02.12.2014 Views

Convergence of the Euler Scheme for a Class of Stochastic ...

Convergence of the Euler Scheme for a Class of Stochastic ...

Convergence of the Euler Scheme for a Class of Stochastic ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>for</strong> s ∈ [0, τ ∧ T 1 ]. Substituting (3.2), (3.3) and (3.4) into (3.1) <strong>the</strong>n reveals<br />

that<br />

[<br />

]<br />

E sup | x ∆t (t) − x(t) | 2<br />

0≤t≤τ∧T 1<br />

≤<br />

2K 1 (D)(T + 4) E<br />

= 2K 1 (D)(T + 4) E<br />

≤<br />

≤<br />

4K 1 (D)(T + 4) E<br />

4K 1 (D)(T + 4) E<br />

∫ τ∧T1<br />

0<br />

∫ τ∧T1<br />

0<br />

∫ τ∧T1<br />

0<br />

∫ τ∧T1<br />

∫ T1<br />

+4K 1 (D)(T + 4)<br />

0<br />

0<br />

E<br />

| ˆx ∆t (s) − x(s) | 2 ds<br />

| ˆx ∆t (s) − x ∆t (s) + x ∆t (s) − x(s) | 2 ds<br />

(<br />

| ˆx∆t (s) − x ∆t (s) | 2 + | x ∆t (s) − x(s) | 2) ds<br />

| ˆx ∆t (s) − x ∆t (s) | 2 ds<br />

[<br />

]<br />

sup | x ∆t (s ′ ) − x(s ′ ) | 2 ds. (3.5)<br />

0≤s ′ ≤τ∧s<br />

Bounding <strong>the</strong> first term on <strong>the</strong> right-hand side <strong>of</strong> (3.5) and <strong>the</strong>n applying<br />

<strong>the</strong> Gronwall inequality leads to a bound on E [ sup 0≤t≤τ∧T | x ∆t (t) − x(t) | 2] .<br />

Inspection <strong>of</strong> (2.4) reveals that ˆx ∆t (s) = x ∆t ([s/∆t]∆t) where [s/∆t] is <strong>the</strong><br />

integer part <strong>of</strong> s/∆t. We can now use (2.3) to show that<br />

| ˆx ∆t (s)−x ∆t (s)| 2 =|x ∆t ([s/∆t]∆t)−x ∆t (s)| 2<br />

= |<br />

∫ s<br />

[s/∆t]∆t<br />

f(x ∆t ([s/∆t]∆t))du +<br />

∫ s<br />

[s/∆t]∆t<br />

g(x ∆t ([s/∆t]∆t))dB(u)| 2<br />

≤ 2 |f(x ∆t ([s/∆t]∆t))| 2 ∆t 2 + 2|g(x ∆t ([s/∆t]∆t))| 2 |B(s) − B([s/∆t]∆t)| 2<br />

≤ 2K 2 (D)∆t 2 + 2K 2 (D) |B(s)−B([s/∆t]∆t)| 2 .<br />

Note that <strong>the</strong> last line follows provided s ∈ [0, τ ∧T 1 ] and condition (2.2) holds.<br />

If T ∆t < 1 this inequality leads to<br />

∫ τ∧T1<br />

E<br />

0<br />

| ˆx ∆t (s)−x ∆t (s)| 2 ds ≤ 2K 2 (D)T 1 ∆t 2<br />

≤<br />

∫ T1<br />

+2K 2 (D) E |B(s)−B([s/∆t]∆t)| 2 ds<br />

0<br />

2K 2 (D)T ∆t 2 + 2K 2 (D)T 1 m∆t<br />

≤ 2K 2 (D)(mT + 1)∆t (3.6)<br />

(recall that our Brownian motion has dimension m). Using this result in (3.5)<br />

shows that<br />

[<br />

]<br />

E sup |x ∆t (t)−x(t)| 2 ≤ C 1 (D)∆t<br />

0≤t≤τ∧T 1<br />

∫ [<br />

T1<br />

+ C 2 (D) E<br />

0<br />

]<br />

sup |x ∆t (r)−x(r)| 2 ds<br />

0≤r≤τ∧s

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!