30.11.2014 Views

Efficient Engine CFD with Detailed Chemistry

Efficient Engine CFD with Detailed Chemistry

Efficient Engine CFD with Detailed Chemistry

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

www.cd-adapco.com<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong><br />

<strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong><br />

Harry Lehtiniemi and Rajesh Rawat<br />

CD-adapco<br />

Karin Fröjd and Fabian Mauss<br />

Digital Analysis of Reaction Systems


Challenges in <strong>CFD</strong> engine modeling<br />

• The flow is turbulent<br />

– Turbulence modeling required<br />

• Spray injection and evaporation occurs<br />

– Spray modeling is required<br />

• Autoignition, combustion, pollutant formation chemistry<br />

– Kinetic modeling required for various fuels<br />

– Soot, NOx models required<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 2


<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong><br />

Problem: Multidimensional modeling of turbulent reactive flow<br />

Turbulent flowfield<br />

Combustion<br />

Navier-Stokes equations ?<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 3


Outline<br />

• Species transport models<br />

– ”Laminar”<br />

– Techniques for speed-up<br />

– Incorporation of turbulence interactions<br />

• Flamelet models<br />

– Transient interactive flamelets<br />

– Transient flamelet progress variable model<br />

Requirements for industrial production simulations:<br />

<strong>Efficient</strong> handling of combustion chemistry<br />

Fully parallel flow simulation capabilities<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 4


STAR-CD and DARS-<strong>CFD</strong><br />

Problem: Multidimensional modeling of turbulent reactive flow<br />

Solution I:<br />

Turbulent flowfield<br />

Combustion<br />

Navier-Stokes equations<br />

Species transport<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 5


DARS-<strong>CFD</strong> – STAR-CD coupling<br />

STAR-CD:<br />

Species Y i<br />

0<br />

Enthalpy h<br />

Species Y i<br />

*<br />

Transport data D ij , , <br />

DARS-<strong>CFD</strong><br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 6


DARS-<strong>CFD</strong> – STAR-CD coupling <strong>with</strong> DOLFA<br />

STAR-CD:<br />

DOLFA<br />

Database<br />

Species Y i<br />

0<br />

Enthalpy h<br />

DOLFA<br />

Species Y i<br />

*<br />

Transport data D ij , , <br />

DARS-<strong>CFD</strong><br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 7


DARS-<strong>CFD</strong> – STAR-CD <strong>with</strong> turbulence interactions<br />

Two options for considering turbulence interactions:<br />

• Kong-Reitz model:<br />

• User coding:<br />

– Scaling of reaction rates<br />

– User can modify the reaction rates for all species<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 8


STAR-CD and Transient Flamelet Models<br />

Problem: Multidimensional modeling of turbulent reactive flow<br />

Solution II:<br />

Turbulent flowfield<br />

Combustion<br />

Navier-Stokes equations<br />

Flamelet modeling<br />

- Interactive<br />

- Transient library<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 9


Basics of the flamelet model<br />

Physical Coordinates Mixture fraction coordinate Z i<br />

tx , , x, x<br />

, ZZ , , Z<br />

1 2 3 2 3<br />

Flame: Surface of<br />

Stoichiometric mixture<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 10


Basics of the flamelet model<br />

Transport of a generic scalar<br />

Flamelet transform:<br />

Def. Scalar dissipation rate<br />

Equations in flamelet space<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 11


STAR-CD – TIF coupling<br />

STAR-CD<br />

Transport of Z, Z” 2 , h, I<br />

Z, Z” 2 T, W q<br />

Update h and <br />

Get cell local T and W q<br />

Perform species pdf integration<br />

Y i (Z)<br />

TIF<br />

2<br />

Yi<br />

Yi<br />

= + <br />

2 iWi<br />

t<br />

2 Z<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 12


Soot modeling <strong>with</strong> TIF<br />

• Turbulent diffusion flame (J. B. Moss et al. 1991) test case<br />

• Flowfield post-processed <strong>with</strong> TIF<br />

• <strong>Detailed</strong> kinetic soot model<br />

– Soot precursors: cyclopentapyrene and larger PAH<br />

– Surface growth: HACA <strong>with</strong> separate ring closure<br />

– Oxidation: O 2 and OH<br />

– Condensation and coagulation<br />

• Particle size distribution<br />

– Method of moments <strong>with</strong> interpolative closure (4 moments)<br />

