24.12.2014 Views

Self-Avoiding Walk in Four Dimensions - Department of Mathematics

Self-Avoiding Walk in Four Dimensions - Department of Mathematics

Self-Avoiding Walk in Four Dimensions - Department of Mathematics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Self</strong>-<strong>Avoid<strong>in</strong>g</strong> <strong>Walk</strong> <strong>in</strong> <strong>Four</strong> <strong>Dimensions</strong><br />

John Z. Imbrie 1,2<br />

<strong>Department</strong>s <strong>of</strong> <strong>Mathematics</strong> and Physics<br />

Harvard University<br />

Cambridge, MA 02138<br />

ABSTRACT<br />

<strong>Self</strong>-avoid<strong>in</strong>g walk is equivalent to a certa<strong>in</strong> supersymmetric field<br />

theory <strong>of</strong> the Φ 4 -type. The equivalence is presented along with<br />

the prerequisite mathematical tools (Grassman Gaussian <strong>in</strong>tegrals).<br />

A Lévy process is def<strong>in</strong>ed on a hierarchical lattice and<br />

mimics the standard random walk.<br />

<strong>Self</strong>-avoid<strong>in</strong>g walk on the<br />

hierarchical lattice is analyzed us<strong>in</strong>g the equivalence.<br />

The selfavoidance<br />

does not change the decay <strong>of</strong> the Green’s function at<br />

the critical value <strong>of</strong> the kill<strong>in</strong>g rate (mass).<br />

In this talk I will present an approach to self-avoid<strong>in</strong>g walks which is based on<br />

an equivalence to a certa<strong>in</strong> supersymmetric field theory. Through this equivalence,<br />

the local time τ maps to the square <strong>of</strong> a Gaussian field, Φ 2 . Hence, the selfavoidance<br />

<strong>in</strong>teraction τ 2 maps to Φ 4 , and the result is a supersymmetric version <strong>of</strong><br />

the frequently studied ϕ 4 field theory.<br />

This equivalence has been exploited by Brydges, Evans, and myself [BEI]<br />

<strong>in</strong> a hierarchical model <strong>of</strong> self-avoid<strong>in</strong>g walks. We show that the self-avoidance<br />

<strong>in</strong>teraction reduces to no <strong>in</strong>teraction at long distances, and that the Green’s function<br />

decays like the simple random walk Green’s function. Some extension <strong>of</strong> our<br />

methods should exhibit the logarithmic corrections expected for quantities such<br />

as the end-to-end distance for T step walks. Here, due to the slow approach to<br />

non<strong>in</strong>teract<strong>in</strong>g walks as the length scale tends to <strong>in</strong>f<strong>in</strong>ity, one expects the end-toend<br />

distance to behave as T 1/2 (log T ) 1/8 , rather than T 1/2 as for simple random<br />

walk. We hope these results may also be extended to the simple cubic lattice, a<br />

1 Research supported <strong>in</strong> part by National Science Foundation Grants DMS88–58073 and<br />

DMS90–08827.<br />

2 Alfred P. Sloan Foundation Fellow.


longstand<strong>in</strong>g problem.<br />

The most familiar form <strong>of</strong> the self-avoid<strong>in</strong>g walk is obta<strong>in</strong>ed by enumerat<strong>in</strong>g<br />

all self-avoid<strong>in</strong>g walks <strong>of</strong> length T . Such a walk is described by a function ω :<br />

Z + → Z d <strong>in</strong> d dimensions, with ω(0) = 0, |ω(i) − ω(i + 1)| = 1 and ω(i) ≠ ω(j) for<br />

i ≠ j. One puts count<strong>in</strong>g measure on the set <strong>of</strong> T step self-avoid<strong>in</strong>g walks. Lett<strong>in</strong>g<br />

the associated expectation be denoted 〈·〉, one can analyze the asymptotics <strong>of</strong> the<br />

end-to-end distance:<br />

〈ω(T ) 2 〉 1/2 ∼ T ν .<br />

Here ν = ν(d) is one <strong>of</strong> the critical exponents <strong>of</strong> self-avoid<strong>in</strong>g walks. One expects<br />

