01.12.2014 Views

Output Feedback Sampled-Data Control of Nonlinear Systems in ...

Output Feedback Sampled-Data Control of Nonlinear Systems in ...

Output Feedback Sampled-Data Control of Nonlinear Systems in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Output</strong> <strong>Feedback</strong> <strong>Sampled</strong>-<strong>Data</strong><br />

<strong>Control</strong> <strong>of</strong> <strong>Nonl<strong>in</strong>ear</strong> <strong>Systems</strong><br />

<strong>in</strong> <strong>Output</strong> <strong>Feedback</strong> Form<br />

Buzhou Wu, Zhengtao D<strong>in</strong>g<br />

<strong>Control</strong> <strong>Systems</strong> Centre, School <strong>of</strong> Electrical and Electronic Eng.,<br />

University <strong>of</strong> Manchester, P.O. Box 88, Manchester, M60 1QD,<br />

United K<strong>in</strong>gdom (email: Zhengtao.D<strong>in</strong>g@manchester.ac.uk).<br />

Abstract: This paper deals with sampled-data control <strong>of</strong> nonl<strong>in</strong>ear systems <strong>in</strong> the output<br />

feedback form. A sampled-data control strategy is proposed based on the exist<strong>in</strong>g control design<br />

<strong>in</strong> the cont<strong>in</strong>uous-time doma<strong>in</strong> via output feedback. The proposed control uses the sampled<br />

output and a discrete-time implementation <strong>of</strong> filters <strong>in</strong>volved. The overall stability <strong>of</strong> the system<br />

under the proposed control has been analyzed, and the semi-global asymptotic stability for the<br />

system with relative degree one and two is established by keep<strong>in</strong>g the sampl<strong>in</strong>g <strong>in</strong>terval with a<br />

specified range.<br />

Keywords: sampled-data control, nonl<strong>in</strong>ear systems, output feedback form<br />

1. INTRODUCTION<br />

Digital computers have been widely used for implementation<br />

<strong>of</strong> control strategies. For l<strong>in</strong>ear systems, computer<br />

implementation can be carried out based on the discretetime<br />

version <strong>of</strong> the control design, as there is always<br />

discrete time version which has the same structure as the<br />

orig<strong>in</strong>al cont<strong>in</strong>uous-time model. <strong>Sampled</strong>-data control <strong>of</strong><br />

l<strong>in</strong>ear systems has been <strong>in</strong>tensively studied <strong>in</strong> literature,<br />

see Chen and Francis [1995] for <strong>in</strong>stance.<br />

However most <strong>of</strong> the eng<strong>in</strong>eer<strong>in</strong>g systems are nonl<strong>in</strong>ear,<br />

and there have been tremendous progresses <strong>in</strong> control<br />

design for nonl<strong>in</strong>ear systems <strong>in</strong> the last decade, and a<br />

number <strong>of</strong> control design methods and control strategies<br />

have been proposed. To implement the nonl<strong>in</strong>ear control<br />

laws for nonl<strong>in</strong>ear systems <strong>in</strong> discrete time requires <strong>in</strong>vestigat<strong>in</strong>g<br />

the performance <strong>of</strong> nonl<strong>in</strong>ear sampled-data systems.<br />

Unfortunately the results on sampled-data control<br />

<strong>of</strong> l<strong>in</strong>ear systems can not be applied directly to nonl<strong>in</strong>ear<br />

sampled-data systems, due to the fact that unlike <strong>in</strong> the<br />

l<strong>in</strong>ear context, an exact, discrete-time model <strong>of</strong> a general<br />

nonl<strong>in</strong>ear system is hard to obta<strong>in</strong> and then not available<br />

for controller design. Furthermore, most <strong>of</strong> the cont<strong>in</strong>uoustime<br />

nonl<strong>in</strong>ear theories are not applicable to the sampleddata<br />

case, s<strong>in</strong>ce they rely on particular structures <strong>of</strong> nonl<strong>in</strong>ear<br />

systems, which are usually destroyed by sampl<strong>in</strong>g,<br />

for example, feedback l<strong>in</strong>earizability [Grizzle and Kokotovic,<br />

1988]. These facts strongly motivate the research<br />

on nonl<strong>in</strong>ear sampled-data control systems, to which a<br />

great deal <strong>of</strong> attention has been drawn recently, see Hou<br />

et al. [1997], Teel et al. [1998], Dabroom and Khalil [2001],<br />

Khalil [2004] and Nesic and Teel [2004].<br />

Results on the problem <strong>of</strong> output feedback sampled-data<br />

control <strong>of</strong> nonl<strong>in</strong>ear systems have been reported <strong>in</strong> Dabroom<br />

and Khalil [2001] and Khalil [2004]. Both <strong>of</strong> Dabroom<br />

and Khalil [2001] and Khalil [2004] employed the emulation<br />

method to design sampled-data controllers for the<br />

same class <strong>of</strong> systems, while cont<strong>in</strong>uous-time controllers<br />

are actually state-feedback controllers us<strong>in</strong>g high-ga<strong>in</strong> observers.<br />

The difference is that <strong>in</strong> Dabroom and Khalil<br />

[2001] the high-ga<strong>in</strong> observer was designed <strong>in</strong> cont<strong>in</strong>uous<br />

time while <strong>in</strong> Khalil [2004], on discrete-time models. The<br />

results <strong>in</strong> Dabroom and Khalil [2001] and Khalil [2004]<br />

showed that, for some class <strong>of</strong> nonl<strong>in</strong>ear systems, the<br />

obta<strong>in</strong>ed sampled-data controller can recover the performance<br />

