29.11.2014 Views

Effect of Frequency on the Iron Losses of - Departamento de ...

Effect of Frequency on the Iron Losses of - Departamento de ...

Effect of Frequency on the Iron Losses of - Departamento de ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2812 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 10, OCTOBER 2006<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Frequency</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Ir<strong>on</strong> <strong>Losses</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5% and<br />

1.5% Si N<strong>on</strong>oriented Electrical Steels<br />

Marcos F. <strong>de</strong> Campos 1 , Taeko Y<strong>on</strong>amine 1 , Marcos Fukuhara 1 , Fernando J. G. Landgraf 2 , Carlos A. Achete 1;3 ,<br />

and Frank P. Missell 1;4<br />

Instituto Naci<strong>on</strong>al <strong>de</strong> Metrologia, Normalização, e Qualida<strong>de</strong> Industrial—Inmetro, Duque <strong>de</strong> Caxias, RJ 25250-020, Brazil<br />

<strong>Departamento</strong> <strong>de</strong> Engenharia Metalúrgica e <strong>de</strong> Materiais, Escola<br />

Politécnica, Universida<strong>de</strong> <strong>de</strong> São Paulo, São Paulo, SP 05508–970, Brazil<br />

COPPE, Universida<strong>de</strong> Fe<strong>de</strong>ral do Rio <strong>de</strong> Janeiro, Rio <strong>de</strong> Janeiro, RJ 21941–972, Brazil<br />

Universida<strong>de</strong> <strong>de</strong> Caxias do Sul, Caxias do Sul, RS 95070-560, Brazil<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size <strong>on</strong> ir<strong>on</strong> losses were compared for two electrical steels with 0.5 and 1.5 wt% Si. The results c<strong>on</strong>firm that <strong>the</strong><br />

optimum grain size for minimizing <strong>the</strong> energy losses <strong>de</strong>creases when <strong>the</strong> electrical resistivity <strong>de</strong>creases or when <strong>the</strong> frequency increases.<br />

Experimental results are compared to a mo<strong>de</strong>l which c<strong>on</strong>si<strong>de</strong>rs <strong>the</strong> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size. The recrystallizati<strong>on</strong> texture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> alloys<br />

varies little with grain size and c<strong>on</strong>sists mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fibers 111 uvw and 110 RD.<br />

In<strong>de</strong>x Terms—Electrical steels, grain size, loss mo<strong>de</strong>ling, texture.<br />

I. INTRODUCTION<br />

ELECTRICAL steels are wi<strong>de</strong>ly used industrial materials,<br />

for example, as <strong>the</strong> core <str<strong>on</strong>g>of</str<strong>on</strong>g> motors or in transformers.<br />

N<strong>on</strong>oriented steels are applied in rotating machines, and should<br />

have i<strong>de</strong>ally random texture, <str<strong>on</strong>g>of</str<strong>on</strong>g> type<br />

, i.e., with<br />

<strong>the</strong> easy magnetizati<strong>on</strong> axis <str<strong>on</strong>g>of</str<strong>on</strong>g> body-centered cubic (bcc) ir<strong>on</strong><br />

parallel to <strong>the</strong> plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sheet, randomly distributed.<br />

Asi<strong>de</strong> from texture, ano<strong>the</strong>r factor which influences losses<br />

in electrical steels is grain size. Several authors [1], [2] have<br />

pointed out <strong>the</strong> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an optimum grain size for minimizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> losses. A mo<strong>de</strong>l [3], based <strong>on</strong> both <strong>the</strong>oretical and<br />

experimental data, predicted that <strong>the</strong> optimum grain size for<br />

minimizing <strong>the</strong> energy losses <strong>de</strong>creases as: electrical resistivity<br />

<strong>de</strong>creases or frequency increases or thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> steel sheet increases.<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to test <strong>the</strong> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> that<br />

mo<strong>de</strong>l in different circumstances, including in steels with different<br />

Si c<strong>on</strong>tent (i.e., different resistivities) and with measurements<br />

performed over a larger frequency range and for different<br />

magnetic inducti<strong>on</strong>s. Although frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> 50–60 Hz are typical<br />

for most applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical steels, operating frequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 400 Hz are encountered in aircraft [4]. Thus, ano<strong>the</strong>r<br />

useful characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mo<strong>de</strong>l [3] is providing insight into<br />

<strong>the</strong> loss behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> steels at o<strong>the</strong>r frequencies.<br />