ν = 1 2 for d > 4, thought this is proven only for d larger than some d 0 [S]. A weakly<br />

self-avoid<strong>in</strong>g walk is a bit easier to study, but should have the same exponents. In<br />

this case one does not assume ω(i) ≠ ω(j) for i ≠ j, and <strong>in</strong>stead weights each walk<br />

by a factor proportional to<br />

∏<br />

(1 − λδ(ω(i) − ω(j))) . (1)<br />

i 4, and nontrivial behavior (ν > 1 2<br />

) expected for d > 4. This<br />

should be signaled by the appearance <strong>of</strong> logarithms. Detailed predictions for the<br />

logarithms have been made by extend<strong>in</strong>g renormalization group calculations for n-<br />

vector φ 4 models to n = 0 [BLZ, De, Du]. The equivalence with the supersymmetric<br />

Φ 4 model can be thought <strong>of</strong> as a rigorous version <strong>of</strong> the n = 0 limit. At least it is<br />

the representation which appears most suited for rigorous analysis <strong>of</strong> self-avoid<strong>in</strong>g<br />

walks.<br />

We slightly change the underly<strong>in</strong>g random walk process by work<strong>in</strong>g <strong>in</strong> cont<strong>in</strong>uous<br />

time. This means that the unperturbed measure is def<strong>in</strong>ed by a system <strong>of</strong><br />

probabilities p(t, x), t ∈ R + , x ∈ Z d , satisfy<strong>in</strong>g<br />

∑<br />

p(t, x) = 1 ,<br />

x<br />

and the diffusion equation<br />

where ∆ is the lattice Laplacian.<br />

random walk <strong>in</strong> cont<strong>in</strong>uous time:<br />

p t = ∆p ,<br />

We can def<strong>in</strong>e a Green’s function for simple<br />

G 0x =<br />

∫ ∞<br />

0<br />

dt p(t, x) =<br />

∫ ∞<br />

0<br />

dt e t∆ (0, x)


= (−∆) −1 (0, x)<br />

= 1 N<br />

∫<br />

− 1 2<br />

φ 0 φ x e<br />

∑<br />

x<br />

(∇φ) 2 x<br />

∏<br />

dφ y . (2)<br />

y<br />

In the last l<strong>in</strong>e we have used the fact that the <strong>in</strong>verse <strong>of</strong> any operator can be<br />

obta<strong>in</strong>ed as the covariance <strong>of</strong> some Gaussian <strong>in</strong>tegral. In this case the operator is<br />

the Laplacian, lead<strong>in</strong>g to the (∇φ) 2 term <strong>in</strong> the Gaussian measure.<br />

Equation (2) expresses simple random walk as a path <strong>in</strong>tegral. Before attempt<strong>in</strong>g<br />

the same th<strong>in</strong>g for self-avoid<strong>in</strong>g walks, we need to replace the <strong>in</strong>teraction<br />

(1) with someth<strong>in</strong>g appropriate to the cont<strong>in</strong>uous time framework. We replace (1)<br />

with<br />

[ ∫ T ∫ ]<br />

T<br />

exp −λ ds dt δ(ω(s) − ω(t))<br />

0<br />

0<br />

= exp<br />

[<br />

−λ ∑ x<br />

∫ T<br />

0<br />

∫ ]<br />

T<br />

ds δ(ω(s) − x) dt δ(ω(t) − x)<br />

0<br />

= exp<br />

[<br />

−λ ∑ x<br />

τ 2 x<br />

]<br />

.<br />

Here<br />

τ x =<br />

∫ T<br />

0<br />

dt δ(ω(t) − x)<br />

is the time <strong>in</strong> [0, T ] spent at x, the “local time.” We can now def<strong>in</strong>e the Green’s<br />

function for self-avoid<strong>in</strong>g walk<br />

∫ (<br />

∞<br />

G SAW<br />

0x (s) = dT e<br />

〈exp<br />

sT −λ ∑ )<br />

〉<br />

τx<br />

2 δ(ω(T ) − x) , (3)<br />

0<br />

x<br />

where 〈·〉 is the expectation determ<strong>in</strong>ed by simple random walk, i.e., by the probabilities<br />

