromosomes in the <str<strong>on</strong>g>species</str<strong>on</strong>g> occurred in<br />

three size groups <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g, medium <str<strong>on</strong>g>and</str<strong>on</strong>g> short. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosomes per size<br />

group however varied am<strong>on</strong>g the <str<strong>on</strong>g>species</str<strong>on</strong>g> (A. turrita = 4LL:5MM:2SS;<br />

C. compta =4LL:4MM:3SS; C. stenoptera product=2LL:6MM:3SS; O. spissus<br />

=5LL:3MM:3SS; P. luculenta = 6LL:2MM:3SS; M. fasciata = 6LL:2MM:3SS; <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

S. pygmaeum = 2LL:7MM:2SS). The X chromosome was l<strong>on</strong>g in the <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g>,<br />

medium in the <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> short in the <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>. Total length <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>chromosomal</str<strong>on</strong>g> material was in the series C. compta > O. spissus > P. luculenta ><br />

S. pygmaeum > A. turrita > M. fasciata > C.s. producta.<br />

Corresp<strong>on</strong>ding author:<br />

Seino Richard Akwanjoh<br />

Keywords:<br />

<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>, <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>, <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g>, <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>, karyotype, relati<strong>on</strong>ships.<br />

Email:<br />

raseino@yahoo.co.uk<br />

Article Citati<strong>on</strong>:<br />

Seino Richard Akwanjoh <str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo T<strong>on</strong>leu Ingrid.<br />

A <str<strong>on</strong>g>chromosomal</str<strong>on</strong>g> <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>Camero<strong>on</strong>ian</str<strong>on</strong>g> <str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (<str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>, <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>) <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>published</strong> <strong>data</strong>.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2013) 3(4): 947-953<br />

Web Address:<br />

http://jresearchbiology.com/<br />

documents/RA0349.pdf.<br />

Dates:<br />

Received: 15 Apr 2013 Accepted: 02 May 2013 Published: 20 May 2013<br />

This article is governed by the Creative Comm<strong>on</strong>s Attributi<strong>on</strong> License (http://creativecomm<strong>on</strong>s.org/<br />

licenses/by/2.0), which gives permissi<strong>on</strong> for unrestricted use, n<strong>on</strong>-commercial, distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reproducti<strong>on</strong> in all medium, provided the original work is properly cited.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology<br />

An Internati<strong>on</strong>al Scientific<br />

Research Journal<br />

947-953 | JRB | 2013 | Vol 3 | No 4<br />

www.jresearchbiology.com


Seino <str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo, 2013<br />

INTRODUCTION<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g> material for karyotype<br />

studies dates from the incepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytogenetics. This is<br />

simply because <str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g> material presents large<br />

chromosomes <str<strong>on</strong>g>and</str<strong>on</strong>g> few chromosomes per karyotype.<br />

Chromosome size <str<strong>on</strong>g>and</str<strong>on</strong>g> number are <str<strong>on</strong>g>of</str<strong>on</strong>g> important<br />

cytotax<strong>on</strong>omic value (Turkoglu <str<strong>on</strong>g>and</str<strong>on</strong>g> Koca, 2002). The<br />

<str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g> are also well known for their karyotypic<br />

uniformity in chromosome number <str<strong>on</strong>g>and</str<strong>on</strong>g> morphology<br />

(Ashwathanarayana <str<strong>on</strong>g>and</str<strong>on</strong>g> Ashwath, 2006; Chadha <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mehta, 2011a).<br />

It has been severally shown that <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

karyotype differentiati<strong>on</strong> between <str<strong>on</strong>g>species</str<strong>on</strong>g> yields better<br />

underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the evoluti<strong>on</strong>ary interrelati<strong>on</strong>ships <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

divergence (Chadha <str<strong>on</strong>g>and</str<strong>on</strong>g> Mehta, 2011a; S<str<strong>on</strong>g>and</str<strong>on</strong>g>hu <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Chadha, 2012). A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong>s <strong>on</strong> karyotype<br />

evoluti<strong>on</strong> in different groups <str<strong>on</strong>g>of</str<strong>on</strong>g> animals has revealed that<br />

several karyotypes are dynamic <str<strong>on</strong>g>and</str<strong>on</strong>g> are subject to<br />

change. Therefore, the stable karyotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Acrididae</str<strong>on</strong>g><br />

are subject to change.<br />

The cytogenetic diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Camero<strong>on</strong>ian</str<strong>on</strong>g><br />

acridid grasshoppers has not been investigated. During<br />

this study, <strong>published</strong> <strong>data</strong> <strong>on</strong> karyotypic characters were<br />

analysed to determine similarities <str<strong>on</strong>g>and</str<strong>on</strong>g> differences as well<br />

as interrelati<strong>on</strong>ships am<strong>on</strong>g <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>Camero<strong>on</strong>ian</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>.<br />

