30.11.2014 Views

slides of the lectures - Coxeter Groups meet Convex Geometry ...

slides of the lectures - Coxeter Groups meet Convex Geometry ...

slides of the lectures - Coxeter Groups meet Convex Geometry ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Coxeter</strong> groups <strong>meet</strong>s<br />

convex geometry<br />

<br />

<br />

Lecture I<br />

Finite reflection<br />

groups and<br />

Permutahedra<br />

Christophe Hohlweg<br />

LaCIM, UQAM<br />

jeudi 16 août 2012


jeudi 16 août 2012<br />

A dodecahedron


a<br />

a<br />

Permutahedra<br />

<strong>of</strong> dim 3<br />

a<br />

jeudi 16 août 2012


s(a)<br />

H a (e 2 −e 1 )<br />

=span{e 1 }<br />

e(a)<br />

s(H a (e 1 ))<br />

=span{e 1 +e 2 }<br />

H a (e 1 )<br />

=span{e 2 −e 1 }<br />

e 2<br />

e 1 + e 2<br />

st(a)<br />

e 2 − e 1<br />

t(a)<br />

st(H a (e 2 −e 1 ))<br />

=span{e 2 }<br />

e 1<br />

t(H a (e 2 −e 1 ))<br />

=span{e 2 }<br />

sts(a)<br />

ts(a)<br />

sts(H a (e 1 ))<br />

=span{e 2 −e 1 }<br />

ts(H a (e 1 ))<br />

=span{e 1 +e 2 }<br />

stst(a)=tsts(a)<br />

tst(a)<br />

tst(H a (e 2 −e 1 ))<br />

=span{e 1 }<br />

jeudi 16 août 2012


s = s e1 ; s(a)<br />

{e,s} = W s<br />

e ; e(a)<br />

s{e,t} = sW t<br />

{e,t} = W t<br />

st<br />

t = s e2 −e 1<br />

; t(a)<br />

e 2 − e 1<br />

st{e,s} = stW s<br />

e 1<br />

t{e,s} = tW s<br />

sts<br />

ts<br />

sts{e,t} = stsW t<br />

tst{e,s} = tstW s<br />

ts{e,t} = tsW t<br />

stst = tsts = w o<br />

tst<br />

jeudi 16 août 2012


s 1<br />

e<br />

s 2<br />

s 1 s 3<br />

s 2 s 3<br />

s 3<br />

s 1 s 2<br />

s 2 s 1<br />

s 1 s 3 s 2<br />

s 2 s 3 s 1<br />

s 1 s 2 s 3<br />

s 3 s 2<br />

s 1 s 2 s 1<br />

s 1 s 2 s 3 s 1<br />

s 3 s 2 s 1<br />

s 2 s 3 s 2<br />

s 2 s 3 s 2 s 1 s1 s s s s<br />

s 1 s 3 s 2 s 1<br />

s 1 s 2 s 3 s 2<br />

2 3 1 2<br />

s 2 s 3 s 1 s 2<br />

s 1 s 2 s 3 s 2 s 1<br />

w ◦<br />

s 2 s 3 s 1 s 2 s 1<br />

jeudi 16 août 2012


Type A<br />

Type B<br />

τ 1<br />

e<br />

τ 2<br />

w o<br />

τ 1 τ 3<br />

τ 2 τ 3<br />

τ 3<br />

τ 1 τ 2<br />

τ 2 τ 1<br />

τ 1 τ 3 τ 2<br />

τ 2 τ 3 τ 1<br />

w o<br />

τ 1 τ 2 τ 3 τ 2<br />

τ 2 τ 3 τ 1 τ 2<br />

τ 1 τ 2 τ 3<br />

τ 3 τ 2<br />

τ 1 τ 2 τ 1<br />

e<br />

τ 1 τ 3 τ 2 τ 1<br />

τ 2 τ 3 τ 2 τ 1 τ1 τ 2 τ 3 τ 1 τ 2<br />

τ 1 τ 2 τ 3 τ 1<br />

τ 3 τ 2 τ 1<br />

τ 2 τ 3 τ 2<br />

e<br />

τ 1 τ 2 τ 3 τ 2 τ 1<br />

w ◦<br />

τ 2 τ 3 τ 1 τ 2 τ 1<br />

τ 1<br />

e<br />

w o = τ 0 τ 1 τ 2 τ 0 τ 1 τ 2 τ 0 τ 1 τ 2<br />

τ 1 τ 3<br />

τ 2 τ 3<br />

τ 1 τ 2<br />

τ 1 τ 2 τ 1<br />

τ 3<br />

τ 1 τ 2 τ 3 τ 2<br />

τ 1 τ 2 τ 3<br />

τ 1 τ 2 τ 3 τ 1<br />

τ 2<br />

τ 1 τ 2 τ 3 τ 1 τ 2<br />

w ◦<br />

e<br />

τ 2 τ 3 τ 2<br />

jeudi 16 août 2012


jeudi 16 août 2012<br />

Type H


<strong>Coxeter</strong> groups <strong>meet</strong>s<br />

<br />

<br />

convex geometry<br />

Lecture II<br />

<strong>Geometry</strong> <strong>of</strong> infinite<br />

root systems<br />

Christophe Hohlweg<br />

LaCIM, UQAM<br />

jeudi 16 août 2012


The o<strong>the</strong>r way around ?<br />

V finite dim. vector space ; B symmetric bilinear form<br />

The isotropic cone<br />