{p(t, x)}.<br />

Note the appearance <strong>of</strong> a Laplace transform variable s dual to T . This was<br />

suppressed <strong>in</strong> (2) because s = 0 was the critical value where G 0x exhibits power<br />

law decay. In (3) we need to adjust s to some nonzero value to compensate for the<br />

kill<strong>in</strong>g rate <strong>in</strong>duced by the self-avoidance <strong>in</strong>teraction. It is the critical value <strong>of</strong> s<br />

which is relevant for the long-time behavior <strong>of</strong> self-avoid<strong>in</strong>g walk. If one wishes to<br />

evaluate quantities such as the end-to-end distance for T step walks, one would have<br />

to <strong>in</strong>vert the Laplace transform. What is important then is the behavior <strong>of</strong> G 0x (s)


<strong>in</strong> the neighborhood <strong>of</strong> the critical value s = s c . We believe that the analysis lead<strong>in</strong>g<br />

to the asymptotics <strong>of</strong> the end-to-end distance can be done, but we will consider here<br />

only the asymptotics <strong>of</strong> G 0x (s c ).<br />

Let us now proceed to the field theory representation for G SAW<br />

0x (s). It was<br />

orig<strong>in</strong>ally derived by McKane [M] and Parisi-Sourlas [PS]. Let F (τ) be any function<br />

<strong>of</strong> local times τ = {τ x } (for the process <strong>in</strong> [0, T ]). We claim that<br />

∫ ∞<br />

0<br />

∫<br />

dT 〈F (τ)δ(ω(T ) − x)〉 =<br />

φ 0 φ x F (φ 2 − 1 2<br />

)e<br />

∑<br />

x<br />

(∇φ) 2 x<br />

∏<br />

dφ y . (4)<br />

y<br />

Note that tak<strong>in</strong>g F = 1, we recover (2). To obta<strong>in</strong> G SAW<br />

0x<br />

[<br />

]<br />

F = exp s ∑ τ x − λ ∑<br />

x<br />

x<br />

s<strong>in</strong>ce T = ∑ x τ x. Then on the right-hand side we obta<strong>in</strong><br />

[<br />

]<br />

F (φ 2 ) = exp s ∑ φ 2 x − λ ∑<br />

x<br />

x<br />

τ 2 x<br />

φ 4 x<br />

,<br />

we need only take<br />

,<br />

lead<strong>in</strong>g to a φ 4 field theory.<br />

To prove the claim, note that it is l<strong>in</strong>ear <strong>in</strong> F so it is sufficient to verify it<br />

for functions <strong>of</strong> the form exp[ ∑ x v xτ x ]. In this case we have<br />

〈 ( ) 〉 〈 ( ∑ ∫ )<br />

〉<br />

T<br />

exp v x τ x δ(ω(T ) − x) = exp v(ω(t)) dt δ(ω(T ) − x)<br />

x<br />

0<br />

= e T H (0, x) ,<br />

where H = ∆ + v. This is the Feynman-Kac formula. Therefore, apply<strong>in</strong>g steps as<br />

<strong>in</strong> (2), we obta<strong>in</strong><br />

∫ ∞<br />

0<br />

dT 〈F (τ)δ(ω(T ) − x)〉 =<br />

∫ ∞<br />

0<br />

dT e T H (0, x)<br />

= (−∆ − v) −1 (0, x)<br />

= 1 N ′ ∫<br />

= 1 N ′ ∫<br />

− 1 2<br />

φ 0 φ x e<br />

∑<br />

x<br />

φ 0 φ x F (φ 2 − 1 2<br />

)e<br />

(∇φ) 2 x − 1 2<br />

∑<br />

x<br />

∑<br />

x<br />

v x φ 2 x<br />

(∇φ) 2 x ∏<br />

y<br />

∏<br />

dφ y<br />

y<br />

dφ y . (5)


Here N ′ is the normalization for the v-dependent Gaussian measure exhibited on<br />

the third l<strong>in</strong>e. Note that except for this factor, the claim (4) is verified.<br />