MATERIALS AND METHODS<br />

The cytogenetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>Camero<strong>on</strong>ian</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> have so far been described. The<br />

<str<strong>on</strong>g>species</str<strong>on</strong>g> include Acrida turrita, Chirista compta,<br />

Coryphosima stenoptera producta, Oxycatantops spissus<br />

(Sub-family <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>) Paracinema luculenta,<br />

Morphacris fasciata (Sub-family <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Spathosternum pygmaeum (Sub-family <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>).<br />

The <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the sources from which karyotypic<br />

informati<strong>on</strong> <strong>on</strong> them was obtained for this <str<strong>on</strong>g>analysis</str<strong>on</strong>g> are<br />

shown in Table 1.<br />

To analyse these karyotypes for similarities <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

differences, the karyotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> were<br />

also arranged together (Figure. 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> the morphometric<br />

characters for the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> were arranged in a<br />

tabular form (Table 2).<br />

RESULTS<br />

Informati<strong>on</strong> <strong>on</strong> chromosome number,<br />

morphology, size, <str<strong>on</strong>g>and</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> X chromosome obtained<br />

for the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> is summarised in Table 2. A perusal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Table 2 revealed that am<strong>on</strong>g the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> studied<br />

A. turrita, C. compta, C. stenoptera producta <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

O. spissus bel<strong>on</strong>ged to the sub-family <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>,<br />

P. luculenta <str<strong>on</strong>g>and</str<strong>on</strong>g> M. faciata bel<strong>on</strong>ged to the subfamily<br />

<str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> S. pygmaeum bel<strong>on</strong>ged to the<br />

subfamily <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g> (Mestre <str<strong>on</strong>g>and</str<strong>on</strong>g> Chiffaud, 2009).<br />

Table 2 also revealed that the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> investigated<br />

had a comm<strong>on</strong> a diploid chromosome number <str<strong>on</strong>g>of</str<strong>on</strong>g> 2n=23<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the sex determining mechanism was XO in males.<br />

Figure 1 also revealed that the in the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g><br />

investigated was acrocentric in morphology. The<br />

chromosomes in all <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> occurred in three size<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g, medium <str<strong>on</strong>g>and</str<strong>on</strong>g> short. The number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chromosome pairs per size group varied between <str<strong>on</strong>g>species</str<strong>on</strong>g><br />

Table 1: The <str<strong>on</strong>g>species</str<strong>on</strong>g> analysed, their subfamilies <str<strong>on</strong>g>and</str<strong>on</strong>g> references from which karyotypic<br />

informati<strong>on</strong> was obtained<br />

S/No Species Subfamily Source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>data</strong><br />

1 Acrida turrita<br />

Seino et al, 2008<br />

2 Chirista compta Seino et al, 2010<br />

3 Coryphosima stenoptera producta <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g> Seino et al, 2010<br />

4 Oxycatantops spissus Seino et al, 2010<br />

5 Paracinema luculenta<br />

Seino et al, 2012<br />

6 Morphacris fasciata <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> Seino et al, 2012<br />

7 Spathosternum pygmaeum <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g> Seino et al, 2012<br />

948 Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2013) 3(4): 947-953


S.N<br />

Species<br />

Sub- family<br />

Table 2: Morphometric characters <str<strong>on</strong>g>of</str<strong>on</strong>g> karyotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> investigated<br />

Total<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chromosomes<br />

per cell in the<br />

male<br />

Sex determining<br />

mechanism<br />

♀ - ♂<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosome per<br />

size group<br />

L<strong>on</strong>g Medium Short<br />

Total<br />

chromosome<br />

length (μm)<br />

Morphology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chromosomes Length<br />

(μm ) <str<strong>on</strong>g>of</str<strong>on</strong>g> X<br />

chromosome<br />

M SM A<br />

1 A. turrita <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g> 23 XX-XO 4 5 2 134.6±0.79 - - All 5.0±0.08 M<br />

2 C. compta <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g> 23 XX-XO 4 4 3 176.3±0.14 - - All 7.3±0.52 M<br />

3 C. S. producta <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g> 23 XX-XO 2 6 3 123.6±7.60 - - All 5.6±0.56 M<br />

