25.12.2014 Views

Download Final Presentation

Download Final Presentation

Download Final Presentation

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Juan David Gutierrez-Franco<br />

Mechanical Engineering<br />

Allan Hancock College<br />

Mentor: Meysam R. Barmi<br />

Advisor: Prof. Carl Meinhart<br />

Mechanical Engineering<br />

1


Why is microfluidics<br />

important<br />

• Reduction of laboratory size, analysis<br />

time, and sample needed<br />

• Micro Total Analysis System (μTAS)<br />

• Lab-on-a-Chip (LOC)<br />

• Microarrays<br />

• Portable and easily controllable<br />

devices for chemical and biological<br />

applications<br />

Lab-on-a-Chip (LOC)<br />

http://gigaomized-greendemo.blogspot.com/2011/02/lab-onchip-what-is-this.html<br />

2cm<br />

10cm<br />

Microarray<br />

http://i.i.com.com/cnwk.1d/i/ne/p/2<br />

007/fluidigm-007_550x367.jpg 2


The Big Picture<br />

• Mixing chemicals to perform<br />

experiments<br />

Evaporation of solvent<br />

Mixing<br />

Evaporation<br />

3


Goals of the Project<br />

Closed System<br />

• To understand the physics of<br />

electrowetting on open and<br />

closed systems<br />

• To create and test open<br />

surface electrowetting<br />

devices<br />

Open System<br />

• To lower required voltage to<br />

move droplet<br />

• To control the evaporation<br />

rate of the droplet<br />

Evaporation<br />

4


Lab-on-a-Chip mixing chemicals<br />

2.5 mm<br />

Lab-on-a-Chip performing chemical reactions<br />

http://www.chem.utoronto.ca/staff/WHEELER/html/Main.htm<br />

5


Electrowetting<br />

Droplets containing different chemicals need to be<br />

mixed. The movement is done with electrowetting.<br />

6


Research Method: Electrowetting<br />

• Apply voltage to<br />

droplets on chips to<br />

achieve<br />

electrowetting<br />

without electrolysis.<br />

• Try different solution<br />

concentrations,<br />

dielectrics, voltages<br />

and frequencies.<br />

1.5 cm<br />

2.5 cm<br />

7


Research Method: Electrowetting<br />

1M KCl solution 4V 1kHz gold electrode<br />

8


Research Method: Electrowetting<br />

65.0<br />

Contact Angle Change vs. Voltage<br />

f=100 Hz 2.0 M KCl<br />

55.0<br />

Contact Angle Change (°)<br />

45.0<br />

35.0<br />

25.0<br />

15.0<br />

5.0<br />

Electrowetting<br />

Electrolysis<br />

Saturation<br />

-5.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0<br />

Voltage (V)<br />

Saturation is seen once the contact angle does not<br />

change while increasing voltage.<br />

9


Higher molarity solutions show<br />

better response to voltage at 1 kHz<br />

Concentration Electrowetting Electrolysis<br />

1 M KCl 4 V 6 V<br />

0.1 M KCl 24 V 16 V<br />

0.01 M KCl 120 V 90 V<br />

• 1 M KCl solution showed the lower voltage needed to cause<br />

electrowetting.<br />

• As molarity dropped, electrolysis occurred sooner than<br />

electrowetting.<br />

10


Effect of Molarity on<br />

Electrowetting and Electrolysis<br />

Molarity<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

Molarity vs. Voltage 300 Hz<br />

Electrowetting<br />

Electrolysis<br />

0.0 5.0 10.0<br />

Voltage (V)<br />

KCl solution on gold electrode with no dielectric.<br />

Molarity<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

Molarity vs. Voltage 1 kHz<br />

Electrowetting<br />

Electrolysis<br />

0.0 5.0 10.0 15.0<br />

Voltage (V)<br />

• As molarity and frequency drop, electrolysis occurs<br />

sooner.<br />

11


Molarity Effect on Contact Angle<br />

Change<br />

Contact Angle Change ( )<br />

Contact Angle Change vs. Voltage<br />

f=300 Hz<br />

60.0<br />

50.0<br />

40.0<br />

0.1 M<br />

30.0<br />

0.5 M<br />

20.0<br />

1.0 M<br />

10.0<br />

2.0 M<br />

0.0<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0<br />

Voltage (V)<br />

Contact Angle Change ( )<br />

60.0<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

Contact Angle Change vs. Voltage<br />

f=1000 Hz<br />

0.1 M<br />

0.5 M<br />

1.0 M<br />

2.0 M<br />

0.0<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0<br />

Voltage (V)<br />

• Actuation voltage is same for all cases.<br />