II. EXPERIMENT<br />

Two alloys were studied: 1) alloy A with 0.52 wt% Si, and<br />

resistivity<br />

-cm; and 2) alloy B with 1.53 wt% Si<br />

and resistivity<br />

-cm. Both alloys received different<br />

“skin-passes” (4–12% reducti<strong>on</strong> in thickness), which resulted in<br />

different recrystallized grain sizes, after an annealing at 760 C.<br />

Magnetic measurements were d<strong>on</strong>e in a Brockhaus mo<strong>de</strong>l MPG<br />

100D hysteresis measuring system (with Epstein frame), in <strong>the</strong><br />

frequency range <str<strong>on</strong>g>of</str<strong>on</strong>g> 1–400 Hz, for a magnetic inducti<strong>on</strong><br />

T. The magnetic measurements at quasistatic c<strong>on</strong>diti<strong>on</strong> were<br />

ma<strong>de</strong> at a frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 mHz, also for a magnetic inducti<strong>on</strong><br />

T. The texture was measured in a FEI Quanta 200 scanning<br />

electr<strong>on</strong> microscope (SEM) equipped with a TSL system<br />

for electr<strong>on</strong> backscattered diffracti<strong>on</strong> (EBSD) analysis. The average<br />

grain size was measured parallel to <strong>the</strong> transverse secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sheet, by <strong>the</strong> intercept method.<br />

III. RESULTS AND DISCUSSION<br />

The grain size was introduced as a variable using a simple<br />

metallurgical rule [5]: With increasing <strong>de</strong>formati<strong>on</strong> (i.e., increasing<br />

thickness reducti<strong>on</strong>), <strong>the</strong> energy stored during <strong>the</strong><br />

<strong>de</strong>formati<strong>on</strong> is greater, resulting in a larger number <str<strong>on</strong>g>of</str<strong>on</strong>g> recrystallizati<strong>on</strong><br />

nuclei and a lower final recrystallized grain size.<br />

However, as <strong>the</strong> samples were submitted to different reducti<strong>on</strong>s,<br />

<strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> samples is an additi<strong>on</strong>al variable; but,<br />

its effect can be separated in <strong>the</strong> mo<strong>de</strong>l [3], by assuming that<br />

<strong>the</strong> anomalous loss comp<strong>on</strong>ent <strong>de</strong>pends <strong>on</strong> <strong>the</strong> square <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

thickness [6], [7].<br />

A. Brief Descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mo<strong>de</strong>l<br />

According to <strong>the</strong> loss separati<strong>on</strong> procedure, <strong>the</strong> total losses<br />

are separated into three comp<strong>on</strong>ents<br />

where , is <strong>the</strong> classical eddy-current losses, is <strong>the</strong><br />

anomalous or excess losses, and is <strong>the</strong> hysteresis losses, i.e.,<br />

is <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hysteresis curve in <strong>the</strong> quasistatic mo<strong>de</strong><br />

times <strong>the</strong> frequency<br />

(1)<br />

(2)<br />

Digital Object I<strong>de</strong>ntifier 10.1109/TMAG.2006.879897<br />

where is magnetic inducti<strong>on</strong> and is <strong>the</strong> applied magnetic<br />

field. If we suppose that <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hysteresis curve in <strong>the</strong><br />

0018-9464/$20.00 © 2006 IEEE


DE CAMPOS et al.: EFFECT OF FREQUENCY ON THE IRON LOSSES OF 0.5% AND 1.5% Si 2813<br />

Fig. 1. Quasistatic losses P versus grain size for (a) steel A and (b) steel B.<br />

quasistatic mo<strong>de</strong> is proporti<strong>on</strong>al to <strong>the</strong> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> grain size<br />

[3], [8], [9], <strong>the</strong>n (2) becomes<br />

(3)<br />

where is <strong>the</strong> maximum inducti<strong>on</strong> and is <strong>the</strong> Steinmetz<br />

exp<strong>on</strong>ent, with typical value [3]. and are c<strong>on</strong>stants<br />

to be experimentally <strong>de</strong>termined. The classical eddy losses<br />

are given [10], [11] by<br />

Fig. 2. Loss comp<strong>on</strong>ents versus grain size for steel A (0.5 wt% Si) for<br />

(a) 60 Hz, (b) 150 Hz, and (c) 400 Hz.<br />

where is <strong>the</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sheet and is <strong>the</strong> resistivity. The<br />