4 O. spissus <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g> 23 XX-XO 5 3 3 165.4±0.61 - - All 6.6±0.00 M<br />

5 P. luculenta <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> 23 XX-XO 6 2 3 164.7±2.26 - - All 7.7±0.59 L<br />

6 M. fasciata <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> 23 XX-XO 6 2 3 129.9±0.63 - - All 5.5±0.24 L<br />

7 S. pygmaeum Spathosternina 23 XX-XO 2 7 2 160.7±0.91 - - All 1.7±0.00 S<br />

M= Metacentric, SM= Submetacentric, A= Acrocentric; L=l<strong>on</strong>g, M=Medium, S=Short<br />

Nature <str<strong>on</strong>g>of</str<strong>on</strong>g> X<br />

chromosome<br />

Seino <str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo, 2013<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> subfamilies (Table 2; Figure. 2). The <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g><br />

showed most similarity since both <str<strong>on</strong>g>of</str<strong>on</strong>g> them revealed<br />

6 l<strong>on</strong>g, 2 medium <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 short chromosomes (6LL: 2MM:<br />

3SS) in their karyotypes. The lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

X chromosome was in the series P. luculenta ><br />

C. compta > O. spissus > C.s. producta > M; fasciata ><br />

A. turrita > S. pygmaeum. However, the X chromosome<br />

was medium in the <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>, l<strong>on</strong>g in the <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> short in the <str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (Figure. 2). The<br />

total length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>chromosomal</str<strong>on</strong>g> material was in the series<br />

C. compta> O. spissus> P. luculenta> S. pygmaeum><br />

A. turrita> M. fasciata > C.s. producta.<br />

DISCUSSION<br />

Every <str<strong>on</strong>g>species</str<strong>on</strong>g> has a unique karyotype which<br />

provides an identity to the <str<strong>on</strong>g>species</str<strong>on</strong>g> (Channaveerappa <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Ranganath, 1997). Acridid grasshoppers are known to be<br />

characterised by a basic karyotype <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 chromosomes in<br />

males. Due to this great cytogenetic uniformity Acridids<br />

are c<strong>on</strong>sidered as an example <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘karyotypic<br />

c<strong>on</strong>servati<strong>on</strong>’ (Aswathanarayana <str<strong>on</strong>g>and</str<strong>on</strong>g> Aswath, 2006).<br />

In the present study, <str<strong>on</strong>g>seven</str<strong>on</strong>g> Acridids have been<br />

investigated which bel<strong>on</strong>g to three different sub-families<br />

that include the <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>, Oedopodinae <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study revealed that<br />

the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> have a chromosome number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

23 <str<strong>on</strong>g>and</str<strong>on</strong>g> a sex determining mechanism which is XO/XX.<br />

Similar observati<strong>on</strong>s have been made for several other<br />

<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g>. With respect to chromosome number,<br />

chromosome morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> sex determining<br />

mechanism, Bugrov et al., (1994); Bugrov (1995),<br />

Bugrov et al., (1999) Bugrov <str<strong>on</strong>g>and</str<strong>on</strong>g> Sergeev (1997)<br />

observed similar results for Podisma <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Eyprepocnemidinae (<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>) grasshoppers in Russia<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Central Asia. Camacho <str<strong>on</strong>g>and</str<strong>on</strong>g> Cabrero (1983) also<br />

reported similar results for European <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Acrotylus<br />

(Oedopodinae). Yao (2006) <str<strong>on</strong>g>and</str<strong>on</strong>g> Chadha <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mehta (2011a) reported similar results for<br />

Spathosternum pransiniferum (<str<strong>on</strong>g>Spathosterninae</str<strong>on</strong>g>)<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2013) 3(4): 947-953 949


Seino <str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo, 2013<br />

a b c<br />

d e f<br />

respectively from Asia <str<strong>on</strong>g>and</str<strong>on</strong>g> India. So the Acridid<br />

grasshoppers <str<strong>on</strong>g>of</str<strong>on</strong>g> different regi<strong>on</strong>s are showing<br />

cytogenetic uniformity regarding chromosome number,<br />

morphology <str<strong>on</strong>g>and</str<strong>on</strong>g> sex determining mechanism. The results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this study c<strong>on</strong>firmed that the basic <str<strong>on</strong>g>Acrididae</str<strong>on</strong>g><br />

karyotype is 23 acrocentric chromosomes <str<strong>on</strong>g>and</str<strong>on</strong>g> a sex<br />

determining mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> the XX/XO type.<br />