<strong>of</strong> the cont<strong>in</strong>uous-time state feedback controller,<br />

provided that the sampl<strong>in</strong>g period T → 0.<br />

In this paper, we will concentrate on sampled-data control<br />

<strong>of</strong> nonl<strong>in</strong>ear systems <strong>in</strong> the output feedback form. We<br />

will <strong>in</strong>vestigate the conditions, particularly those on the<br />

sampl<strong>in</strong>g period T, under which the sampled-data controller<br />

will stabilize the close-loop sampled-data system.<br />

The paper makes full use <strong>of</strong> exist<strong>in</strong>g methods for design<strong>in</strong>g<br />

cont<strong>in</strong>uous-time controllers for the nonl<strong>in</strong>ear systems <strong>in</strong><br />

the output feedback form Mar<strong>in</strong>o and Tomei [1995] and<br />

D<strong>in</strong>g [2003].<br />

2. PROBLEM STATEMENT<br />

We consider sampled-data control <strong>of</strong> one class <strong>of</strong> s<strong>in</strong>gle<strong>in</strong>put-s<strong>in</strong>gle-output<br />

nonl<strong>in</strong>ear systems which can be transformed<br />

<strong>in</strong>to the follow<strong>in</strong>g output feedback form<br />

with<br />

ẋ = A c x + φ(y) + bu<br />

y = Cx (1)<br />

⎡<br />

⎤<br />

0 1 0 · · · 0<br />

0 0 1 · · · 0<br />

A c =<br />

.<br />

⎢ . . . ..<br />

. ⎥<br />

⎣ 0 0 0 · · · 1 ⎦ ,<br />

0 0 0 · · · 0<br />

⎡ ⎤<br />

0 ... b = 0<br />

b ρ...<br />

⎢ ⎥<br />

⎣ ⎦<br />

b n


C = [ 1 0 · · · 0 ]<br />

where x ∈ R n is the state vector, u, y ∈ R the <strong>in</strong>put and<br />

the output respectively, b ∈ R n an known vector, while<br />

φ(y) is a smooth nonl<strong>in</strong>ear vector field satisfy<strong>in</strong>g φ(0) = 0.<br />

Assumption 1. The system is <strong>of</strong> m<strong>in</strong>imum phase, i.e., the<br />

polynomial B(s) = ∑ n<br />

i=ρ b is n−i is Hurwitz.<br />

The problem considered here can be described as follows:<br />

For system (1), if there exists a cont<strong>in</strong>uous-time output<br />

feedback controller u c given by<br />

˙ω(t) = ν(y,ω), u c = u c (y,ω) (2)<br />

which renders the orig<strong>in</strong> <strong>of</strong> system (1) asymptotically<br />

stable, then for any given <strong>in</strong>itial set, there exists a constant<br />

T ∗ > 0 such that for all 0 < T < T ∗ , the system will still be<br />

asymptotically stabilized by the sampled-data controller<br />

u d<br />

ω(m) = ν d<br />

(<br />

y(m − 1),ω(m − 1<br />

)<br />

)<br />

u d (t) = u c (y(m),ω(m)), ∀t ∈ [mT,mT + T) (3)<br />

where ν d is some discrete-time implementation <strong>of</strong> the<br />

system ω, T is the sampl<strong>in</strong>g period and ω(n) and y(n)<br />

denote the signals ω and y at the nth sampl<strong>in</strong>g po<strong>in</strong>t<br />

respectively, that is, ω(m) = ω(mT), y(m) = y(mT)<br />

3. CONTINUOUS-TIME CONTROL DESIGN<br />

In this paper we focus our discussion on the cases <strong>of</strong><br />

relative degree one and two.<br />

3.1 State transformation<br />

For system (1) with relative degree ρ = 2, we can <strong>in</strong>troduce<br />

the follow<strong>in</strong>g filter [Mar<strong>in</strong>o and Tomei, 1995]<br />

˙ξ = −λξ + u (4)<br />

where λ > 0 is the design parameter. With the vector ¯d = b<br />

∈ R n , the follow<strong>in</strong>g filtered transformation η = x − ¯dξ can<br />

transform system (1) <strong>in</strong>to<br />

˙η = A c η + φ(y) + dξ, y = Cη (5)<br />

where d = [A c ¯d + λ ¯d]. It can be shown that d1 = b ρ and<br />

n∑<br />

d i s n−i = B(s)(s + λ)<br />

i=1<br />

S<strong>in</strong>ce λ is positive, d is a Hurwitz vector with d 1 = b ρ = 1<br />

(here we assume b ρ = 1 without loss <strong>of</strong> generality). Therefore<br />

with ξ be<strong>in</strong>g the <strong>in</strong>put, system (5) is <strong>of</strong> m<strong>in</strong>imum<br />

phase and relative degree one. To extract the <strong>in</strong>ternal dynamics<br />

<strong>of</strong> (5), <strong>in</strong>troduced is the follow<strong>in</strong>g state transform<br />

z 1 = η 2 − d 2 η 1<br />

.<br />

z n−1 = η n − d n η 1<br />

y = η 1 (6)<br />

where z ∈ R n−1 . In the new coord<strong>in</strong>ates, system (5) can<br />

be written as<br />

ż = Dz + φ z (y)<br />

ẏ = z 1 + φ y (y) + ξ (7)<br />

where D is the companion matrix <strong>of</strong> d and is given by<br />

⎡<br />

⎤<br />

−d 2 1 · · · 0<br />

D = ⎣<br />

.<br />

.<br />

. ..<br />

. .. ⎦<br />

−d n 0 · · · 0<br />

and<br />

⎡<br />

d 3 − d 2 ⎤ ⎡<br />

⎤<br />

2 φ 2 − φ 1 d 2<br />

d 4 − d 3 d 2<br />

φ<br />

φ z (y) = y<br />

⎢<br />

. ⎥<br />

⎣<br />

d n − d n−1 d<br />

⎦ + 3 − φ 1 d 3<br />

⎢ . ⎥<br />

⎣<br />

2 φ n−1 − φ 1 d<br />

⎦<br />

n−1<br />

−d n d 2 φ n − φ 1 d n<br />

φ y (y) = φ 1 + yd 2<br />

where φ i denotes the ith component <strong>of</strong> the vector φ.<br />

F<strong>in</strong>ally the model for control design is the extended system<br />