<strong>of</strong> B: Q = {v ∈ V | B(v, v) =0}<br />

Root <strong>of</strong> a B-reflection on V: for α/∈ Q and<br />

s α (v) =v − 2B(v, α)α<br />

B(α, α) =1<br />

with .<br />

v ∈ V<br />

B-reflections generate B-reflection group in O B (V )<br />

Examples<br />

Finite (Euclidean) reflection<br />

groups (iff B is a scalar product)<br />

infinite dihedral group<br />

Q<br />

ρ ρ<br />

4<br />

4<br />

ρ 3<br />

ρ 3<br />

Affine reflection<br />

groups (iff B is positive<br />

semidefinite)<br />

ρ ρ<br />

2<br />

2<br />

β = ρ α = ρ 1<br />

1<br />

(a) B(α, β) =−1<br />

jeudi 16 août 2012


The o<strong>the</strong>r way around ?<br />

More examples<br />

Affine reflection<br />

groups (iff B is positive<br />

semidefinite)<br />

infinite dihedral group<br />

Q<br />

Non-affine<br />

reflection groups<br />

(e.g. hyperbolic, etc)<br />

infinite dihedral group<br />

ρ ρ<br />

4<br />

4<br />

ρ 4<br />

ρ 4<br />

Q − α = ρ 1<br />

ρ 3<br />

ρ 3<br />

ρ 3<br />

ρ 3<br />

ρ 2<br />

ρ 2<br />

ρ 2<br />

ρ 2<br />

β = ρ 1<br />

β = ρ 1<br />

α = ρ 1<br />

(a) B(α, β) =−1<br />

(b) B(α, β) =−1.01 < −1<br />

Q − = {v ∈ V | B(v, v) ≤ 0}<br />

jeudi 16 août 2012


What is an infinite root system ?<br />

ρ n = nα +(n + 1)β<br />

Q<br />

ρ n =(n + 1)α + nβ<br />

ρ 4<br />

ρ 4<br />

ρ 3<br />

ρ 3<br />

= s α s β (α)<br />

= 3α +2β<br />

s β (α) =<br />

α +2β =<br />

ρ 2<br />

ρ 2<br />

= s α (β)<br />

= β +2α<br />

β = ρ 1<br />

α = ρ 1<br />

(a) B(α, β) =−1<br />

s α (v) =v − 2B(v, α)α.<br />

jeudi 16 août 2012


A simple system<br />

• ∆ is a basis <strong>of</strong> V ;<br />

What is an infinite root system ?<br />

∆, i.e.,<br />

• B(α, α) = 1 for all α ∈ ∆;<br />

(in fact Positively independent)<br />

• B(α, β) ∈ ] −∞, −1] ∪ {− cos π<br />

k<br />

<br />

,k ≥ 2}, for all α, β ∈ ∆<br />

A B-reflection group<br />

W<br />

generated<br />

W infinite dihedral group<br />

ρ ρ<br />

4<br />

4<br />

by S := {s α | α ∈ ∆} .<br />

Q − α = ρ 1<br />

ρ 3<br />

ρ 3<br />

Root system: Φ=W (∆)<br />

ρ 2<br />

ρ 2<br />

β = ρ 1<br />

(b) B(α, β) =−1.01 < −1<br />

jeudi 16 août 2012


What is an infinite root system ?<br />

A simple system<br />

∆, i.e.,<br />

A B-reflection group<br />

W<br />

generated<br />

• ∆ is a basis <strong>of</strong> V ;<br />

by S := {s α | α ∈ ∆} .<br />

• B(α, α) = 1 for all α ∈ ∆;<br />

• B(α, β) ∈ ] −∞, −1] ∪ {− cos π<br />

k<br />

<br />

,k ≥ 2}, for all α, β ∈ ∆<br />

Root system: Φ=W (∆)<br />

W infinite dihedral group<br />

ρ 4<br />

ρ 4<br />

Proposition (see Krammer)<br />

(a) (W, S) is a <strong>Coxeter</strong> system;<br />

(b) <strong>the</strong> order <strong>of</strong> s α s β is k (or ∞ ) if<br />

B(α, β) =− cos( π (or )<br />

k ) B(α, β) ≤−1<br />

(c) Φ + := cone(∆) ∩ Φ is a positive<br />

root system: Φ=Φ + −Φ + .<br />

ρ 3<br />

ρ 2<br />

β = ρ 1<br />

Q − ρ 3<br />

ρ 2<br />

α = ρ 1<br />

(b) B(α, β) =−1.01 < −1<br />

jeudi 16 août 2012


What is an infinite root system ?<br />

A simple system ∆, i.e., A B-reflection group W generated<br />

• ∆ isA a basis useful <strong>of</strong> V characterization ; by S := {s α | <strong>of</strong> α ∈<strong>the</strong> ∆} . length<br />