Metacentric chromosomes through fusi<strong>on</strong>s were not<br />

observed in the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> here investigated even<br />

though they have been reported in several other<br />

g<br />

Figure. 1: Mitotic Metaphase chromosomes in the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> investigated.<br />

a) Acrida turrita, b) Chirista compta, c) Coryphosima stenoptera producta, d) Oxycatantops spissus,<br />

e) Paracinema luculenta, f) Mophacris fasciata, g) Spathosternum pygmaeum. Chromosomes are tapered<br />

towards <strong>on</strong>e end <str<strong>on</strong>g>and</str<strong>on</strong>g> centromeres were deemed to be towards the tapered ends <str<strong>on</strong>g>of</str<strong>on</strong>g> the chromosomes.<br />

<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> (White, 1973; Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> Gautam,<br />

2002; Mayya et al., 2004; Chadha <str<strong>on</strong>g>and</str<strong>on</strong>g> Mehta, 2011a).<br />

Turkoglu <str<strong>on</strong>g>and</str<strong>on</strong>g> Koca (2002) reported the presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metacentric, submetacentric <str<strong>on</strong>g>and</str<strong>on</strong>g> acrocentric<br />

chromosomes in the karyotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> Oedipoda schochi <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Acrotylus insbricus (Oedopodinae) from Turkey. The<br />

aberrant chromosomes were the result <str<strong>on</strong>g>of</str<strong>on</strong>g> centric fissi<strong>on</strong>s.<br />

X - autosome fusi<strong>on</strong> resulting in the Neo - XY sex<br />

mechanism have been reported in some acridid<br />

grasshoppers (White, 1973). Bidau <str<strong>on</strong>g>and</str<strong>on</strong>g> Marti (2000)<br />

950 Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2013) 3(4): 947-953


Relative Chromosome Length<br />

(RCL)<br />

Relative Chromosome Length<br />

(RCL)<br />

Relative Chromosome Length<br />

(RCL)<br />

Relative Chromosome Length<br />

(RCL)<br />

Relative Chromosome Length<br />

(RCL)<br />

Relative Chromosome Length<br />

(RCL)<br />

Relative Chromosome Length<br />

(RCL)<br />

Seino <str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo, 2013<br />

16<br />

16<br />

14<br />

14<br />

12<br />

12<br />

10<br />

10<br />

8<br />

8<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

0<br />

L1 L2 L3 L4 M5 M6 M7 M8 M9 S10 S11 X<br />

Chromosome pair<br />

0<br />

L1 L2 L3 L4 M5 M6 M7 M8 S9 S10 S11 X<br />

Chromosome pair<br />

A. turrita<br />

C. compta<br />

18<br />

16<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

L1 L2 M3 M4 M5 M6 M7 M8 S9 S10 S11 X<br />

0<br />

L1 L2 L3 L4 L5 M6 M7 M8 S9 S10 S11 X<br />

Chromosome pair<br />

Chromosome pair<br />

C.s.producta<br />

O. spissus<br />

14<br />

14<br />

12<br />

12<br />

10<br />

10<br />

8<br />

8<br />

6<br />

6<br />

4<br />

4<br />

2<br />

2<br />

0<br />

L1 L2 L3 L4 L5 L6 M7 M8 S9 S10 S11 X<br />

Chromosome pair<br />

0<br />

L1 L2 L3 L4 L5 L6 M7 M8 S9 S10 S11 X<br />

Chromosome pair<br />

P. luculenta<br />

M. fasciata<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

L1 L2 M3 M4 M5 M6 M7 M8 M9 S10 S11 X<br />

Chromosome pair<br />

S. pygmaeum<br />

Figure. 2: Idiograms <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>seven</str<strong>on</strong>g> <str<strong>on</strong>g>species</str<strong>on</strong>g> investigated<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2013) 3(4): 947-953 951


Seino <str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo, 2013<br />

reported Neo-XY in Dichroplus vittatus<br />

(<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>: Melanoplinae). This type <str<strong>on</strong>g>of</str<strong>on</strong>g> sex<br />

determinati<strong>on</strong> mechanism was absent in the <str<strong>on</strong>g>seven</str<strong>on</strong>g><br />

<str<strong>on</strong>g>species</str<strong>on</strong>g> investigated in this study.<br />

The X-chromosome during this investigati<strong>on</strong> was<br />

found to be medium in the four <str<strong>on</strong>g>Acridinae</str<strong>on</strong>g>. However,<br />