consist<strong>in</strong>g <strong>of</strong> (7) and (4).<br />

3.2 <strong>Control</strong> for the case ρ = 1<br />

If system (1) is <strong>of</strong> relative degree one, then we are actually<br />

deal<strong>in</strong>g with the follow<strong>in</strong>g system<br />

ż = Dz + φ z (y)<br />

ẏ = z 1 + φ y (y) + u c1 (8)<br />

and the cont<strong>in</strong>uous-time control u c1 is designed as<br />

u c1 = −φ y − k 1 y − y −1 φ T z P 2 φ z (9)<br />

where k is a positive real and P is the symmetric positive<br />

def<strong>in</strong>ite solution <strong>of</strong> the Lyapunov equation<br />

D T P + PD = −(γ 1 + 2)I (10)<br />

with γ 1 be<strong>in</strong>g a positive real.<br />

3.3 <strong>Control</strong> for the case ρ = 2<br />

In the case <strong>of</strong> relative degree ρ = 2, backstepp<strong>in</strong>g technique<br />

will be employed to f<strong>in</strong>d the f<strong>in</strong>al control u c2 from the<br />

desirable value <strong>of</strong> ξ. Indeed, we have the follow<strong>in</strong>g control<br />

u c2 = −y + λˆξ + ∂ˆξ<br />

∂y (φ ∂ˆξ<br />

y + ξ) − ˜ξ(<br />

∂y )2 (11)<br />

where ˆξ = −φ y − k 1 y − y −1 φ T z P 2 φ z , and ˜ξ = ξ − ˆξ, which<br />

is governed by<br />

˙˜ξ = −λξ − ∂ˆξ<br />

∂yẏ + u (12)<br />

It is easy to verify that the stabiliz<strong>in</strong>g function ˆξ is a<br />

function <strong>of</strong> y and ˆξ(0) = 0, while the cont<strong>in</strong>uous-time<br />

control u c2 is a function <strong>of</strong> y and ξ and u c2 (0,0) = 0.<br />

3.4 Stability <strong>of</strong> the cont<strong>in</strong>uous-time system<br />

If ρ = 2, the time derivative <strong>of</strong> the follow<strong>in</strong>g Lyapunov<br />

function<br />

satisfies<br />

V c2 = z T Pz + 1 2 y2 + 1 2 ˜ξ 2 (13)


˙V c2 = −(γ 1 + 2)‖z‖ 2 + 2z T Pφ z<br />

+y(z 1 − k 1 y − y −1 φ T z P 2 φ z + ˜ξ)<br />

(<br />

∂ˆξ<br />

+˜ξ − λ˜ξ − y − ˜ξ<br />

∂y z 1 − ˜ξ<br />

( ∂ˆξ<br />

) ) 2<br />

∂y<br />

≤ −k 1 y 2 − γ 1 ‖z‖ 2 − λ˜ξ 2 − (‖z‖ − ‖Pφ z ‖) 2<br />

− 3 ( 1<br />

4 ‖z‖2 −<br />

2 z ∂ˆξ<br />

) 2<br />

1 + ˜ξ<br />

∂y<br />

≤ −k 1 y 2 − γ 1 ‖z‖ 2 − λ˜ξ 2 (14)<br />

which proves by the theorem 4.10 <strong>in</strong> Khalil [2002] that<br />

(y,z, ˜ξ) = 0 is an exponentially stable equilibrium po<strong>in</strong>t<br />

<strong>of</strong> the extended system <strong>of</strong> (7) and (4), which implies that<br />

(y,z,ξ) = 0 is globally asymptotically stable and so is the<br />

orig<strong>in</strong> (x,ξ) = 0. In case ρ = 1, we take V c1 = z T Pz + 1 2 y2<br />

as the Lyapunov function, and the same conclusion can be<br />

reached.<br />

4. STABILITY ANALYSIS<br />

The follow<strong>in</strong>g lemma is needed for stability analysis <strong>in</strong><br />

sampled-data case.<br />

Lemma 2. Let V : R n → R be a cont<strong>in</strong>uously differentiable,<br />

radically unbounded, positive def<strong>in</strong>ite function.<br />

Def<strong>in</strong>e D := {χ ∈ R n |V (χ) ≤ r} with r > 0. Suppose<br />

˙V ≤ −αV + βV m , ∀t ∈ (mT,(m + 1)T], (15)<br />

hold for all χ(mT) ∈ D, where α, β are any given positive<br />

reals with α > β, T > 0 the fixed sampl<strong>in</strong>g period and<br />

V m := V (χ(mT)). If χ(0) ∈ D, then the follow<strong>in</strong>g holds:<br />

lim χ(t) = 0 (16)<br />

t→∞<br />

Pro<strong>of</strong>. S<strong>in</strong>ce χ(0) ∈ D, then (15) holds for t ∈ (0,T] with<br />