and biclosed sets<br />

• B(α, α) = 1 for all α ∈ ∆;<br />

• B(α, β) ∈ ] −∞, −1] ∪ {− cos π<br />

k<br />

<br />

,k ≥ 2}, for all α, β ∈ ∆<br />

Root system: Φ=W (∆)<br />

W infinite dihedral group<br />

ρ 4<br />

ρ 4<br />

Proposition (see Krammer)<br />

(a) (W, S) is a <strong>Coxeter</strong> system;<br />

(b) <strong>the</strong> order <strong>of</strong> s α s β is k (or ∞ ) if<br />

B(α, β) =− cos( π (or )<br />

k ) B(α, β) ≤−1<br />

(c) Φ + := cone(∆) ∩ Φ is a positive<br />

root system: Φ=Φ + −Φ + .<br />

ρ 3<br />

ρ 2<br />

β = ρ 1<br />

Q − ρ 3<br />

ρ 2<br />

α = ρ 1<br />

(b) B(α, β) =−1.01 < −1<br />

jeudi 16 août 2012


Example: infinite affine dihedral group<br />

ρ n = nα +(n + 1)β<br />

Q<br />

ρ n =(n + 1)α + nβ<br />

ρ 4<br />

ρ 4<br />

ρ 3<br />

ρ 3<br />

= s α s β (α)<br />

= 3α +2β<br />

s β (α) =<br />

α +2β =<br />

ρ 2<br />

ρ 2<br />

= s α (β)<br />

= β +2α<br />

β = ρ 1<br />

α = ρ 1<br />

(a) B(α, β) =−1<br />

s α (v) =v − 2B(v, α)α.<br />

jeudi 16 août 2012


A problem<br />

τ 1<br />

e<br />

τ 2<br />

τ 1 τ 3<br />

τ 2 τ 3<br />

τ 3<br />

τ 1 τ 2<br />

τ 2 τ 1<br />

τ 1 τ 3 τ 2<br />

τ 2 τ 3 τ 1<br />

τ 1 τ 2 τ 3 τ 2 τ 1 τ 2 τ 3<br />

τ 1 τ 2 τ 1<br />

τ 3 τ 2<br />

τ 2 τ 3 τ 1 τ 2<br />

τ 1 τ 3 τ 2 τ 1<br />

τ 1 τ 2 τ 3 τ 1<br />

τ 3 τ 2 τ 1<br />

τ 2 τ 3 τ 2<br />

τ 2 τ 3 τ 2 τ 1 τ1 τ 2 τ 3 τ 1 τ 2<br />

τ 1 τ 2 τ 3 τ 2 τ 1<br />

w ◦<br />

τ 2 τ 3 τ 1 τ 2 τ 1<br />

τ 1<br />

e<br />

What about such a<br />

τ 1 τ 3<br />

τ 2 τ 3<br />

picture for infinite<br />

<strong>Coxeter</strong> groups?<br />

τ 1 τ 2 τ 3 τ 2<br />

τ 3<br />

τ 1 τ 2<br />

τ 1 τ 2 τ 1<br />

τ 1 τ 2 τ 3<br />

τ 1 τ 2 τ 3 τ 1<br />

τ 2<br />

τ 1 τ 2 τ 3 τ 1 τ 2<br />

w ◦<br />

τ 2 τ 3 τ 2<br />

Type A 3<br />

jeudi 16 août 2012


A problem<br />

τ 1<br />

e<br />

τ 2<br />

τ 1 τ 3<br />

τ 2 τ 3<br />

τ 3<br />

τ 1 τ 2<br />

τ 2 τ 1<br />

τ 1 τ 3 τ 2<br />

τ 2 τ 3 τ 1<br />

τ 1 τ 2 τ 3 τ 2 τ 1 τ 2 τ 3<br />

τ 1 τ 2 τ 1<br />