Chadha <str<strong>on</strong>g>and</str<strong>on</strong>g> Mehta (2011a), investigating Indian<br />

<str<strong>on</strong>g>Acridinae</str<strong>on</strong>g> observed that the X chromosome in A. turrita<br />

was the l<strong>on</strong>gest chromosome in the karyotype. There is<br />

therefore disagreement <str<strong>on</strong>g>of</str<strong>on</strong>g> this report with that <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

present investigati<strong>on</strong>. Chadha <str<strong>on</strong>g>and</str<strong>on</strong>g> Mehta (2011b)<br />

reported the X chromosome in Oedaleus abruptus<br />

(oedipodinae) to be the largest element in the karyotype.<br />

During the present study, the X-chromosome in<br />

P. luculenta <str<strong>on</strong>g>and</str<strong>on</strong>g> M. fasciata (<str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g>) were am<strong>on</strong>g<br />

the large chromosomes <str<strong>on</strong>g>of</str<strong>on</strong>g> the karyotypes. There is no<br />

doubt that the X chromosomes <str<strong>on</strong>g>of</str<strong>on</strong>g> different <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the largest elements in the<br />

karyotype. Though this chromosome was acrocentric in<br />

the two <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g> investigated here, Turkoglu <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Koca (2002) found the same chromosome in Oedipodia<br />

schochi schochi <str<strong>on</strong>g>and</str<strong>on</strong>g> Acrotylus insbricus (<str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g>)<br />

from Turkey to be Metacentric in morphology.<br />

ACKNOWLEDGEMENTS<br />

The authors are thankful to Dr Watcho Pierre<br />

(Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor in the Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal<br />

Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dschang - Camero<strong>on</strong>) for reading<br />

the manuscript <str<strong>on</strong>g>and</str<strong>on</strong>g> helpful suggesti<strong>on</strong>s. We are also<br />

grateful to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Mpoame Mbida (Head <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology (LABEA), University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dschang for laboratory space.<br />

REFERENCES<br />

Aswathanarayana NV <str<strong>on</strong>g>and</str<strong>on</strong>g> Ashwath SK. 2006.<br />

Structural polymorphism <str<strong>on</strong>g>and</str<strong>on</strong>g> C-b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing pattern in a few<br />

Acridid grasshoppers. Cytology, 71(3):223 – 228.<br />

Bidau CJ <str<strong>on</strong>g>and</str<strong>on</strong>g> Marti DA. 2000. Meiosis <str<strong>on</strong>g>and</str<strong>on</strong>g> the Neo-<br />

XY system <str<strong>on</strong>g>of</str<strong>on</strong>g> Dichroplus vittatus (Melanoplinae:<br />

<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>): a comparis<strong>on</strong> between sexes.<br />

Bugrov AG, Warchalowska-Sliwa E, Maryanska-<br />

Nadachowska A. 1994. Karyotype evoluti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

chromosome C-b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing patterns in some Podisma<br />

grasshoppers (<str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g>: <str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>) Caryologia, 47:<br />

183-191.<br />

Bugrov AG. 1995. Interpopulati<strong>on</strong> sex chromosome<br />

polymorphism in the grasshopper Podisma sapprorensis<br />

Shir. From Sakhalin <str<strong>on</strong>g>and</str<strong>on</strong>g> Kurile Isl<str<strong>on</strong>g>and</str<strong>on</strong>g>. Folia Biologica<br />

(Krakow), 43: 51 - 53.<br />

Bugrov AG <str<strong>on</strong>g>and</str<strong>on</strong>g> Sergeev MG. 1997. A new<br />

grasshopper <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the genus Podisma, Bertold<br />

(<str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g>-<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>) from the Southern Isl<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> its<br />

karyotypic features. Acta Zoologica Cracoviensia, 40: 47<br />

-52.<br />

Bugrov AG, Warchalowska E, Vysotskaya L. 1999.<br />

Karyotypic features <str<strong>on</strong>g>of</str<strong>on</strong>g> Eyprepocnemidinae grasshoppers<br />

from Russia <str<strong>on</strong>g>and</str<strong>on</strong>g> Central Asia with reference to the B<br />

chromosomes in Eyprepocnemis plorans (Charp.). Folia<br />

Biologica (Krakow), 47 (3 -4).<br />

Camacho JPM <str<strong>on</strong>g>and</str<strong>on</strong>g> Cabrero J. 1983. karyological<br />

differences between two <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> grasshopper genus<br />