the follow<strong>in</strong>g form<br />

˙V ≤ −αV + βV (χ(0)).<br />

Us<strong>in</strong>g comparison lemma [Khalil, 2002] it is easy to get<br />

from the above that for t ∈ (0,T],<br />

where<br />

V (χ(t)) ≤ e −αt V 0 + 1 − e−αt<br />

βV 0<br />

α<br />

= q(t)V 0 , (17)<br />

q(t) :=<br />

(<br />

e −αt + β )<br />

α (1 − e−αt )<br />

S<strong>in</strong>ce α > β > 0, then q(t) ∈ (0,1), ∀t ∈ (0,T]. Then we<br />

have<br />

V (χ(t)) < V 0 , ∀t ∈ (0,T]. (18)<br />

Particularly, lett<strong>in</strong>g t = T <strong>in</strong> (17) leads to V 1 ≤ q(T)V 0 ,<br />

which means that V 1 ∈ D. Therefore (15) holds for t ∈<br />

(T,2T]. By <strong>in</strong>duction, we have<br />

V (χ(t)) < V m , ∀t ∈ (mT,(m + 1)T]. (19)<br />

which states <strong>in</strong>tersample behaviour <strong>of</strong> the sampled-data<br />

system concerned, and <strong>in</strong> particular<br />

V m+1 ≤ q(T)V m (20)<br />

<strong>in</strong>dicat<strong>in</strong>g that V decreases at two consecutive sampl<strong>in</strong>g<br />

po<strong>in</strong>ts with a fixed ratio. From (20),<br />

V m ≤ q(T)V m−1 ≤ q m (T)V 0 (21)<br />

which implies that lim m→∞ V m = 0. The conclusion then<br />

follows from (19), which completes the pro<strong>of</strong>.<br />

4.1 Stability <strong>of</strong> the sampled-data system with ρ = 1<br />

In this case, the sampled-data system takes the follow<strong>in</strong>g<br />

form<br />

ż = Dz + φ z (y)<br />

ẏ = z 1 + φ y (y) + u d1 (22)<br />

where u d1 is the sampled-data controller and can be simply<br />

implemented by<br />

for all t ∈ [nT,nT + T).<br />

u d1 (t) = u c1 (y(n)) (23)<br />

For the stability <strong>of</strong> the closed-loop sampled-data system,<br />

we have the follow<strong>in</strong>g result.<br />

Theorem 3. For system (22) with the sampled-data controller<br />

u d1 shown <strong>in</strong> (23) and for any given <strong>in</strong>itial set conta<strong>in</strong><strong>in</strong>g<br />

the orig<strong>in</strong>, there exists a constant T 1 > 0 such that,<br />

for all 0 < T < T 1 , the overall system is asymptotically<br />

stable.<br />

Pro<strong>of</strong>. Def<strong>in</strong>e χ := [z,y] T . Let B r := {χ ∈ R n | ||χ|| ≤ r}<br />

with r any given positive real. We still choose V d1 (χ) =<br />

z T Pz + 1 2 y2 as the Lyapunov function candidate for the<br />

sampled-data system. Then we present some sets used<br />

throughout the pro<strong>of</strong>. Def<strong>in</strong>e c := max χ∈Br V d1 (χ) and<br />

the set Ω c := {χ ∈ R n |V d1 (χ) ≤ c}. There exist two<br />

K functions ψ 1 and ψ 2 such that ψ 1 (||χ||) ≤ V d1 (χ) ≤<br />

ψ 2 (||χ||). Let l := ψ1 −1 (c) + ν with ν an arbitrarily<br />

positive number. Def<strong>in</strong>e B l := {χ ∈ R n | ||χ|| ≤ l}. Then<br />

B r ⊂ Ω c ⊂ B l . The constants L u1 , L 1 , L 2 are Lipschitz<br />

constants <strong>of</strong> u c1 , φ y and φ z , respectively, chosen with<br />

respect to B l .<br />

These local Lipschitz conditions establishes that for the<br />

overall sampled-data system with χ(0) ∈ Ω c , there exists a<br />

unique solution χ(t) over some <strong>in</strong>terval [0,t 1 ). Notice that<br />

t 1 might be f<strong>in</strong>ite. However, later analysis shows that the<br />

solution does exist for every sampl<strong>in</strong>g <strong>in</strong>terval, and thus<br />

exists for all t ≥ 0 with the property that lim t→∞ χ(t) = 0.<br />

Consider the case when t = 0, χ(0) ∈ B r ⊂ Ω c . l<br />

can be chosen sufficiently large such that there exists a<br />

T 1 ∗ ∈ (0,t 1 ), and for all T ∈ (0,T1 ∗ ), the follow<strong>in</strong>g holds:<br />

χ(t) ∈ B l , ∀t ∈ [0,T],χ(0) ∈ Ω c (24)<br />

The existence <strong>of</strong> T ∗ 1 is ensured by cont<strong>in</strong>uous dependency<br />

<strong>of</strong> the solution χ(t) on the <strong>in</strong>itial conditions.<br />

Next we shall estimate |y(t)−y(0)| dur<strong>in</strong>g the <strong>in</strong>terval [0,T]<br />

forced by the sampled-data control u d1 . From the second<br />

equation <strong>of</strong> (22), the dynamics <strong>of</strong> y is<br />

It then follows that<br />

ẏ = z 1 + φ y (y) + u d1


∫ t<br />

y(t) = y(0) +<br />

∫ t<br />

0<br />

Then we have<br />

0<br />

∫ t<br />

|y(t) − y(0)| ≤<br />

∫ t<br />

z 1 (τ)dτ +<br />

(<br />

φ y (y) − φ y<br />

(<br />

y(0)<br />

) ) dτ +<br />

0<br />

‖z(τ)‖dτ<br />

} {{ }<br />

∫ t<br />

0<br />

0<br />

∫ t<br />

+<br />

0<br />

∆ 1<br />

u d1 (τ)dτ +<br />

∫ t<br />

L 1 |y(τ) − y(0)|dτ +<br />

0<br />

φ y<br />

(<br />

y(0)<br />

)<br />

dτ (25)<br />

L u1 |y(0)|dτ +<br />

∫ t<br />

0<br />

L 1 |y(0)|dτ(26)<br />

We first calculate the <strong>in</strong>tegral ∆ 1 . From the first equation<br />