– Sectional method (100 sections)<br />

F Mauss, K Netzell, and H Lehtiniemi, Combust Sci and Tech 178 (10-11) (2006) 1871-1885<br />

K Netzell, H Lehtiniemi, and F Mauss, Proc Combust Inst 31 (2007) 667-674<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 13


Soot modeling <strong>with</strong> TIF<br />

Centerline soot volume fracition<br />

]<br />

:<br />

[<br />

f v<br />

2 10 -6<br />

1.5 10 -6<br />

1 10 -6<br />

2.5 10 -6<br />

5 10 -7<br />

0 100 200 300 400<br />

0<br />

Height [mm]<br />

F Mauss, K Netzell, and H Lehtiniemi, Combust Sci and Tech 178 (10-11) (2006) 1871-1885<br />

K Netzell, H Lehtiniemi, and F Mauss, Proc Combust Inst 31 (2007) 667-674<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 14


Soot modeling <strong>with</strong> TIF<br />

Particle size distributions in the turbulent diffusion flame<br />

K Netzell, H Lehtiniemi, and F Mauss, Proc Combust Inst 31 (2007) 667-674<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 15


Transient flamelet progress variable model<br />

• Progress variable defined using chemical enthalpy integrated over the<br />

flamelet 1 N<br />

1<br />

s<br />

Ns<br />

h<br />

0 1 298<br />

( ( ) )<br />

0 1 298<br />

( ( ) 0)<br />

i , i<br />

Yi Z , dZ h<br />

i u<br />

Yi<br />

Z dZ<br />

= i<br />

, ,<br />

,<br />

=<br />

C =<br />

,<br />

1 N<br />

1<br />

s<br />

Ns<br />

h ( Y( Z) , ) dZ h ( Y( Z) , 0) dZ<br />

<br />

<br />

h h h<br />

<br />

0 i= 1 298,, ib i <br />

0 i=<br />

1 298,,<br />

iu i<br />

Transport eqn for chemical enthalpy<br />

2<br />

298 298 298<br />

+ v<br />

D =<br />

2 <br />

ihi<br />

, 298<br />

t x x<br />

i=<br />

1<br />

N s<br />

Transport eqn for the progress variable<br />

<br />

h<br />

+ v D = C<br />

<br />

t x x h /C t<br />

2<br />

C C C<br />

<br />

2<br />

<br />

<br />

<br />

Transform to Z – C space<br />

Z<br />

C<br />

<br />

= + +<br />

<br />

t Z t C t t<br />

Z<br />

<br />

C<br />

= +<br />

x Z x C x<br />

<br />

H Lehtiniemi, F Mauss, M Balthasar and I Magnusson, Combust Sci and Tech 178 (10-11) 2006 1977-1997<br />