<strong>de</strong>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> equati<strong>on</strong> for <strong>the</strong> anomalous losses has been<br />

previously <strong>de</strong>scribed [3]. It was assumed that <strong>the</strong> anomalous loss<br />

comp<strong>on</strong>ent <strong>de</strong>pends <strong>on</strong> <strong>the</strong> square <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> thickness [6], [7]<br />

where is a c<strong>on</strong>stant to be experimentally <strong>de</strong>termined. The<br />

optimum grain size for minimizing <strong>the</strong> losses is<br />

(4)<br />

(5)<br />

(6)<br />

where .<br />

B. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Mo<strong>de</strong>l With Experimental Data<br />

Fig. 1 shows that both alloys have an almost linear <strong>de</strong>pen<strong>de</strong>nce<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quasistatic loss with grain size, as expected from<br />

(6). or , where is <strong>the</strong> domain wall energy,<br />

is <strong>the</strong> saturati<strong>on</strong> magnetizati<strong>on</strong> and is <strong>the</strong> coercive<br />

field. The slope for both steels is quite similar, because is<br />

very nearly <strong>the</strong> same for both compositi<strong>on</strong>s.<br />

Figs. 2 and 3, where loss separati<strong>on</strong> was applied according<br />

(1), show that <strong>the</strong> optimum grain size changes with frequency,<br />

Fig. 3. Loss comp<strong>on</strong>ents versus grain size for steel B (1.5 wt% Si), for<br />

(a) 60 Hz, (b) 150 Hz, (c) 400 Hz.


2814 IEEE TRANSACTIONS ON MAGNETICS, VOL. 42, NO. 10, OCTOBER 2006<br />

Fig. 6. Orientati<strong>on</strong> distributi<strong>on</strong> functi<strong>on</strong> (ODF) secti<strong>on</strong> ' =45 for steel<br />

A (0.5 wt% Si) samples with (a) grain size 604 m and (b) grain size 69 m.<br />

Bunge notati<strong>on</strong>.<br />

Fig. 4. Graph P t=f (total losses/frequency) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grain size for<br />

frequencies f = 10; 60;150;200;300, and 400 Hz. We clearly see that<br />

optimum grain size <strong>de</strong>creases when frequency increases.<br />

rolling directi<strong>on</strong>) as <strong>the</strong> main texture comp<strong>on</strong>ents, almost not<br />

affected by grain size (see Fig. 6). However, <strong>the</strong> sample with<br />

<strong>the</strong> larger grain size [see Fig. 6(a)], has more Goss<br />

comp<strong>on</strong>ent and, presumably, better magnetic properties near <strong>the</strong><br />

rolling directi<strong>on</strong>. The texture is very similar to <strong>the</strong> o<strong>the</strong>r commercial<br />

n<strong>on</strong>oriented silic<strong>on</strong> steels [13], and is far from <strong>the</strong> i<strong>de</strong>al<br />

texture .<br />

IV. CONCLUSION<br />

Experimental data indicates that <strong>the</strong> optimum grain size for<br />

minimizing <strong>the</strong> ir<strong>on</strong> losses changes with frequency and resistivity.<br />

A mo<strong>de</strong>l to predict <strong>the</strong> optimum grain size, taking into<br />

account variables such as sheet thickness, resistivity, frequency,<br />

and maximum inducti<strong>on</strong> has been <strong>de</strong>scribed. The recrystallizati<strong>on</strong><br />

texture <str<strong>on</strong>g>of</str<strong>on</strong>g> our samples presents two fibers ND and<br />

RD as main comp<strong>on</strong>ents.<br />

Fig. 5. Optimum grain size as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> frequency, as estimated with <strong>the</strong><br />

mo<strong>de</strong>l, for steel B (1.5 wt% Si).<br />

and that for higher resistivities tend to be lower. This can<br />

be mo<strong>de</strong>led by means <str<strong>on</strong>g>of</str<strong>on</strong>g> (6), which predicts that <strong>the</strong> optimum<br />

grain size is higher for an alloy with more silic<strong>on</strong> (and higher<br />

resistivity), in agreement with <strong>the</strong> experimental results (50 Hz)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Shimanaka et al. [12], who showed that <strong>the</strong> optimum grain<br />

size is in <strong>the</strong> range 100–150 m for steels with 1.85 to 3.2% Si.<br />