Grassman Integrals. Unfortunately, <strong>in</strong> the present framework, the factor<br />

N ′ will not go away. To obta<strong>in</strong> a true statement, we have to generalize our notion<br />

<strong>of</strong> Gaussian <strong>in</strong>tegral to allow for Grassman variables as well as ord<strong>in</strong>ary variables.<br />

One can arrange for the two types <strong>of</strong> normalization factors to cancel, so that for an<br />

appropriate generalization <strong>of</strong> φ, N ′ = 1 and (4) holds. See [L], [BM] for some other<br />

applications.<br />

It is fairly straightforward to def<strong>in</strong>e the needed Grassman algebra and its<br />

associated <strong>in</strong>tegration theory (the Bérez<strong>in</strong> <strong>in</strong>tegral [B]). Let G be the algebra over<br />

the r<strong>in</strong>g <strong>of</strong> complex valued C ∞ functions on R 2n with a 2n-tuple { ¯ψ 1 , ψ 1 , . . . , ¯ψ n , ψ n }<br />

<strong>of</strong> generators satisfy<strong>in</strong>g the anticommutation relations:<br />

ψ # i ψ# j + ψ# j ψ# i<br />

= 0 i, j = 1, . . . , n, ψ # i<br />

= ψ i or ¯ψ i .<br />

The elements <strong>of</strong> G can be uniquely represented <strong>in</strong> the form<br />

g = ∑ α<br />

g (α) (φ)ψ α ,<br />

where α is a multi-<strong>in</strong>dex with 2n components (ᾱ 1 , α 1 , . . . , ᾱ n , α n ) which take values<br />

0 or 1, and where<br />

ψ α = ¯ψᾱ1 1 ψα 1<br />

1 · · · ¯ψᾱn n ψα n<br />

n .<br />

For each α, g (α) (φ) ≡ g (α) (φ, ¯φ) is a C ∞ function on R 2n , but we use complex conjugate<br />

variables ( ¯φ 1 , φ 1 , . . . , ¯φ n , φ n ) to denote a po<strong>in</strong>t <strong>in</strong> R 2n . The Bérez<strong>in</strong> <strong>in</strong>tegral<br />

is the map ∫ d α ψ : G → G which is l<strong>in</strong>ear over C ∞ (R 2n ) and satisfies<br />

∫<br />

d α ψ(ψ α ψ β ) = π −|α|/2 ψ β<br />

whenever ψ α ψ β ≠ 0. If α = (1, 1, . . . , 1), we write d α ψ = dψ. We may assemble all<br />

fields <strong>in</strong>to a s<strong>in</strong>gle vector Φ i = ( ¯φ i , φ i , ¯ψ i ψ i ). Then it is natural to def<strong>in</strong>e comb<strong>in</strong>ed<br />

Boson ( ¯φ, φ) and Fermion ( ¯ψ, ψ) <strong>in</strong>tegration by putt<strong>in</strong>g<br />

∫<br />

∫<br />

dΦg =<br />

∫<br />

dφ<br />

dψ g<br />

for any g ∈ G. Here dφ = d n (Re φ)d n (Im φ).<br />

With these def<strong>in</strong>itions it is not hard to verify that<br />

∫<br />

dψe −ψA ¯ψ = π −n det A


for any complex n × n matrix. In contrast,<br />

∫<br />

dφe −φA ¯φ = π −n (det A) −1 ,<br />

provided the real part A + Āt <strong>of</strong> A is positive def<strong>in</strong>ite. Thus, as desired, the<br />

normalizations cancel, and we def<strong>in</strong>e a comb<strong>in</strong>ed Fermion-Boson Gaussian measure<br />

dµ c (Φ) = dΦe −φA ¯φ−ψA ¯ψ ,<br />

where C = A −1 . It may be surpris<strong>in</strong>g, given the completely different <strong>in</strong>tegration<br />

theories, that this Gaussian measure is calculationally very similar to the standard<br />