<strong>of</strong> system (7), we obta<strong>in</strong><br />

z(t) = e Dt z(0) +<br />

∫ t<br />

0<br />

e Dt φ z<br />

(<br />

y(τ)<br />

)<br />

dτ (27)<br />

S<strong>in</strong>ce D is a Hurwitz matrix, there exist positive reals k 2 ,<br />

σ such that ‖e Dt ‖ ≤ k 2 e −σt . Thus,<br />

‖z(t)‖ ≤ k 2 e −σt ‖z(0)‖<br />

+<br />

+<br />

∫ t<br />

0<br />

∫ t<br />

0<br />

k 2 e −σ(t−τ) ‖φ z<br />

(<br />

y(τ)<br />

)<br />

− φz<br />

(<br />

y(0)<br />

)<br />

‖dτ<br />

k 2 e −σ(t−τ) ‖φ z<br />

(<br />

y(0)<br />

)<br />

‖dτ<br />

≤ k 2 e −σt ‖z(0)‖<br />

∫<br />

k 2 e −σ(t−τ) |y(τ) − y(0)|dτ<br />

+L 2<br />

t<br />

0<br />

∫<br />

+L 2<br />

t<br />

Then the follow<strong>in</strong>g <strong>in</strong>equality holds<br />

0<br />

k 2 e −σ(t−τ) |y(0)|dτ (28)<br />

∆ 1 ≤ k 2‖z(0)‖ (<br />

1 − e<br />

−σt ) + k 2L 2<br />

σ<br />

σ |y(0)|t<br />

+ k 2L 2<br />

σ<br />

∫ t<br />

0<br />

|y(τ) − y(0)|dτ (29)<br />

Now we are ready to compute |y(t) − y(0)|. In fact, from<br />

(26) and (29), we can see<br />

|y(t) − y(0)| ≤ A 1<br />

(<br />

1 − e<br />

−σt ) + B 1 t<br />

∫ t<br />

+H<br />

0<br />

|y(τ) − y(0)|dτ (30)<br />

where A 1 = σ −1 k 2 ‖z(n)‖, B 1 = L u1 |y(0) + L 1 |y(0)| +<br />

σ −1 k 2 L 2 |y(0)| and H = σ −1 k 2 L 2 +L 1 . Apply<strong>in</strong>g Gronwall-<br />

Bellman <strong>in</strong>equality Khalil [2002] to (30) produces<br />

(<br />

|y(t) − y(0)| ≤ A 1 1 − e<br />

−σt ) + B 1<br />

(<br />

e Ht − 1 )<br />

(<br />

H<br />

+A 1 σe Ht + He −σt<br />

−(H + σ) ) (H + σ) −1 (31)<br />

Sett<strong>in</strong>g t = T <strong>in</strong> the right side <strong>of</strong> (31) leads to<br />

where<br />

|y(t) − y(0)| ≤ δ 1 (T)|y(0)| + δ 2 (T)||z(0)|| (32)<br />

δ 1 (T) = H −1 (L u1 + L 1 + σ −1 k 2 L 2 ) ( e HT − 1 )<br />

δ 2 (T) = σ −1 k 2<br />

(<br />

σe HT + He −σT − (H + σ) ) (H + σ) −1<br />

+σ −1 k 2<br />

(<br />

1 − e<br />

−σT ) (33)<br />

Next we shall study the behaviour <strong>of</strong> the sampled-data<br />

system us<strong>in</strong>g the chosen Lyapunov function candidate V d1 .<br />

When t ∈ (0,T), its time derivative satisfies<br />

˙V d1 = −(γ 1 + 2)‖z‖ 2 + 2z T Pφ z + y(z 1 + φ y + u d1 )<br />

≤ −k 1 y 2 − γ 1 ||z|| 2 + |y||u d1 − u c1 |<br />

≤ −k 1 y 2 − γ 1 ||z|| 2 + L u1 |y − y(0)|y|<br />

≤ − ( k 1 − L u1<br />

2 (δ 1(T) + δ 2 (T)) ) y 2 − γ 1 ||z|| 2<br />

+ L u1<br />

2 δ 1(T)|y(0)| 2 + L u1<br />

2 δ 1(T)||z(0)|| 2<br />

≤ −α 1 (T)V d1 + β 1 (T)V d1 (χ(0)) (34)<br />

where<br />

{<br />

}<br />

γ 1<br />

α 1 (T) = m<strong>in</strong> 2k 1 − L u1 δ 1 (T) − L u1 δ 2 (T),<br />

λ max (P)<br />

{<br />

β 1 (T) = max L u1 δ 1 (T), L }<br />

u1δ 2 (T)<br />

(35)<br />

2λ m<strong>in</strong> (P)<br />

where λ max (·) and λ m<strong>in</strong> (·) denote the maximum and<br />

m<strong>in</strong>imum eigenvalues <strong>of</strong> a matrix, respectively.<br />

It then can be shown that there exists a T ∗ 2 > 0 so that<br />

α 1 (T) > β 1 (T) > 0, for all T ∈ (0,T ∗ 2 ). Note from (33)<br />

that both δ 1 (T) and δ 2 (T) are actually the cont<strong>in</strong>uous<br />

functions <strong>of</strong> T with δ 1 (0) = δ 2 (0), which implies β 1 (0) = 0.<br />