• Saturation is reached sooner by the higher molarity<br />

solutions.<br />

12


Evaporation<br />

Once the droplets are mixed, the solvent needs to be<br />

evaporated.<br />

13


Research Method: Evaporation<br />

• Made of two<br />

layers: Ti/Pt<br />

(200/2500Å)<br />

• Resistance is<br />

measured<br />

Resistive Temperature Detector (RTD)<br />

• Resistance relates<br />

linearly to<br />

temperature<br />

14


Calibration of RTD<br />

• Fabrication can alter properties of<br />

the RTD<br />

• Calibration is needed for each chip<br />

• Readings of resistance at known<br />

temperature used for calibration of<br />

RTD.<br />

Resistance (Ω)<br />

Calibration RTD Sample 1<br />

41.5<br />

41.0<br />

40.5<br />

40.0<br />

39.5<br />

39.0<br />

38.5<br />

296.0 301.0 306.0 311.0<br />

Temperature (K)<br />

Resistivity (nΩ*m)<br />

160.0<br />

155.0<br />

150.0<br />

145.0<br />

R = 0.1532T - 6.6023 140.0<br />

Average Resistivity RTD<br />

295.0 300.0 305.0 310.0 315.0<br />

Temperature (K)<br />

15


Evaporation Time<br />

• Evaporation rate was measured and plotted vs. temperature<br />

Evaporation Rate (nL/s)<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

Evaporation Rate vs Temperature<br />

0.0<br />

305.0 310.0 315.0 320.0 325.0 330.0<br />

Temperature (K)<br />

• As temperature increases, the rate of evaporation of droplets<br />

increases.<br />

16


Summary<br />

•<br />

17


Future Plans<br />

• Find dielectric that decreases voltage needed for<br />

electrowetting and prevents electrolysis.<br />

• Find way to dewet a droplet after electrowetting occurs.<br />

• Control the evaporation rate of the droplet using a peltier<br />

heater and the reading of the resistance of the RTD.<br />

• Combination of electrowetting and evaporation devices.<br />

18


Acknowledgments<br />

• INSET Program organizers<br />

• Jens-Uwe Kuhn<br />

• Dr. Nick Arnold<br />

• Prof. Megan Valentine<br />

• Arica Lubin<br />

• Microfluidics Lab<br />

• Prof. Carl Meinhart<br />

• Meysam R. Barmi<br />

• Irvin Martinez<br />

19


Thank you for your<br />

attention<br />

Summer 2011<br />

20


Definitions<br />

• Electrowetting: modification of the properties of the droplet’s<br />

surface by applying electricity.<br />

• Modifies contact angle and surface tension.<br />

• Surface from hydrophobic to hydrophilic<br />

• Microfluidics: use of small volumes of fluid to perform tasks<br />

(reactions, movement, mixing)<br />

• Free Surface: system where the droplet is in contact with the air.<br />

• Hydrophobic: repels water<br />

• Hydrophilic: attracts water<br />

22


Contact Angle<br />

• Distance at which the<br />

liquid (droplet) and<br />

vapor (air) interface<br />

meets a solid surface.<br />

• If the angle is:<br />

• >90 surface is<br />

hydrophilic<br />


Electrolysis<br />

• KCl is present in solution as<br />

ions<br />

• Once voltage is applied,<br />

positive ions (K+) go to the<br />

negative electrode and<br />

negative ions (Cl-) go to the<br />

positive electrode<br />

• K gains an electron<br />

• Forms potassium atoms<br />

• Cl loses an electron<br />

• Forms chlorine atoms<br />

24


Electrolysis happening<br />

25


Residue seen on chips<br />

Desired residue<br />

after electrowetting<br />

Residue when<br />

electrolysis occurs<br />

(7V)<br />

Residue when<br />

electrolysis occurs<br />

(100V)<br />

26


Electrowetting Effect<br />

Before<br />

After<br />

27


Before<br />

After<br />

28


Change in diameter of droplet after<br />

electrowetting<br />

~4mm<br />

~5mm<br />

Before<br />

After<br />

29


RTD Cross-Section<br />

• Two layers<br />

• 200 Å Titanium<br />

• Acts as adhesive<br />

• 2500 Å Platinum<br />

30


Peltier Cooler<br />

• Used to cool or heat chips.<br />

• Positive voltage on red cable<br />

cools the top surface and heats<br />

the bottom surface<br />

• Negative voltage on red cable<br />

heats the top surface and cools<br />

the bottom surface<br />

31


Evaporation Rate Curve<br />

•<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!