τ 3 τ 2<br />

τ 2 τ 3 τ 1 τ 2<br />

τ 1 τ 3 τ 2 τ 1<br />

τ 1 τ 2 τ 3 τ 1<br />

τ 3 τ 2 τ 1<br />

τ 2 τ 3 τ 2<br />

τ 2 τ 3 τ 2 τ 1 τ1 τ 2 τ 3 τ 1 τ 2<br />

To obtain, at least, <strong>the</strong><br />

exchange graph <strong>of</strong> a<br />

τ 1 τ 2 τ 3 τ 2 τ 1<br />

w ◦<br />

τ 2 τ 3 τ 1 τ 2 τ 1<br />

τ 1<br />

e<br />

τ 1 τ 3<br />

τ 2 τ 3<br />

τ 1 τ 2<br />

τ 1 τ 2 τ 1<br />

cluster algebra as <strong>the</strong><br />

τ 3<br />

graph <strong>of</strong> a sub(quotient)<br />

lattice <strong>of</strong> <strong>the</strong> graph <strong>of</strong><br />

<strong>the</strong> weak order ...<br />

τ 1 τ 2 τ 3 τ 2<br />

τ 1 τ 2 τ 3<br />

τ 1 τ 2 τ 3 τ 1<br />

τ 2<br />

τ 1 τ 2 τ 3 τ 1 τ 2<br />

w ◦<br />

τ 2 τ 3 τ 2<br />

Type A 3<br />

jeudi 16 août 2012


τ1τ3<br />

τ1<br />

τ3<br />

e<br />

τ1τ2<br />

τ1τ3τ2<br />

τ1τ2τ3τ2<br />

τ3τ2<br />

τ1τ2τ3<br />

τ1τ2τ1<br />

τ2<br />

A problem<br />

τ1τ3τ2τ1<br />

τ1τ2τ3τ2τ1<br />

τ2τ1<br />

τ1τ2τ3τ1<br />

τ3τ2τ1<br />

τ2τ3<br />

τ2τ3τ2<br />

τ2τ3τ1<br />

τ2τ3τ2τ1<br />

τ1τ2τ3τ1τ2<br />

w◦<br />

τ2τ3τ1τ2<br />

τ2τ3τ1τ2τ1<br />

τ1<br />

e<br />

τ1τ3<br />

τ1τ2<br />

τ3<br />

τ1τ2τ3<br />

τ1τ2τ1<br />

τ1τ2τ3τ2<br />

τ1τ2τ3τ1<br />

τ2<br />

τ1τ2τ3τ1τ2<br />

w◦<br />

τ2τ3<br />

τ2τ3τ2<br />

To obtain, at least, <strong>the</strong><br />

exchange graph <strong>of</strong> a<br />

cluster algebra as <strong>the</strong><br />

graph <strong>of</strong> a sub(quotient)<br />

lattice <strong>of</strong> <strong>the</strong> graph <strong>of</strong><br />

<strong>the</strong> weak order ...<br />

Finite case : N.<br />

Reading, Reading<br />

Speyer<br />

Infinite case : <strong>the</strong><br />

group is not<br />

enough, nei<strong>the</strong>r are<br />

c-sortable elements<br />

jeudi 16 août 2012


τ1τ3<br />

τ1<br />

τ3<br />

e<br />

τ1τ2<br />

τ1τ3τ2<br />

τ1τ2τ3τ2<br />

τ3τ2<br />

τ1τ2τ3<br />

τ1τ2τ1<br />

τ2<br />

A problem<br />

τ1τ3τ2τ1<br />

τ1τ2τ3τ2τ1<br />

