24.12.2014 Views

Chapter 6 Reactions of Alkenes: Addition Reactions

Chapter 6 Reactions of Alkenes: Addition Reactions

Chapter 6 Reactions of Alkenes: Addition Reactions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> 6<br />

<strong>Reactions</strong> <strong>of</strong> <strong>Alkenes</strong>:<br />

<strong>Addition</strong> <strong>Reactions</strong><br />

6.1<br />

Hydrogenation <strong>of</strong> <strong>Alkenes</strong><br />

<strong>Reactions</strong> <strong>of</strong> <strong>Alkenes</strong><br />

The characteristic reaction <strong>of</strong> alkenes<br />

is addition to the double bond.<br />

+ A—B<br />

C C A C C B<br />

H<br />

H<br />

H σ<br />

H H<br />

π<br />

σ σ<br />

C C + H—HH<br />

H C C H<br />

H<br />

Hydrogenation <strong>of</strong> Ethylene<br />

exothermic ΔH° = –136 kJ/mol<br />

catalyzed by finely divided Pt, Pd, Rh, Ni<br />

H<br />

H<br />

H 3 C<br />

Example<br />

CH 2<br />

Problem 6.1<br />

What three alkenes yield 2-methylbutane on<br />

catalytic hydrogenation<br />

H 3 C<br />

H 2 , Pt<br />

H 2 , Pt<br />

H 3 C<br />

CH 3<br />

H<br />

H 3 C<br />

(73%)