It can then be established from (35) that the function<br />

e 1 (T) := α 1 − β 1 is a decreas<strong>in</strong>gly cont<strong>in</strong>uous function<br />

<strong>of</strong> T with e 1 (0) > 0, which asserts by the cont<strong>in</strong>uity <strong>of</strong><br />

e 1 (T) the existence <strong>of</strong> T ∗ 2 .<br />

F<strong>in</strong>ally, set T 1 = m<strong>in</strong>(T ∗ 1 ,T ∗ 2 ). From Lemma 2 we have<br />

V 1 ∈ Ω c . Thus the above analysis can be repeated for next<br />

<strong>in</strong>terval [T,2T), and for each <strong>in</strong>terval [mT,mT +T). Then<br />

the conclusion follows from Lemma 2.<br />

4.2 Stability <strong>of</strong> the sampled-data system with ρ = 2<br />

We first give out the implementation <strong>of</strong> the sampled-data<br />

controller u d2 . Indeed u d2 is given as follows<br />

u d2 (t) = u c2<br />

(<br />

y(m),ξ(m)<br />

)<br />

, ∀t ∈ [mT,mT + T) (36)<br />

where y(m) can be obta<strong>in</strong>ed by sampl<strong>in</strong>g y(t) at each<br />

sampl<strong>in</strong>g <strong>in</strong>stant, while ξ(m), as one part <strong>of</strong> the controller,<br />

is obta<strong>in</strong>ed digitally by


ξ(m) = e λT ξ(m − 1) +<br />

λ −1 (1 − e −λT )u d2<br />

(<br />

y(m − 1),ξ(m − 1)<br />

)<br />

(37)<br />

Then we have the follow<strong>in</strong>g theorem:<br />

Theorem 4. For the system <strong>of</strong> (7) and (4) with the<br />

sampled-data controller shown <strong>in</strong> (36) and (37), and for<br />

any given <strong>in</strong>itial set conta<strong>in</strong><strong>in</strong>g the orig<strong>in</strong>, there exists a<br />

constant T 2 > 0 such that for all 0 < T < T 2 , the controller<br />

u d2 asymptotically stabilizes the system.<br />

Pro<strong>of</strong>. In this case the analysis is more <strong>in</strong>volved than that<br />

for the case ρ = 1, as the effect <strong>of</strong> the dynamic filter <strong>of</strong> ξ<br />

has to be dealt with.<br />

Notice from (37) that ξ(n) is the exact, discrete-time<br />

model <strong>of</strong> the system<br />

˙ξ = −λξ + u d2 , (38)<br />

s<strong>in</strong>ce u d2 rema<strong>in</strong>s constant dur<strong>in</strong>g each <strong>in</strong>terval and the<br />

dynamics <strong>of</strong> ξ shown <strong>in</strong> (38) is l<strong>in</strong>ear. This <strong>in</strong>dicates that<br />

we can use (38) <strong>in</strong>stead <strong>of</strong> (37) for the stability analysis<br />

<strong>of</strong> the sampled-data system, as (37) and (38) are virtually<br />

equivalent at each sampl<strong>in</strong>g <strong>in</strong>stant.<br />

Next def<strong>in</strong>e χ = [z,y, ˜ξ] T . Then a Lyapunov function<br />

candidate is chosen as the same as for cont<strong>in</strong>uous-time<br />

case, that is, V d2 (χ) = z T Pz + 1 2 y2 + 1 2 ˜ξ 2 . Similar to the<br />

case <strong>of</strong> ρ = 1, the sets B r , Ω c and B l can also be def<strong>in</strong>ed<br />

such that B r ⊂ Ω c ⊂ B l , and there exists a T ∗ 3 > 0 such<br />

that for all T ∈ (0,T ∗ 3 ), the follow<strong>in</strong>g holds<br />

χ(t) ∈ B l , ∀t ∈ (0,T],χ(0) ∈ Ω c . (39)<br />

Consider the case when t = 0, χ(0) ∈ B r ⊂ Ω c . Then we<br />

shall compute the estimates <strong>of</strong> |ξ(t)−ξ(0)| and |y(t)−y(0)|<br />

for t ∈ (0,T). From (38), we have<br />

ξ(t) = e λt ξ(n) +<br />

∫ t<br />

0<br />

e λ(t−τ) u d2 dτ (40)<br />

Then, us<strong>in</strong>g the Lipschitz property <strong>of</strong> u c2 and the fact that<br />

u d2 (0,0) = 0, it can be shown that<br />

|ξ(t) − ξ(0)| ≤ (1 − e −λt )|ξ(0)|<br />

∫t<br />

( )<br />

+|u d y(0),ξ(0) | e −λ(t−τ) dτ<br />

≤ δ 3 (T)|y(0)| + δ 4 (T)|ξ(0)| (41)<br />

where δ 3 (T) = λ −1 L u2<br />

(<br />

1 − e<br />

−λT ) , δ 4 (T) = (λ −1 L u2 +<br />

1) ( 1 − e −λT) and L u2 is a Lipschitz constant <strong>of</strong> u c2 with<br />

respect to the set B l . As for |y − y(0)|, we have from (7)<br />

∫ t<br />

y(t) = y0) +<br />

∫ t<br />

+<br />

+<br />

0<br />

∫ t<br />

It can then be shown that<br />

0<br />

0<br />

0<br />

∫ t<br />

z 1 (τ)dτ +<br />

0<br />

ξ(τ)dτ<br />

(<br />

φ y (y) − φ y<br />

(<br />

y(0)<br />

) ) dτ<br />

φ y<br />

(<br />

y(0)<br />

)<br />

dτ (42)<br />

∫ t<br />

|y(t) − y(0)| ≤<br />

0<br />

∫ t<br />

+<br />

0<br />

∆ 1<br />

‖z(τ)‖dτ<br />

} {{ }<br />

∫ t<br />

0<br />

‖ξ(τ)‖dτ<br />

} {{ }<br />

L 1 |y(τ) − y(0)|dτ +<br />

∆ 2<br />

+<br />

∫ t<br />

0<br />

L 1 |y(0)|dτ(43)<br />

where ∆ 1 is already shown <strong>in</strong> (29). It can be obta<strong>in</strong>ed from<br />