τ2τ1<br />

τ1τ2τ3τ1<br />

τ3τ2τ1<br />

τ2τ3<br />

τ2τ3τ2<br />

τ2τ3τ1<br />

τ2τ3τ2τ1<br />

τ1τ2τ3τ1τ2<br />

w◦<br />

τ2τ3τ1τ2<br />

τ2τ3τ1τ2τ1<br />

τ1<br />

e<br />

τ1τ3<br />

τ1τ2<br />

τ3<br />

τ1τ2τ3<br />

τ1τ2τ1<br />

τ1τ2τ3τ2<br />

τ1τ2τ3τ1<br />

τ2<br />

τ1τ2τ3τ1τ2<br />

w◦<br />

τ2τ3<br />

τ2τ3τ2<br />

What to do<br />

(in my point <strong>of</strong> view) ?<br />

First, solve:<br />

Conjecture (M. Dyer, 2011)<br />

The set <strong>of</strong> biclosed sets<br />

with <strong>the</strong> inclusion is a<br />

lattice<br />

And understand better<br />

infinite root systems!!!!<br />

jeudi 16 août 2012


O<strong>the</strong>r examples <strong>of</strong> infinite root systems?<br />

ρ n = nα +(n + 1)β<br />

Q<br />

ρ n =(n + 1)α + nβ<br />

ρ 4<br />

ρ 4<br />

ρ 3<br />

ρ 3<br />

= s α s β (α)<br />

= 3α +2β<br />

`Cut’<br />

Φ +<br />

by<br />

s β (α) =<br />

α +2β =<br />

ρ 2<br />

ρ 2<br />

= s α (β)<br />

= β +2α<br />

an affine<br />

hyperplane<br />

β = ρ 1<br />

α = ρ 1<br />

V 1 = {v ∈ V | α∈∆<br />

v α =1}<br />

(a) B(α, β) =−1<br />

jeudi 16 août 2012


O<strong>the</strong>r examples <strong>of</strong><br />

infinite root systems?<br />

ρ 4<br />

Q<br />

ρ 4<br />

Affine hyperplane<br />

V 1 = {v ∈ V | α∈∆<br />

v α =1}<br />

ρ 4<br />

ρ 4<br />

ρ 3<br />

ρ 2<br />

β = ρ 1<br />

ρ 3<br />

ρ 2<br />

(a) B(α, β) =−1<br />

= s α s β (α)<br />

= 3α +2β<br />

= s α (β)<br />

= β +2α<br />

α = ρ 1<br />

Normalized isotropic<br />

cone: Q := Q ∩ V1<br />

Normalized roots<br />

ρ := ρ/ ρ α<br />

α∈∆<br />

β = ρ 1<br />

Q − α = ρ 1<br />

ρ 3<br />

ρ 3<br />

ρ 2<br />

ρ 2<br />

(b) B(α, β) =−1.01 < −1<br />

s β (α) =<br />

α +2β =<br />

<br />

jeudi 16 août 2012


O<strong>the</strong>r examples <strong>of</strong> infinite root systems ...<br />

<br />

s β (α) =<br />

α +2β =<br />

dim 2<br />

dim 3<br />

jeudi 16 août 2012


O<strong>the</strong>r examples <strong>of</strong> infinite root systems ...<br />