Question 2<br />

Which <strong>of</strong> the alkenes below will produce 2-<br />

methylbutane on catalytic hydrogenation<br />

A) 1 and 3<br />

B) 1, 2 and 3<br />

C) 2 and 4<br />

D) 2, 3 and 4<br />

6.2<br />

Heats <strong>of</strong> Hydrogenation<br />

can be used to measure relative stability<br />

<strong>of</strong> isomeric alkenes<br />

correlation with structure is same as<br />

when heats <strong>of</strong> combustion are measured<br />

Heats <strong>of</strong> Hydrogenation <strong>of</strong> Isomers<br />

Heats <strong>of</strong> Hydrogenation (kJ/mol)<br />

Ethylene 136<br />

Monosubstituted 125-126<br />

126<br />

126<br />

119<br />

119<br />

115<br />

115<br />

cis-Disubstituted<br />

117-119<br />

trans-Disubstituted<br />

114-115<br />

Terminally disubstituted 116-117<br />

Trisubstituted 112<br />

CH 3 CH 2 CH 2 CH 3<br />

Tetrasubstituted 110<br />

Question 1<br />

Rank the following alkenes in order <strong>of</strong><br />

decreasing heat <strong>of</strong> hydrogenation.<br />

Match each alkene <strong>of</strong> Problem 6.1 with its correct<br />

heat <strong>of</strong> hydrogenation.<br />

126 kJ/mol<br />

Problem 6.2<br />

highest heat <strong>of</strong><br />

hydrogenation;<br />

least stable isomer<br />

A) 1 > 3 > 2<br />

B) 3 > 2 > 1<br />

C) 2 > 3 > 1<br />

D) 1 > 2 > 3<br />

118 kJ/mol<br />

112 kJ/mol<br />

lowest heat <strong>of</strong><br />

hydrogenation;<br />

most stable isomer


Question 4<br />

Which alkene has the lowest heat <strong>of</strong><br />

hydrogenation<br />

A) B)<br />

6.3<br />

Stereochemistry <strong>of</strong> Alkene<br />

Hydrogenation<br />

C) D)<br />

Catalytic Hydrogenation <strong>of</strong> an Alkene<br />

Two Spatial (stereochemical) Aspects <strong>of</strong><br />

Alkene Hydrogenation<br />

(1) syn addition <strong>of</strong> both H atoms to double bond (adds<br />

from the same side)<br />

(2) hydrogenation is stereoselective,<br />

corresponding to addition to less crowded face <strong>of</strong><br />

double bond<br />

Two Spatial (stereochemical) Aspects <strong>of</strong><br />

Alkene Hydrogenation<br />

syn <strong>Addition</strong> versus anti <strong>Addition</strong><br />

(1) syn addition <strong>of</strong> both H atoms to double bond<br />

syn addition<br />

anti addition


Example <strong>of</strong> syn-<strong>Addition</strong><br />

Question<br />

CO 2 CH 3<br />

H 2 , Pt<br />

H<br />

CO 2 CH 3<br />

CO 2 CH 3<br />

H 2 , Pt<br />

H<br />

CO 2 CH 3<br />

CO 2 CH 3<br />

H<br />

(100%)<br />

CO 2 CH 3<br />

CO 2 CH 3<br />

True (A) / False (B)<br />

The hydrogenation product is a chiral<br />

molecule.<br />

H<br />

CO 2 CH 3<br />

Two Spatial (stereochemical) Aspects <strong>of</strong><br />

Alkene Hydrogenation<br />

(1) syn addition <strong>of</strong> both H atoms to double bond<br />

(2) hydrogenation is stereoselective,<br />

corresponding to addition to less crowded<br />

face <strong>of</strong> double bond<br />

Two Spatial (stereochemical) Aspects <strong>of</strong><br />

Alkene Hydrogenation<br />

(1) syn addition <strong>of</strong> both H atoms to double bond<br />

(2) hydrogenation is stereoselective,<br />

corresponding to addition to less crowded face<br />

<strong>of</strong> double bond<br />

A reaction in which a single starting material<br />

can give two or more stereoisomeric products<br />

but yields one <strong>of</strong> them in greater amounts than<br />

the other (or even to the exclusion <strong>of</strong> the other)<br />

is said to be stereoselective.<br />

H<br />

H 3 C<br />

CH 3<br />

Example <strong>of</strong><br />

Stereoselective<br />

Reaction<br />

H<br />

H 3 C<br />

CH 3<br />

Example <strong>of</strong><br />

Stereoselective<br />

Reaction<br />

H 3 C<br />

H 2 , cat<br />

H 3 C<br />

H 2 , cat<br />

H 3 C<br />

H<br />

CH 3<br />

H 3 C<br />

H<br />

CH 3<br />

H 3 C<br />

H<br />

CH 3<br />

H<br />

H 3 C<br />

H<br />

Both products<br />

correspond to<br />

syn addition<br />

<strong>of</strong> H 2 .<br />

H<br />

H<br />

H 3 C<br />

H<br />

H 3 C<br />

H<br />

But only this<br />

one is formed.