(40) that<br />

∆ 2 ≤ |ξ(0)| (<br />

1 − e<br />

−λt ) + L u<br />

( )<br />

|y(0)| + |ξ(0)| t (44)<br />

λ<br />

λ<br />

With (29), (43) and (44), an analysis similar to that for<br />

the case ρ = 1 can be performed to produce<br />

|y(t) − y(0)| ≤ δ 5 (T)|y(0)| + δ 6 (T)||z(0)|| + δ 7 (T)||ξ(0)||(45)<br />

where<br />

δ 5 (T) = H −1 (L 1 + λ −1 L u2 + σ −1 k 2 L u2 ) ( e HT − 1 )<br />

δ 6 (T) = σ −1 k 2<br />

(<br />

σe HT + He −σT − (H + σ) ) (H + σ) −1<br />

+σ −1 k 2<br />

(<br />

1 − e<br />

−σT )<br />

δ 7 (T) = λ −1 (1 − e −λT ) + λ −1 L u2 (e HT − 1)<br />

+λ −1( λe HT + He −λT − (H + λ) ) (H + λ) −1<br />

The time derivative <strong>of</strong> V d2 dur<strong>in</strong>g the <strong>in</strong>terval [0,T)<br />

satisfies<br />

˙V d2 = −(γ 1 + 2)‖z‖ 2 + 2z T Pφ z + y(z 1 + φ y + ξ)<br />

+˜ξ ( − λξ + u c2 − ∂ˆξ<br />

∂y (z 1 + φ y + ξ) )<br />

+˜ξ(u d2 − u c2 )<br />

≤ −k 1 y 2 − γ 1 ||z|| 2 − λ˜ξ 2<br />

+|˜ξ||u d2 − u c2 | (46)<br />

In addition, it is known that ξ = ˜ξ + ˆξ and ˆξ (i.e., u c1 ) is a<br />

function <strong>of</strong> y with a Lipschitz constant L u1 . Then we have<br />

|ξ(0)| ≤ |˜ξ(0)| + |ˆξ(y(0))| ≤ |˜ξ(0)| + L u1 |y(0)| (47)<br />

From (41), (45) and (47), it can be verified that<br />

|˜ξ||u d2 − u c2 | ≤ ε 1 |y(0)| 2 + ε 2 ||z(0)|| 2 + ε 3 |˜ξ(0)| 2 + ε 4 |˜ξ| 2<br />

where ε 1 = L u2<br />

(<br />

δ3 + δ 5 + L u1 (δ 4 + δ 7 ) ) , ε 2 = L u2 δ 6 ,<br />

ε 3 = L u2 (δ 4 + δ 7 ), ε 4 = L u2<br />

( ∑ 7<br />

i=3 δ i + L u1 (δ 4 + δ 7 ) ) .<br />

From above we then have<br />

where<br />

˙V d2 ≤ −k 1 y 2 − γ 1 ||z|| 2 − (λ − ε 4 )˜ξ 2<br />

+ε 1 |y(0)| 2 + +ε 2 ||z(0)|| 2 + ε 3 |˜ξ(0)| 2<br />

△<br />

= −α 2 (T)V d2 + β 2 (T)V d2 (χ(0)) (48)<br />

{<br />

α 2 (T) = m<strong>in</strong> 2k 1 ,<br />

β 2 (T) = max<br />

{<br />

2ε 1 ,<br />

}<br />

γ 1<br />

λ max (P) ,2(λ − ε 4)<br />

}<br />

ε 2<br />

λ m<strong>in</strong> (P) ,2ε 3<br />

(49)<br />

Note that ε i (0) = 0 (i = 1,2,3,4). Follow<strong>in</strong>g the same<br />

approach as shown <strong>in</strong> the analysis for the case ρ = 1, we


can establish that there exists a T ∗ 4 so that for all 0 < T <<br />

T ∗ 4 , α 2 (T) > β 2 (T) > 0. F<strong>in</strong>ally, set T 2 := m<strong>in</strong>(T ∗ 3 ,T ∗ 4 ),<br />

which completes the pro<strong>of</strong> by Lemma 2.<br />

Remark 1. Both Theorem 3 and Theorem 4 only declare<br />

the existence <strong>of</strong> a certa<strong>in</strong> upper limit <strong>of</strong> sampl<strong>in</strong>g period,<br />

but states no <strong>in</strong>formation <strong>of</strong> the affects <strong>of</strong> control parameters<br />

and <strong>in</strong>itial sets <strong>of</strong> the system on the upper limit. The<br />

way the <strong>in</strong>itial set and the controller parameters affect the<br />

upper limit is still subject to further <strong>in</strong>vestigation.<br />

Remark 2. If ρ = 1, the controller reduces to a static<br />

feedback controller. If ρ = 2, the dynamic controller<br />

uses a particular l<strong>in</strong>ear filter, a convenience <strong>in</strong> control<br />

implementation. However, stability analysis for ρ ≥ 3 is<br />

more complicated and rema<strong>in</strong>s a subject <strong>of</strong> further studies.<br />