<br />

dim 3<br />

dim 2<br />

dim 3<br />

jeudi 16 août 2012


O<strong>the</strong>r examples <strong>of</strong><br />

infinite root systems ...<br />

<br />

dim 3 dim 3<br />

dim 2<br />

dim 4<br />

conv(∆)<br />

jeudi 16 août 2012


O<strong>the</strong>r examples <strong>of</strong><br />

infinite root systems ...<br />

<br />

dim 3 dim 3<br />

dim 2<br />

dim 4<br />

conv(∆)<br />

The `size’ <strong>of</strong> a generalized root<br />

(in red in this last picture) is<br />

decreasing as <strong>the</strong> depth <strong>of</strong> <strong>the</strong><br />

root is increasing.<br />

dp(ρ) =1+min{k | ρ = s α1 s α2 ...s αk (α k+1 ),<br />

α 1 ,...,α k ,α k+1 ∈ ∆}.<br />

jeudi 16 août 2012


Joint works with :<br />

Labbé & Ripoll;<br />

Dyer & Ripoll<br />

W infinite dihedral group<br />

ρ 4<br />

ρ 3<br />

ρ 4<br />

ρ 3<br />

Limits <strong>of</strong> roots<br />

Root system: Φ=W (∆)<br />

Depth <strong>of</strong> a root:<br />

dp(ρ) =1+min{k | ρ = s α1 s α2 ...s αk (α k+1 ),<br />

α 1 ,...,α k ,α k+1 ∈ ∆}.<br />

ρ 2<br />

Q − α = ρ 1<br />

ρ 2<br />

Euclidean norm for<br />

∆<br />

orthonormal basis<br />

β = ρ 1<br />

(b) B(α, β) =−1.01 < −1<br />

Lemma<br />

∃λ >0, ∀ρ ∈ Φ + , ||ρ|| 2 ≥ 1+λ(dp(ρ) − 1).<br />

Theorem 1<br />

Consider an injective sequence <strong>of</strong> positive roots (ρ n ) n∈N .<br />

Then <strong>the</strong> norm ||ρ n || tends to infinity (for any norm on ).<br />

V<br />

jeudi 16 août 2012


Limits <strong>of</strong> normalized roots<br />

Theorem 1<br />

Consider an injective sequence <strong>of</strong> positive roots (ρ n ) n∈N .<br />

Then <strong>the</strong> norm ||ρ n || tends to infinity (for any norm on ).<br />

Normalized set <strong>of</strong> positive roots: Φ:={ρ | ρ ∈ Φ + }⊆V 1<br />

V<br />

Fact:<br />

Φ ⊆ conv(∆)<br />

a compact.<br />

W infinite dihedral group<br />

ρ 4<br />

ρ 4<br />

ρ 3<br />

ρ 3<br />

Cut by <strong>the</strong> affine hyperplane<br />

V 1 = {v ∈ V | α∈∆<br />

v α =1}<br />

Q − α = ρ 1<br />

ρ 2<br />

ρ 2<br />

β = ρ<br />

1<br />

<br />

jeudi 16 août 2012<br />

(b) B(α, β) =−1.01 < −1


Limits <strong>of</strong> normalized roots<br />

Theorem 1<br />

Consider an injective sequence <strong>of</strong> positive roots (ρ n ) n∈N .<br />

Then <strong>the</strong> norm ||ρ n || tends to infinity (for any norm on ).<br />

Normalized set <strong>of</strong> positive roots: Φ:={ρ | ρ ∈ Φ + }⊆V 1<br />

V<br />

Fact:<br />

Φ ⊆ conv(∆)<br />

a compact.<br />

Corollary<br />

If<br />

(ρ n ) n∈N<br />

converges to a limit , <strong>the</strong>n<br />

∈ Q ∩ conv(∆).<br />

<br />

jeudi 16 août 2012


Limits <strong>of</strong> normalized roots<br />

Theorem 1<br />

Consider an injective sequence <strong>of</strong> positive roots (ρ n ) n∈N .<br />

Then <strong>the</strong> norm ||ρ n || tends to infinity (for any norm on ).<br />

Normalized set <strong>of</strong> positive roots: Φ:={ρ | ρ ∈ Φ + }⊆V 1<br />

V<br />

Fact:<br />

Φ ⊆ conv(∆)<br />

a compact.<br />

Corollary<br />

If<br />

(ρ n ) n∈N<br />

converges to a limit , <strong>the</strong>n<br />

∈ Q ∩ conv(∆).<br />

<br />

Remark: directions <strong>of</strong> roots converging in Q.<br />

(i) Root systems <strong>of</strong> Lie algebras (Kac 1990).<br />

(ii) Imaginary cone for <strong>Coxeter</strong> groups (Dyer, 2012)<br />

jeudi 16 août 2012


Limits <strong>of</strong> normalized roots<br />

Corollary<br />

If<br />

(ρ n ) n∈N<br />

converges to a limit , <strong>the</strong>n<br />

∈ Q ∩ conv(∆).<br />

<br />

Problem: understand <strong>the</strong> set <strong>of</strong> accumulation points<br />