H<br />

H 3 C<br />

CH 3<br />

Example <strong>of</strong><br />

Stereoselective<br />

Reaction<br />

H<br />

H 3 C<br />

CH 3<br />

Example <strong>of</strong><br />

Stereoselective<br />

Reaction<br />

H 3 C<br />

H 2 , cat<br />

H 3 C<br />

H 2 , cat<br />

H 3 C<br />

H<br />

Top face <strong>of</strong> <strong>of</strong> double<br />

bond blocked by by<br />

this methyl group<br />

CH 3<br />

H 3 C<br />

H<br />

CH 3<br />

H<br />

H 3 C<br />

H<br />

H<br />

H 3 C<br />

H<br />

H 2 adds to to<br />

bottom face <strong>of</strong> <strong>of</strong><br />

double bond.<br />

Question 14<br />

Which one <strong>of</strong> the following terms best applies to<br />

the hydrogenation <strong>of</strong> an alkene in the<br />

presence <strong>of</strong> finely divided platinum (in<br />

ethanol as solvent)<br />

A) anti addition<br />

B) concerted reaction<br />

C) heterogeneous catalysis<br />

D) endothermic reaction<br />

6.4<br />

Electrophilic <strong>Addition</strong> <strong>of</strong><br />

Hydrogen Halides to<br />

<strong>Alkenes</strong><br />

Electrophilic <strong>Addition</strong>s: <strong>Alkenes</strong><br />

When the Electrophile is a<br />

Hydrogen Halide<br />

δ+ δ–<br />

C C + H—X<br />

H C C X


Example<br />

Mechanism<br />

CH 3 CH 2<br />

H<br />

C<br />

C<br />

CH 2 CH 3<br />

H<br />

HBr<br />

CHCl 3 , -30°C<br />

Electrophilic addition <strong>of</strong> hydrogen halides<br />

to alkenes proceeds by rate-determining<br />

formation <strong>of</strong> a carbocation intermediate.<br />

CH 3 CH 2 CH 2 CHCH<br />

2 CH 3<br />

Br<br />

(76%)<br />

Mechanism<br />

Mechanism<br />

Electrons flow from<br />

the π system <strong>of</strong> the<br />

alkene (electron rich)<br />

toward the positively<br />

polarized proton <strong>of</strong><br />

the hydrogen halide.<br />

H<br />

+C C<br />

..<br />

.. X<br />

:<br />

H<br />

..<br />

:<br />

.. X<br />

: –<br />

C<br />

C<br />

..<br />

: .. X<br />

C<br />

C<br />

H<br />

Markovnikov's Rule<br />

6.5<br />

Regioselectivity <strong>of</strong> Hydrogen Halide <strong>Addition</strong><br />

(Markovnikov's Rule)<br />

When an unsymmetrically substituted<br />

alkene reacts with a hydrogen halide,<br />

the hydrogen adds to the carbon that<br />

has the greater number <strong>of</strong> hydrogen<br />

substituents, and the halogen adds to<br />

the carbon that has the fewer hydrogen<br />

substituents.


Markovnikov's Rule<br />

Markovnikov's Rule<br />

CH 3 CH 2 CH<br />

CH 2<br />

HBr<br />

acetic acid<br />

CH 3 CH 2 CHCH 3<br />

Br<br />

(80%)<br />

CH 3<br />

CH 3<br />

C<br />

C<br />

H<br />

H<br />

HBr<br />

acetic acid<br />

CH 3<br />

CH 3<br />

C<br />

Br<br />

(90%)<br />

CH 3<br />

Example 1<br />

Example 2<br />

Markovnikov's Rule<br />

Question 6<br />

CH 3<br />

HCl<br />

0°C<br />

CH 3<br />

Cl<br />

What is the product <strong>of</strong> the reaction <strong>of</strong> 1-<br />

methylcyclohexene with HCl<br />

A) B)<br />

(100%)<br />

C) D)<br />

Example 3<br />

Mechanistic Basis for Markovnikov's Rule:<br />

Example 1<br />

6.6<br />

Mechanistic Basis for Markovnikov's Rule<br />

Protonation <strong>of</strong> double bond occurs in<br />

direction that gives more stable <strong>of</strong> two<br />

possible carbocations.<br />

CH 3 CH 2 CH<br />

CH 2<br />

HBr<br />

acetic acid<br />

CH 3 CH 2 CHCH 3<br />

Br


Mechanistic Basis for Markovnikov's Rule:<br />

Example 1 Question 3<br />

+<br />

CH 3 CH 2 CH 2 —CH<br />

2<br />

primary carbocation is less stable: not formed<br />

HBr<br />

+<br />

CH 3 CH 2 CH—CH<br />

3 + Br –<br />

Which carbocation forms when 3-methyl-2-<br />

pentene is protonated<br />

A) B)<br />

CH 3 CH 2 CH<br />

CH 2<br />

CH 3 CH 2 CHCH 3<br />

Br<br />

Mechanistic Basis for Markovnikov's Rule:<br />

Example 3<br />

Question 5<br />

The reaction <strong>of</strong> 3-methyl-1-butene with HBr<br />

produces 2-bromo-3-methylbutane and which<br />

other alkyl halide<br />

A) B)<br />

H<br />

CH 3<br />

HCl<br />

0°C<br />

CH 3<br />

Cl<br />

C) D)<br />

H<br />

secondary<br />

carbocation is<br />

less stable:<br />

not formed<br />

+<br />

H H<br />

CH 3<br />

H<br />

Question 18<br />

Which alkene reacts with HCl (electrophilic<br />

addition) at the fastest rate<br />

HCl<br />

+<br />

CH 3<br />

Cl –<br />

A) B)<br />

H<br />

CH 3<br />

CH 3<br />

Cl<br />

C) D)