Gaussian <strong>in</strong>tegral. For example,<br />

∫<br />

∫<br />

dµ c (Φ) ¯φ i φ j = dµ c (Φ) ¯ψ i ψ j = C ij ,<br />

and other moments can be evaluated us<strong>in</strong>g the usual Wick rules (but with m<strong>in</strong>us<br />

signs com<strong>in</strong>g from the anticommutation relations).<br />

In an ord<strong>in</strong>ary Gaussian <strong>in</strong>tegral where φ is an n-component vector, the<br />

normalization is (det A) −n/2 . S<strong>in</strong>ce this cancels <strong>in</strong> the comb<strong>in</strong>ed measure, one can<br />

th<strong>in</strong>k <strong>of</strong> the system as an n = 0 component vector, the two Fermionic components<br />

“cancel” the two Bosonic ones.<br />

Us<strong>in</strong>g the comb<strong>in</strong>ed Gaussian measure, we can now write down a corrected<br />

form <strong>of</strong> (5).<br />

Theorem 1. Let F ∈ C ∞ (R n + ) satisfy |F (τ)| ≤ const·exp(−b ∑ τ i ) for some b > 0.<br />

Then<br />

⎧ ⎫<br />

∫ ∞<br />

∫<br />

⎨ ¯ψ 0 ψ x ⎬<br />

dT 〈F (τ)δ(ω(T ) − x)〉 = dµ c (Φ)F (Φ 2 ) or<br />

0<br />

⎩ ⎭ ¯φ ,<br />

0 φ x<br />

where C = (−∆) −1 . More generally C is the <strong>in</strong>verse <strong>of</strong> the generator <strong>of</strong> any cont<strong>in</strong>uous<br />

time Markov cha<strong>in</strong> ω.<br />

Apply<strong>in</strong>g this theorem to self-avoid<strong>in</strong>g walk we obta<strong>in</strong><br />

∫<br />

[<br />

G SAW<br />

0x (s) = dµ c (Φ) ¯φ 0 φ x exp s ∑ Φ 2 x − λ ∑ ]<br />

(Φ 2 x) 2 . (6)<br />

x<br />

x<br />

The Hierarchical Model. In [BEI], a Lévy process (cont<strong>in</strong>uous time<br />

Markov cha<strong>in</strong>) is constructed on a hierarchical lattice G = ⊕ ∞<br />

j=0 Z n. The jump<strong>in</strong>g<br />

rates are chosen <strong>in</strong> such a way that the Green’s function mimics the <strong>in</strong>verse<br />

Laplacian. Def<strong>in</strong>e the length <strong>of</strong> any po<strong>in</strong>t x ∈ G:<br />

{ 0, x = 0,<br />

|x| H =<br />

L p , p = <strong>in</strong>f {k : x ∈ G k },


where G k = ⊕ k<br />

j=0 Z n. Tak<strong>in</strong>g n = L p , we can th<strong>in</strong>k <strong>of</strong> G k as a block <strong>of</strong> L dk po<strong>in</strong>ts<br />

such as would arise <strong>in</strong> a renormalization group scheme on the simple cubic lattice.<br />

Then, for most x, y, |x − y| H is comparable to the Euclidean distance |x − y|.<br />

Endow<strong>in</strong>g the hierarchical lattice with a group structure permits the use<br />

<strong>of</strong> the <strong>Four</strong>ier transform to compute the Green’s function. Specifically, <strong>in</strong> <strong>Four</strong>ier<br />

transform variables, the Green’s functions is the <strong>in</strong>verse <strong>of</strong> the <strong>in</strong>f<strong>in</strong>itesimal generator<br />

<strong>of</strong> the process. The follow<strong>in</strong>g result is obta<strong>in</strong>ed <strong>in</strong> [BEI].<br />

Theorem 2. Consider the Lévy process on G <strong>in</strong> which jumps from x to y have<br />

probability proportional to |x − y| −(d+2)<br />

H<br />

. The jump<strong>in</strong>g rate may be chosen so that<br />

the Green’s function is<br />

{<br />

−(d−2)<br />

G xy = |x − y|<br />

H<br />

, x ≠ y<br />

(1 − L −d )/(1 − L −2 (7)<br />

), x = y.<br />

The Renormalization Group. Let us apply the field theory representation<br />

(6) to the hierarchical model. The covariance <strong>of</strong> the Gaussian measure is given by<br />