E(Φ) = Acc( Φ) ⊆ Q ∩ conv(∆)<br />

dim 3<br />

dim 4<br />

conv(∆)<br />

jeudi 16 août 2012


The set<br />

E(Φ) = Acc( Φ)<br />

Some natural questions:<br />

A `fractal phenomenon’?<br />

Restriction to parabolic subgroups?<br />

How W acts on E(Φ) ?<br />

Link with hyperbolic geometry (hyperbolic reflection groups)?<br />

Link with Apollonian gasket (Kleinian groups)?<br />

dim 3<br />

dim 4<br />

conv(∆)<br />

jeudi 16 août 2012


The set<br />

E(Φ) = Acc( Φ)<br />

Some natural questions:<br />

A `fractal phenomenon’?<br />

Restriction to parabolic subgroups?<br />

How W acts on E(Φ) ?<br />

Link with hyperbolic geometry (hyperbolic reflection groups)?<br />

Link with Apollonian gasket (Kleinian groups)?<br />

dim 4<br />

conv(∆)<br />

jeudi 16 août 2012


A geometric action on<br />

E(Φ) = Acc( Φ)<br />

Remark: V 1 is not stable under W.<br />

New action:<br />

D :=<br />

w · v = w(v)<br />

where<br />

on <strong>the</strong> set<br />

w∈W<br />

w(V \ V 0 ) ∩ V 1 V 0 := {v ∈ V | α∈∆<br />

Proposition (CH, Labbé, Ripoll)<br />

(a) Φ ⊆ D is stable under W ;<br />

(b) E(Φ) ⊆ D is stable under W ;<br />

(c) Q ∩ L(α, x) ={x, s α · x} .<br />

v α =0}<br />

x<br />

Theorem (Dyer, CH, Ripoll)<br />

Action faithful if irreducible not<br />

affine or finite.<br />

s α · x<br />

L(α, x)<br />

jeudi 16 août 2012


A geometric action on<br />

E(Φ) = Acc( Φ)<br />

Remark: V 1 is not stable under W.<br />

New action:<br />

D :=<br />

w · v = w(v)<br />

where<br />

on <strong>the</strong> set<br />

w∈W<br />

w(V \ V 0 ) ∩ V 1 V 0 := {v ∈ V | α∈∆<br />

Proposition (CH, Labbé, Ripoll)<br />

(a) Φ ⊆ D is stable under W ;<br />

(b) E(Φ) ⊆ D is stable under W ;<br />

(c) Q ∩ L(α, x) ={x, s α · x} .<br />

v α =0}<br />

x<br />

Theorem (Dyer, CH, Ripoll)<br />

Action faithful if irreducible not<br />

affine or finite.<br />

s α · x<br />

L(α, x)<br />

jeudi 16 août 2012


A geometric action on<br />

E(Φ) = Acc( Φ)<br />

Remark: V 1 is not stable under W.<br />

New action:<br />

D :=<br />

w · v = w(v)<br />

where<br />

on <strong>the</strong> set<br />

w∈W<br />

w(V \ V 0 ) ∩ V 1 V 0 := {v ∈ V | α∈∆<br />

Proposition (CH, Labbé, Ripoll)<br />

(a) Φ ⊆ D is stable under W ;<br />

(b) E(Φ) ⊆ D is stable under W ;<br />

(c) Q ∩ L(α, x) ={x, s α · x} .<br />

v α =0}<br />

x<br />

Theorem (Dyer, CH, Ripoll)<br />

Action faithful if irreducible not<br />

affine or finite.<br />

s α · x<br />

L(α, x)<br />

jeudi 16 août 2012


Remarkable dense subsets<br />

<strong>of</strong><br />

E(Φ) = Acc( Φ)<br />

Dihedral reflection subgroups: ,<br />

Associated root system:<br />

Observation:<br />

W = s ρ ,s γ ρ, γ ∈ Φ +<br />

Φ = W ({ρ, γ})<br />

Limits <strong>of</strong> roots <strong>of</strong> dihedral reflection subgroups:<br />