298<br />

298<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 16


TFPV – Coupling to STAR-CD<br />

<strong>CFD</strong><br />

To library<br />

EGR, p( t), Tox( x, t),<br />

( x, t), C<br />

( x, t)<br />

Flamelet library module<br />

IdentifyFlamelet<br />

EGR, p( t), T ( x, t), ( x, t), C<br />

( x, t)<br />

ox<br />

C<br />

( x, t)<br />

hflamelet<br />

( T<br />

, Z)<br />

Transport of<br />

Z<br />

t Z<br />

t<br />

2<br />

( x, ), ( x, )<br />

<br />

1<br />

<br />

<br />

2<br />

hi( T ) YiP ( Z; Z , Z ) dZ<br />

0<br />

<br />

2<br />

CZZ , , , h<br />

h<br />

flamelet<br />

( T<br />

)<br />

T<br />

( x, t) , h<br />

( x, t)<br />

guess<br />

IterateTemperature<br />

T( x, t) = f ( T ( x, t), h( x, t), h<br />

( T))<br />

guess<br />

flamelet<br />

To <strong>CFD</strong><br />

T<br />

( x, t)<br />

T<br />

( x, t)<br />

C<br />

( x, t)<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 17


TFPV – Sample engine calculation<br />

Swept volume<br />

Compression ratio<br />

Number of nozzle holes<br />

Nozzle hole diameter<br />

Speed<br />

Fuel type<br />

Fuel amount<br />

<br />

Start of injection<br />

EGR ratio<br />

2.0 L<br />

15.3<br />

6<br />

0.2 mm<br />

1176 rpm<br />

Diesel<br />

74.35 mg<br />

1.24<br />

361 CA<br />

0.32<br />

H Lehtiniemi, F Mauss, M Balthasar and I Magnusson, SAE 2005-01-3855<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 18


TFPV – Sample engine calculation<br />

:<br />

[<br />

s<br />

s<br />

e<br />

r<br />

g<br />

o<br />

r<br />

P<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Combustion progress<br />

___<br />

Max progress<br />

___<br />

Mean progress<br />

0<br />

350 360 370 380 390 400 410<br />

Crank angle [deg]<br />

Pressure and rate of heat release<br />

P<br />

[ 4 10 6 700<br />

3.5 10 6<br />

e<br />

600<br />

r 3 10 6<br />

500<br />

u<br />

s2.5 10 6<br />

400<br />

s<br />

2 10 6<br />

e<br />

300<br />

r1.5 10 6<br />

P<br />

1 10 6<br />

200<br />

5 10 5<br />

100<br />

0<br />

0<br />

350 360 370 380 390 400 410<br />

Crank angle [deg]<br />

H Lehtiniemi, F Mauss, M Balthasar and I Magnusson, SAE 2005-01-3855<br />

R<br />

a<br />

t<br />

e<br />

o<br />

f<br />

h<br />

e<br />

a<br />

t<br />

r<br />

e<br />

l<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 19


TFPV – Sample engine calculation CA 380<br />

Temperature Mixture fraction T [K] Z [-]<br />

2300<br />

0.4<br />

300<br />

0<br />

H Lehtiniemi, F Mauss, M Balthasar and I Magnusson, SAE 2005-01-3855<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 20


TFPV – Sample engine calculation, CA 385<br />

Temperature Mixture fraction T [K] Z [-]<br />

2300<br />

0.4<br />

300<br />

0<br />

H Lehtiniemi, F Mauss, M Balthasar and I Magnusson, SAE 2005-01-3855<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 21


TFPV – Sample engine calculation, CA 395<br />

Temperature Mixture fraction T [K] Z [-]<br />

2300<br />

0.4<br />

300<br />

0<br />

H Lehtiniemi, F Mauss, M Balthasar and I Magnusson, SAE 2005-01-3855<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 22


Summary<br />

• Strategies for efficiently incorporating detailed chemistry in<br />

multidimensional simulations were presented:<br />

– Direct integration of chemistry <strong>with</strong> DARS-<strong>CFD</strong><br />

– Flamelet approach<br />

» Transient interactive flamelet (TIF)<br />

» Transient flamelet progress variable model (TFPV)<br />

• The DARS-<strong>CFD</strong> model allows for<br />

– Turbulence interactions (Kong-Reitz) or user<br />

– Coupling to DOLFA<br />

– Full parallelism<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 23


Summary<br />

• The TIF model allows for<br />

– <strong>Efficient</strong> treatment of chemistry<br />

– Consistent handling of turbulence interactions<br />

– <strong>Efficient</strong> treatment of complex soot and emission chemistry<br />

– Fully parallel simulations<br />

• The TFPV model allows for<br />

– Consideration of effects of local inhomogeneities and local<br />

variations of scalar dissipation rate on the chemistry<br />

– Arbitrary large chemistry can be used in the tabulation <strong>with</strong>out<br />

influencing the <strong>CFD</strong> simulation CPU time<br />

– Coupling to library based emission models<br />

– Fully parallel simulations<br />

<strong>Efficient</strong> <strong>Engine</strong> <strong>CFD</strong> <strong>with</strong> <strong>Detailed</strong> <strong>Chemistry</strong> 24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!