Acrotylus (<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>: <str<strong>on</strong>g>Oedipodinae</str<strong>on</strong>g>). Caryologia, 36(2):<br />

121-127.<br />

Chadha P <str<strong>on</strong>g>and</str<strong>on</strong>g> Mehta A. 2011a. Chromosome study in<br />

few <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Acridids (<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>:Tryxalinae):<br />

karyotype <str<strong>on</strong>g>analysis</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stitutive<br />

heterochromatin. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Entomology <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Nematology, 3 (1): 14 – 19.<br />

Chadha P <str<strong>on</strong>g>and</str<strong>on</strong>g> Mehta A. 2011b. Chromosome<br />

complement <str<strong>on</strong>g>and</str<strong>on</strong>g> C-b<str<strong>on</strong>g>and</str<strong>on</strong>g>ing patterns in 6 <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

grasshoppers. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Molecular Biology, 3(1): 25-30.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2013) 3(4): 947-953 952


Seino <str<strong>on</strong>g>and</str<strong>on</strong>g> D<strong>on</strong>gmo, 2013<br />

Channaveerappa H <str<strong>on</strong>g>and</str<strong>on</strong>g> Ranganath H. 1997.<br />

Karyology <str<strong>on</strong>g>of</str<strong>on</strong>g> few <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> South Indian Acridids. II.<br />

Male germ line karyotypic instability in Gastrimargus. J.<br />

Biosci. 22 (3): 367 -374.<br />

Mayya S, Screepada KS, Hegde MJ. 2004. N<strong>on</strong>b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> C-b<str<strong>on</strong>g>and</str<strong>on</strong>g>ed karyotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> ten <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> shorthorned<br />

grasshoppers (<str<strong>on</strong>g>Acrididae</str<strong>on</strong>g>) from South India.<br />

Cytologia, 69(2): 167 - 174.<br />

Mestre J <str<strong>on</strong>g>and</str<strong>on</strong>g> Chiffaud J. 2009. Acridien du Cameroun<br />

et de Republique centrafricaine (<str<strong>on</strong>g>Orthoptera</str<strong>on</strong>g> Caelifera).<br />

Supplément au catalogue et atlas des acridiens d’Afrique<br />

de l’ouest. Editi<strong>on</strong> numérique ISBN 978-2-9523632-1-1.<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g>hu KS <str<strong>on</strong>g>and</str<strong>on</strong>g> Chadha P. 2012. Karyological studies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> four <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> grasshoppers from Gurdaspur district<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Punjab, India. Nucleus, <strong>on</strong>line first article, Vo 55(3):1<br />

-4.<br />

Seino RA. 1989. Cytogenetic characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>seven</str<strong>on</strong>g> Acridomorphoid grasshoppers. MSc Dissertati<strong>on</strong>,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lagos, Nigeria.<br />

Sharma T <str<strong>on</strong>g>and</str<strong>on</strong>g> Gautam DC. 2002. Karyotypic studies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eleven <str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> grasshoppers from north-western<br />

Himalayas. Nucleus, 45(1-2): 27-35.<br />

Turkoglu S <str<strong>on</strong>g>and</str<strong>on</strong>g> Koca S. 2002. Karyotype C- <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

G-b<str<strong>on</strong>g>and</str<strong>on</strong>g> patterns <str<strong>on</strong>g>and</str<strong>on</strong>g> DNA c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Callimenus<br />

(=Bradyporus) macrogaster macrogaster. J. Insect Sci. 2<br />

(24): 1-4.<br />

White MJD. 1973. Animal cytology <str<strong>on</strong>g>and</str<strong>on</strong>g> evoluti<strong>on</strong>.<br />

Third editi<strong>on</strong>. Cambridge University Press.<br />

Yao S. 2006. The karyotypes <str<strong>on</strong>g>and</str<strong>on</strong>g> C-b<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> five Locusta<br />

<str<strong>on</strong>g>species</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Acridoidea in Guizhou. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Guizhou<br />

Normal University (Natural Sciences), 2: 3 - 14.<br />

Submit your articles <strong>on</strong>line at www. jresearchbiology.com<br />

Advantages<br />

Easy <strong>on</strong>line submissi<strong>on</strong><br />

Complete Peer review<br />

Affordable Charges<br />

Quick processing<br />

Extensive indexing<br />

You retain your copyright<br />

submit@jresearchbiology.com<br />

www.jresearchbiology.com/Submit.php.<br />

953 Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2013) 3(4): 947-953

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!