E 2 :=<br />

<br />

E(Φ )= Q ∩ L(ρ, γ)<br />

ρ 1 ,ρ 2 ∈Φ + L( ρ 1 , ρ 2 ) ∩ Q<br />

Theorem 2 (CH, Labbé, Ripoll 2011)<br />

The set is dense in .<br />

E 2<br />

E(Φ)<br />

jeudi 16 août 2012


Remarkable dense subsets<br />

<strong>of</strong> E(Φ) = Acc( Φ)<br />

Theorem 2 (CH, Labbé, Ripoll 2011)<br />

The set is dense in .<br />

E 2<br />

Pro<strong>of</strong> (sketch).<br />

E(Φ)<br />

E 2 = W · E where<br />

E2 ◦ :=<br />

2<br />

◦ L(α, ρ) ∩ Q <br />

α∈∆<br />

ρ∈Φ +<br />

Proposition (CH, Labbé, Ripoll)<br />

E2<br />

◦<br />

The set is dense in E(Φ) .<br />

Two cases: l/∈ V ⊥ or l ∈ V ⊥ (which<br />

is dealt with by Perron-Frobenius)<br />

jeudi 16 août 2012


Parabolic subgroups<br />

and<br />

E(Φ) = Acc( Φ)<br />

I ⊆ ∆<br />

V I = span(I) ∩ V 1<br />

W I := s α | α ∈ I<br />

Φ I := W I (I)<br />

Consider and .<br />

Standard parabolic subgroup: ;<br />

Associated root system: .<br />

Remark: in general (e.g. rank 5).<br />

E(Φ I ) = E(Φ) ∩ V I<br />

α β<br />

Theorem 4 (Dyer, CH, Ripoll 2012)<br />

For I ⊆ ∆ , we have<br />

E 2 (Φ) ∩ V I = E 2 (Φ I ) ;<br />

s α<br />

s γ<br />

4 -1.5<br />

∞<br />

s β<br />

γ<br />

jeudi 16 août 2012


Singleton are generating<br />

E(Φ) = Acc( Φ)<br />

Theorem 3 (Dyer, CH, Ripoll 2012)<br />

The closure <strong>of</strong> W · x is dense in E(Φ) for E(Φ)<br />

x<br />

s α · x<br />

s α · y<br />

L(α, x)<br />

y<br />

jeudi 16 août 2012


Singleton are generating<br />

E(Φ) = Acc( Φ)<br />

Theorem 3 (Dyer, CH, Ripoll 2012)<br />

The closure <strong>of</strong> W · x is dense in E(Φ) for E(Φ)<br />

Pro<strong>of</strong> based on a strong<br />

property <strong>of</strong> <strong>the</strong><br />

imaginary cone (Mat<strong>the</strong>w<br />

Dyer)<br />

x<br />

s α · x<br />

s α · y<br />

L(α, x)<br />

y<br />

jeudi 16 août 2012


Singleton are generating<br />

E(Φ) = Acc( Φ)<br />

Theorem 3 (Dyer, CH, Ripoll 2012)<br />

The closure <strong>of</strong> W · x is dense in E(Φ) for E(Φ)<br />

Corollary (Dyer, CH, Ripoll)<br />

A first fractal Phenomenon<br />

x<br />

s α · x<br />

s α · y<br />

L(α, x)<br />

y<br />

jeudi 16 août 2012


Fur<strong>the</strong>r<br />

works<br />

Study <strong>the</strong> action <strong>of</strong> W on E(Φ) .<br />

<strong>the</strong> `fractal phenomenon 2’?<br />

Study Dyer’s imaginary cone for<br />

<strong>Coxeter</strong> groups.<br />

Applications to <strong>the</strong> study <strong>of</strong> `biclosed’<br />

sets <strong>of</strong> roots?<br />

Understand <strong>the</strong> action on limits relatively to <strong>the</strong> imaginary<br />

cone<br />

Link with Apollonian gasket (Kleinian groups)?<br />

...<br />

Fin/The end<br />

jeudi 16 août 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!