(7). It can be split as<br />

G = G ′ + Γ<br />

where<br />

G ′ (x) = L −2 G(x/L) .<br />

Here division by L corresponds to a shift <strong>in</strong> G = ⊕ Z n . The “fluctuation covariance”<br />

Γ vanishes if |x − y| H > L. A renormalization group transformation can be def<strong>in</strong>ed<br />

by writ<strong>in</strong>g ∫<br />

∫<br />

dµ G (Φ)F (Φ) = dµ G ′(Φ ′ )dµ Γ (δ)F (Φ ′ + ζ)<br />

= dµ G (Φ)(T F )(Φ) .<br />

In the second step, we have rescaled Φ ′ and replaced blocks with po<strong>in</strong>ts, us<strong>in</strong>g the<br />

constancy <strong>of</strong> G ′ on blocks.


In the case at hand, F = ∏ x f(Φ x). S<strong>in</strong>ce Γ does not couple different L d -<br />

blocks, T F is also a product. Hence, T can be viewed as a transformation on<br />

functions f. Except for the presence <strong>of</strong> Fermionic variables, this transformation is<br />

similar to ones studied by [BlS], [GK].<br />

The follow<strong>in</strong>g result on the action <strong>of</strong> the renormalization group on the hierarchical<br />

self-avoid<strong>in</strong>g walk is proven <strong>in</strong> [BEI]. The formulation uses wick ordered<br />

powers <strong>of</strong> Φ, which are def<strong>in</strong>ed as<br />

:P (Φ): = exp(−∆)P (Φ) ,<br />

∆ ≡ ∑ { ∂<br />

G(x − y)<br />

∂ψ(x)<br />

x,y<br />

∂<br />

∂ ¯ψ(y) +<br />

∂<br />

∂φ(x)<br />

}<br />

∂<br />

∂ ¯φ(y)<br />

Theorem 3. Let d = 4. Assume µ 2 , η are O(λ 2 ), with λ small. Suppose<br />

g(Φ) = e −λ:(Φ2 ) 2 :+µ 2 :Φ 2: (1 + η:(Φ 2 ) 3 :) + r(Φ) ,<br />

with rema<strong>in</strong>der r(Φ) depend<strong>in</strong>g only on Φ 2 , and satisfy<strong>in</strong>g<br />

∑<br />

α<br />

sup<br />

φ<br />

∣<br />

∣<br />

∂ α r(Φ)<br />

e λ1/2 |φ| ∣∣∣ 2 ≤ O(λ) .<br />

α!<br />

Then T g satisfies the same properties, except that λ, µ 2 , η are replaced with primed<br />

parameters obey<strong>in</strong>g<br />

λ ′ = λ − βλ 2 + O(λ 3 )<br />

µ ′2 = L 2 µ 2 + γλ 2 + O(λ 3 ) .<br />

Theorem 3 shows that the model is asymptotically free. This means that for<br />

a certa<strong>in</strong> choice <strong>of</strong> µ 2 = µ 2 c(λ), the parameter λ is driven to zero under successive<br />

applications <strong>of</strong> the transformation T .<br />

Further analysis <strong>of</strong> the “observables” φ 0 ¯φx <strong>in</strong> (6) leads to the follow<strong>in</strong>g<br />

asymptotic statement for the self-avoid<strong>in</strong>g walk Green’s function (at the critical<br />

µ 2 c (λ)): G SAW<br />

xy (µ 2 c(λ)) = (1 + O(λ))G(x − y)(1 + ɛ(x − y))<br />

.<br />

|ɛ(x)| ≤ λ(1 + λ log |x|) −1 .<br />

Thus the decay <strong>of</strong> the Green’s function for self-avoid<strong>in</strong>g walk is the same as that <strong>of</strong><br />

the Green’s function <strong>of</strong> the hierarchical Lévy process.


