29.11.2014 Views

Presentation

Presentation

Presentation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Simulating Yield using STATSGO<br />

and SSURGO soil datasets<br />

R. Butalia 1 , L. Negm 2 , S. Tian 2<br />

North Carolina State University<br />

1<br />

Department of Forestry<br />

2<br />

Department of Biological and Agricultural Engineering


Outline<br />

1. Introduction and Objectives<br />

2. Soil Datasets – STATSGO and SSURGO<br />

3. Methods<br />

• Model Selection and Application<br />

• Subbasin Selection<br />

• Validation<br />

4. Results<br />

5. Summary and Conclusion


Introduction<br />

Study Area<br />

• Robeson Creek<br />

Watershed<br />

• Piedmont, Carolina<br />

Slate Belt<br />

• Impaired<br />

waterbody, active<br />

TMDL for P<br />

• Section 319 funded<br />

• 7 Sampling points<br />

• Mixed land use


Introduction<br />

SWAT<br />

• SWAT is a hydrologic modeling tool developed<br />

at Texas A&M University.<br />

• Capable of predicting the effect of different land<br />

uses on water yield and quality in large complex<br />

watersheds.


Objectives<br />

• Determine the influence of soil input dataset<br />

spatial resolution on model behaviour<br />

• Determine the variation in this influence for two<br />

basins – smaller basin nested in larger<br />

STATSGO<br />

SSUGRO<br />

WS A<br />

WYLD AST<br />

WYLD ASR<br />

WS B<br />

WYLD BST<br />

WYLD BSR<br />

WS A -Entire Basin WS B – Subbasin 6


Soil Datasets<br />

• STATSGO – lower spatial resolution<br />

• SSURGO – more detailed geography and more<br />

recent data (survey conducted 1990s).<br />

• VBA code created for pre-processing SSURGO 2.2.1<br />

• Only one soil type per polygon was used in<br />

SWAT


Methods<br />

Model Selection and Application<br />

• SWAT<br />

• Commonly used, tested at various spatial scales<br />

• Allows use of spatial data, Arc SWAT<br />

• Simulation experiment<br />

• Two different soil datasets<br />

• Two different watershed sizes<br />

• Uncalibrated simulations


Methods<br />

Model Selection and Application<br />

Soil Water Balance (Arnold et al 1999)<br />

R – Rainfall<br />

Q - Runoff<br />

ET – Evapotranspiration<br />

P - Percolation<br />

QR – Return Flow<br />

Calculated for each HRU for each time step, typically daily


Methods<br />

Name<br />

Source<br />

Date<br />

STATSGO<br />

Simulation<br />

SSURGO<br />

Simulation<br />

Spatial Resolution/<br />

Map Scale<br />

Flow<br />

NCSU<br />

WQ<br />

2002 -<br />

2006<br />

Elevation<br />

NCDOT<br />

8/15/07<br />

X<br />

X<br />

20 foot cell,<br />

rounded down to<br />

nearest foot<br />

Land Use /<br />

Land Cover<br />

MRLC<br />

8/15/07<br />

X<br />

X<br />

30 meter cell,<br />

minimum 1 acre<br />

Unit<br />

Soil<br />

STATSGO<br />

SWAT<br />

(modified)<br />

8/15/07<br />

X<br />

1: 250, 000<br />

Soil SSURGO<br />

NRCS<br />

3/20/07<br />

X<br />

1: 24,000


Methods<br />

• Subbasins delineated using sampling<br />

locations as outlets<br />

• Subbasins characteristics from reports<br />

created by SWAT<br />

• Attempt to normalize for Land Use


Soil Datasets<br />

STATSGO<br />

Watershed Outlet<br />

Subbasin 6 Outlet


Soil Datasets<br />

SSURGO<br />

Watershed Outlet<br />

Subbasin 6 Outlet


Sample Profiles<br />

Cid<br />

Badin<br />

Georgeville<br />

• Clay and Silty Clay Loams<br />

• Variation in depth of profile<br />

• Most commonly low permeability<br />

STATSGO - 62 in.<br />

SSURGO – bottom of C 80 in.