Fig. 4 shows that, increasing <strong>the</strong> frequency, <strong>the</strong> losses increase<br />

more pr<strong>on</strong>ouncedly for <strong>the</strong> steel with lower resistivity. The results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> applying <strong>the</strong> mo<strong>de</strong>l for steel B (1.5 wt% Si) were: 1)<br />

Hz, m, 2) Hz, m,<br />

and 3) Hz, m, as shown in Fig. 5. The recrystallized<br />

grains <str<strong>on</strong>g>of</str<strong>on</strong>g> our sheets have a “pancake” shape, i.e., are<br />

much larger parallel to <strong>the</strong> transverse secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sheet, than<br />

for <strong>the</strong> l<strong>on</strong>gitudinal secti<strong>on</strong>. This should explain <strong>the</strong> difference<br />

in relati<strong>on</strong> to Shimanaka et al. [12], who probably reported <strong>the</strong><br />

average grain size taking into account all <strong>the</strong> directi<strong>on</strong>s. In our<br />

case, <strong>the</strong> grain size was measured parallel to <strong>the</strong> surface which<br />

is preferable due <strong>the</strong> physical assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> mo<strong>de</strong>l [3].<br />

The texture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples is quite similar, with two fibers<br />

ND (ND = normal directi<strong>on</strong>) and RD (RD =<br />

ACKNOWLEDGMENT<br />

This work was supported in part by <strong>the</strong> Brazilian agency C<strong>on</strong>selho<br />

Naci<strong>on</strong>al <strong>de</strong> Desenvolvimento Científico e Tecnológico<br />

(CNPq). The authors M. F. <strong>de</strong> Campos, T. Y<strong>on</strong>amine, and M.<br />

Fukuhara would like to thank CNPq-PROMETRO for <strong>the</strong>ir support.<br />

The authors would like to thank L. Gomes for quantitative<br />

metallography measurements.<br />

REFERENCES<br />

[1] K. Matsumura and B. Fukuda, IEEE Trans. Magn., vol. MAG-20, no. 5,<br />

pp. 1533–1538, Sep. 1984.<br />

[2] M. Shiozaki and Y. Kurosaki, J. Mater. Eng., vol. 11, pp. 37–43, 1989.<br />

[3] M. F. <strong>de</strong> Campos, J. C. Teixeira, and F. J. G. Landgraf, J. Magn. Magn.<br />

Mater., vol. 301, pp. 94–99, 2006.<br />

[4] L. M. C. Mhango and R. Perryman, IEE Proc.-Electr. Power Appl., vol.<br />

144, pp. 149–157, 1997.<br />

[5] J. E. Burke and D. Turnbull, Progress in Metal Physics. L<strong>on</strong>d<strong>on</strong>, U.K.:<br />

Pergam<strong>on</strong> Press, 1952, vol. 3B, pp. 220–292.<br />

[6] E. T. Stephens<strong>on</strong>, J. Appl. Phys., vol. 57, pp. 4226–4228, 1985.<br />

[7] D. C. Jiles, Introducti<strong>on</strong> to Magnetism and Magnetic Materials.<br />

L<strong>on</strong>d<strong>on</strong>, U.K.: Chapmann & Hall, 1991.<br />

[8] E. Adler and H. Pfeiffer, IEEE Trans. Magn., vol. MAG-10, no. 2, pp.<br />

172–174, Jun. 1974.<br />

[9] J. Degauque, B. Astie, J. L. Porteseil, and R. Vergne, J. Magn. Magn.<br />

Mater., vol. 26, pp. 261–263, 1982.<br />

[10] J. J. Thoms<strong>on</strong>, Electrician, vol. 28, pp. 599–600, 1892.<br />

[11] C. D. Graham Jr., J. Appl. Phys., vol. 53, pp. 8276–8280, 1982.<br />

[12] H. Shimanaka, Y. Ito, K. Matsumura, and B. Fukuda, J. Magn. Magn.<br />

Mater., vol. 26, pp. 57–64, 1982.<br />

[13] M. F. <strong>de</strong> Campos, F. J. G. Landgraf, I. G. S. Falleiros, G. C. Fr<strong>on</strong>zaglia,<br />

and H. Kahn, ISIJ Int., vol. 44, pp. 1733–1738, 2004.<br />

Manuscript received March 10, 2006 (e-mail: fmissell@yahoo.com;<br />

fpmissel@ucs.br).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!