References.<br />

[B] Bérez<strong>in</strong>, F. A.: The Method <strong>of</strong> Second Quantization. Academic Press, New<br />

York (1966).<br />

[BlS] Bleher, P. M., and S<strong>in</strong>ai, Ya. G.: Investigation <strong>of</strong> the Critical Po<strong>in</strong>t <strong>in</strong> Models<br />

<strong>of</strong> the Type <strong>of</strong> Dyson’s Hierarchical Models. Commun. Math. Phys. 33,<br />

23–42 (1973).<br />

[BLZ] Bérez<strong>in</strong>, E., Le Guillou, J. C., and Z<strong>in</strong>n-Just<strong>in</strong>, J.: Phase Transitions and<br />

Critical Phenomena, Vol. VI. Domb, C. and Green, M. S. (eds.): Academic<br />

Press, New York (1976).<br />

[BEI] Brydges, D., Evans, S. N., and Imbrie, J. Z.: <strong>Self</strong>-<strong>Avoid<strong>in</strong>g</strong> <strong>Walk</strong> on a Hierarchical<br />

Lattice <strong>in</strong> <strong>Four</strong> <strong>Dimensions</strong>. Ann. Prob., to appear.<br />

[BM] Brydges, D. C., and Munoz-Maya, I.: An Application <strong>of</strong> Berez<strong>in</strong> Integration<br />

to Large Deviations. University <strong>of</strong> Virg<strong>in</strong>ia prepr<strong>in</strong>t, 1989.<br />

[BS] Brydges, D., and Spencer, T.: <strong>Self</strong>-<strong>Avoid<strong>in</strong>g</strong> <strong>Walk</strong> <strong>in</strong> 5 or More <strong>Dimensions</strong>.<br />

Commun. Math. Phys. 97, 125–148 (1985).<br />

[De] De Gennes, P. G.: Exponents for the Excluded Volume Problem as Derived<br />

by the Wilson Method: Physics Lett. 38A, 339–340 (1972).<br />

[Du] Duplantier, B.: Polymer Cha<strong>in</strong>s <strong>in</strong> <strong>Four</strong> <strong>Dimensions</strong>. Nucl. Phys. B275,<br />

319–355 (1986).<br />

[GK] Gawedzki, K., and Kupia<strong>in</strong>en, A.: Asymptotic Freedom Beyond Perturbation<br />

Theory. In: Critical Phenomena, Random Systems, Gauge Theories,<br />

Les Houches 1984. Osterwalder, K., and Stora, R. (eds.): North Holland,<br />

Amsterdam (1986).<br />

Gawedzki, K., and Kupia<strong>in</strong>en, A.: Triviality <strong>of</strong> ϕ 4 4 and All That <strong>in</strong> a Hierarchical<br />

Model Approximation. J. Stat. Phys. 29, 683–698 (1982).<br />

[L] Lutt<strong>in</strong>ger, J. M.: The Asymptotic Evaluation <strong>of</strong> a Class <strong>of</strong> Path Integrals II.<br />

Journal <strong>of</strong> Mathematical Physics 24, 2070–2073 (1983).<br />

[M] McKane, A. J.: Reformulation <strong>of</strong> n → 0 Models Us<strong>in</strong>g Anticommut<strong>in</strong>g Scalar<br />

Fields. Phys. Lett. 76A, 22–24 (1980).<br />

[PS] Parisi, G., and Sourlas, N.: <strong>Self</strong>-<strong>Avoid<strong>in</strong>g</strong> <strong>Walk</strong> and Supersymmetry. J.<br />

Phys. Lett. 41, L403–L406 (1980).<br />

Parisi, G., and Sourlas, N.: Random Magnetic Fields, Supersymmetry and<br />

Negative <strong>Dimensions</strong>. Phys. Lett. 43, 744–745 (1979).<br />

[S] Slade, G.: The Diffusion <strong>of</strong> <strong>Self</strong>-<strong>Avoid<strong>in</strong>g</strong> Random <strong>Walk</strong> <strong>in</strong> High <strong>Dimensions</strong>.<br />

Commun. Math. Phys. 110, 661–683 (1987).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!