Rearrangements Can Occur<br />

H 2 C<br />

CHCH(CH<br />

3 ) 2<br />

6.7<br />

Carbocation Rearrangements in Hydrogen<br />

Halide <strong>Addition</strong> to <strong>Alkenes</strong><br />

HCl, 0°C0<br />

+<br />

CH 3 CHCH(CH<br />

3 ) 2<br />

H<br />

+<br />

CH 3 CHC(CH 3 ) 2<br />

CH 3 CHCH(CH<br />

3 ) 2<br />

CH 3 CH 2 C(CH 3 ) 2<br />

Cl (40%)<br />

(60%)<br />

Cl<br />

Carbocation Rearrangements<br />

1,2-hydride shift<br />

a more stable<br />

carbocation<br />

Carbocation Rearrangements<br />

1,2-methyl shift<br />

a more stable<br />

carbocation<br />

Carbocation Rearrangements<br />

NOTE: Carbocation does not always rearrange …<br />

Ring Expansion<br />

a more stable<br />

carbocation


Markovnikov's Rule<br />

6.8<br />

Free-radical <strong>Addition</strong> <strong>of</strong> HBr to<br />

<strong>Alkenes</strong><br />

The "peroxide effect"<br />

CH 3 CH 2 CH<br />

CH 2<br />

HBr<br />

acetic acid<br />

CH 3 CH 2 CHCH 3<br />

Br<br />

(80%)<br />

<strong>Addition</strong> <strong>of</strong> HBr to 1-Butene<br />

<strong>Addition</strong> <strong>of</strong> HBr to 1-Butene<br />

CH 3 CH 2 CH<br />

CH 2<br />

CH 3 CH 2 CH<br />

CH 2<br />

HBr<br />

HBr<br />

CH 3 CH 2 CHCH 3<br />

Br<br />

Carbocation product :only<br />

CH 3 CH 2 CH 2 CH 2 Br<br />

Free Radical product only<br />

when peroxides added to<br />

one in absence <strong>of</strong> peroxides<br />

reaction mixture<br />

<strong>Addition</strong> opposite to<br />

Markovnikov's rule<br />

CH 3 CH 2 CH 2 CH 2 Br<br />

only product when<br />

peroxides added to<br />

reaction mixture<br />

CH 2<br />

Photochemical <strong>Addition</strong> <strong>of</strong> HBr<br />

+ HBrH<br />

hν<br />

(60%)<br />

CH 2 Br<br />

H<br />

<strong>Addition</strong> <strong>of</strong> HBr opposite to Markovnikov's rule<br />

proceeds by a free-radical chain mechanism.<br />

Initiation steps:<br />

..<br />

R Ọ ...<br />

..<br />

.ỌO ..<br />

R<br />

Mechanism<br />

..<br />

R O . + ..<br />

..<br />

. O ..<br />

R<br />

<strong>Addition</strong> <strong>of</strong> HBr with a regiochemistry opposite<br />

to Markovnikov's rule also occur when<br />

initiated with light with or without added peroxides.<br />

..<br />

R O . ..<br />

..<br />

..<br />

+ H Br<br />

:<br />

..<br />

R O..<br />

H +<br />

.. . Br<br />

:<br />

..


Propagation steps:<br />

CH 3 CH 2 CH<br />

CH 3 CH 2 CH<br />

.<br />

H<br />

CH 2<br />

CH 2<br />

+<br />

..<br />

Br<br />

..<br />

:<br />

.. . Br<br />

:<br />

..<br />

..<br />

Br:<br />

..<br />

.<br />

CH 3 CH 2 CH<br />

Mechanism<br />

CH 2<br />

(More stable free radical)<br />

+<br />

.. . Br<br />

:<br />

..<br />

..<br />

Br:<br />

..<br />

..<br />

CH Br:<br />

2 ..<br />

CH 3 CH 2 CH 2 CH<br />

Examples <strong>of</strong> Termination Steps<br />

(Initiation → Propagation → Termination)<br />

Question 7<br />

What is the correct IUPAC name <strong>of</strong> the<br />

compound isolated from the reaction <strong>of</strong><br />

2-methyl-2-pentene with HBr in the presence<br />

<strong>of</strong> peroxides<br />

A) 3-bromo-4-methylpentane<br />

B) 3-bromo-2-methylpentane<br />

C) 2-bromo-2-methylpentane<br />

D) 2,3-dibromo-2-methylpentane

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!