5. SIMULATION<br />

Consider the follow<strong>in</strong>g system with relative degree ρ = 2<br />

ẋ 1 = x 2 + y 2<br />

ẋ 2 = u, y = x 1<br />

The filter ˙ξ = −λξ + u is <strong>in</strong>troduced so that the filtered<br />

transformation η 1 = x 1 and η 2 = x 2 − ξ, and the state<br />

transformation z = η 2 − λη 1 can render the system <strong>in</strong>to<br />

the follow<strong>in</strong>g form<br />

ż = −λz + y 2 − λ 2 y − λy 2<br />

ẏ = z + (λ + y)y + ξ<br />

F<strong>in</strong>ally, the stabiliz<strong>in</strong>g function ˆξ = −ky − (λ + y)y −<br />

1<br />

2 λ2 (y + λ) 2 y 2 and the control u c can be obta<strong>in</strong>ed us<strong>in</strong>g<br />

(11). For simulation, we choose λ = 3, k = 4.<br />

Simulations are carried out by Simul<strong>in</strong>k us<strong>in</strong>g zero-order<br />

hold blocks for the case where the <strong>in</strong>itial values are x 1 (0) =<br />

1 and x 2 (0) = 200. Results shown <strong>in</strong> Fig.1 and Fig.2<br />

<strong>in</strong>dicate that the sampled-data system is asymptotically<br />

stable when T = 0.0001s. Further simulations show that<br />

the overall system is unstable if T = 0.0005s. In summary,<br />

the example illustrates that for a range <strong>of</strong> sampl<strong>in</strong>g period<br />

T, the sampled-data controller designed <strong>in</strong> the former<br />

sections can asymptotically stabilise the sampled-data<br />

system.<br />

x 1<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

0 0.5 1 1.5 2 2.5 3<br />

Fig. 1. The time response <strong>of</strong> x 1 for T = 0.0001<br />

t (s)<br />

x 2<br />

200<br />

150<br />

100<br />

50<br />

0<br />

−50<br />

0 0.5 1<br />

t (s)<br />

1.5 2 2.5 3<br />

Fig. 2. The time response <strong>of</strong> x 2 for T = 0.0001<br />

6. CONCLUSION<br />

We have presented an analysis for output feedback control<br />

<strong>of</strong> one class <strong>of</strong> nonl<strong>in</strong>ear sampled-data systems. It has<br />

been shown that <strong>in</strong> the case <strong>of</strong> relative degree ρ = 1,2,<br />

the sampled-data version <strong>of</strong> cont<strong>in</strong>uous-time controllers<br />

will still asymptotically stabilise the system for any given<br />

<strong>in</strong>itial sets, provided that the sampl<strong>in</strong>g period T is small.<br />

REFERENCES<br />

T. Chen and B.A. Francis. Optimal <strong>Sampled</strong>-<strong>Data</strong> <strong>Control</strong><br />

<strong>Systems</strong>. Communications and <strong>Control</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

Series. Spr<strong>in</strong>ger-Verlag, London, 1995.<br />

A.M. Dabroom and H.K. Khalil. <strong>Output</strong> feedback<br />

sampled-data control <strong>of</strong> nonl<strong>in</strong>ear systems us<strong>in</strong>g highga<strong>in</strong><br />

observers. IEEE Transactions on Automatic <strong>Control</strong>,<br />

46:1712–1725, 2001.<br />

Z. D<strong>in</strong>g. Adaptive output regulation <strong>of</strong> a class <strong>of</strong> nonl<strong>in</strong>ear<br />

systems with completely unknown parameters. In<br />

Proceed<strong>in</strong>gs <strong>of</strong> the American <strong>Control</strong> Conference, pages<br />

1566–1571, USA, 2003.<br />

J.W. Grizzle and P.V. Kokotovic. <strong>Feedback</strong> l<strong>in</strong>earization<br />

<strong>of</strong> sampled-data systems. IEEE Transactions on Automatic<br />

<strong>Control</strong>, 3(9):857–859, 1988.<br />

L. Hou, A.N. Michel, and H. Ye. Some qualitative properties<br />

<strong>of</strong> sampled-data control systems. IEEE Transactions<br />

on Automatic <strong>Control</strong>, 42:1721–1725, 1997.<br />

H.K. Khalil. <strong>Nonl<strong>in</strong>ear</strong> <strong>Systems</strong>. Prentice-Hall, Inc., 3rd<br />

edition, 2002.<br />

H.K. Khalil. Performance recovery under output feedback<br />

sampled-data stabilization <strong>of</strong> a class <strong>of</strong> nonl<strong>in</strong>ear systems.<br />

IEEE Transactions on Automatic <strong>Control</strong>, 49:<br />

2173–2184, 2004.<br />

R. Mar<strong>in</strong>o and P. Tomei. <strong>Nonl<strong>in</strong>ear</strong> <strong>Control</strong> Design:<br />

Geometric, Adaptive and Robust. Prentice-Hall, Inc.,<br />

1995.<br />

D. Nesic and A.R. Teel. A framework for stabilization<br />

<strong>of</strong> nonl<strong>in</strong>ear sampled-data systems based on their approximate<br />

discrete-time models. IEEE Transactions on<br />

Automatic <strong>Control</strong>, 49:1103–1122, 2004.<br />

A.R. Teel, D. Nesic, and P.V. Kokotovic. A note on <strong>in</strong>putto-state<br />

stability <strong>of</strong> sampled-data nonl<strong>in</strong>ear systems. In<br />

Proceed<strong>in</strong>gs <strong>of</strong> the 37th Conference on Decision and<br />

<strong>Control</strong>, pages 2473–2478, USA, 1998.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!