Methods<br />

Subbasin Selection: Yield ratio (measured flows)<br />

ratio<br />

Ratio<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

sub_1 Sub1<br />

sub_2 Sub2<br />

sun_3<br />

Sub3<br />

sub_4 sub_6 sub_7<br />

Sub4<br />

Sub6<br />

Sub7<br />

May-02 Dec-02 Jun-03 Jan-04 Aug-04 Feb-05 Sep-05 Mar-06<br />

Date<br />

time


Methods<br />

Subbasin characteristics<br />

(value in %) WATERSHED SUBBASIN 6<br />

NC061 2.8 0<br />

Soil Type NC064 22.2 23.8<br />

NC068 75 76.2<br />

0 - 2 53.6 52.7<br />

2 - 6 44 45.4<br />

Land Slope 6 - 10 2 1.6<br />

10 - 15 0.15 0.14<br />

> 15 0.02 0.04<br />

URBN 9.3 5.9<br />

WATR 0.39 0.62<br />

SWRN 0.15 0.1<br />

Land Use FRST 69 64.8<br />

RAG 9.6 11.95<br />

HAY 11.4 15.1


Methods<br />

Validation<br />

Compared simulated flow to measured data<br />

I. Nash Sutcliffe (E)<br />

II. Pearson Product Momentum Coefficient (r)


Results<br />

Monthly Flow Entire Watershed<br />

water Yield Flow (1000 yield (1000 m 3 ) /m)<br />

m3/M)<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Results from SSURGO data<br />

Results from STATSGO data<br />

Measured results<br />

Sep-02 Mar-03 Oct-03 Apr-04 Nov-04 May-05 Dec-05 Jul-06<br />

Date<br />

time


Results Monthly Flow Subbasin 6<br />

water yield (1000 m3/M)<br />

Flow (1000 m 3 )<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Sep-02 Mar-03 Oct-03 Apr-04 Nov-04 May-05 Dec-05<br />

time<br />

Date<br />

Results from SSURGO data<br />

Results from STATSGO data<br />

Measured results


Results<br />

STATSGO<br />

SSUGRO<br />

E r E r<br />

Watershed -0.75 -0.1 -1 -0.24<br />

Sub basin 6 0.09 -0.07 -1.45 -0.16<br />

Not Indicative of accurate modelling


S&R1<br />

Results<br />

Ratio = Q 6<br />

/ Q ww<br />

3<br />

SSURGO ratio STATSGO ratio Measured ratio<br />

2.5<br />

2<br />

Ratio<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

Time


Slide 21<br />

S&R1<br />

this should have been measured ratio and then shown statsgo and ssurgo<br />

Sharon & Raj, 2/20/2008


Results<br />

• In our case SSURGO yields were lower<br />

than STATSGO. Others also running<br />

uncalibrated models (Peschel et al,<br />

2006) have found different results


Results<br />

Entire Watershed<br />

Differences between simulations using SSURGO and<br />

STATSGO data for key hydrologic processes: A<br />

400<br />

350<br />

Percolation Soil Water Water Yield (q)<br />

300<br />

250<br />

Difference (mm<br />

200<br />

150<br />

100<br />

50<br />

Initial Conditions<br />

0<br />

-50<br />

-100<br />

0 5 10 15 20 25 30 35 40 45<br />

Time Indicator


Results<br />

Entire Watershed<br />

Differences between simulations using SSURGO and<br />

STATSGO data for key hydrologic processes: B<br />

30<br />

Surface Runoff Groundwater Flow ET Water Yield (q)<br />

20<br />

10<br />

Difference (mm)<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

0 5 10 15 20 25 30 35 40 45<br />

Time Indicator


Results<br />

T-test Analysis Comparing Yield (mm) Results<br />

from STATSGO and SSURGO<br />

Values in cells are<br />

t (P)<br />

STATSGO<br />

WW<br />

SSURGO<br />

SB6<br />

STATSGO<br />

SB6<br />

-0.79 (0.433)<br />

-0.17<br />

(0.8687)<br />

SSURGO<br />

WW<br />

-2.97<br />

(0.0054)<br />

3.67 (0.0008)


Conclusions<br />

• Results using SSURGO data showed<br />

differences between the entire watershed and<br />

the nested subasin.<br />

• Need to perform further sensitivity analysis<br />

and compare calibrated results<br />

Future Steps<br />

• Calibration and sensitivity analysis may lead<br />

to different conclusions<br />

• Factor in saprolite and restrictive layers


Acknowledgements<br />

NCSU Water Quality Group<br />

Dan Line<br />

Karen Hall<br />

Hugh Devine, CNR, NCSU<br />

Hoffman Fund, NCSU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!