25.12.2014 Views

Arda Lembet_Array CGH in Prenatal Diagnosis.ppt [Uyumluluk Modu]

Arda Lembet_Array CGH in Prenatal Diagnosis.ppt [Uyumluluk Modu]

Arda Lembet_Array CGH in Prenatal Diagnosis.ppt [Uyumluluk Modu]

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

P.O. Number Terms Rep Ship Via F.O.B. Project<br />

Quantity Item Code Description Price Each Amount<br />

<strong>Array</strong> <strong>CGH</strong><br />

( Comparative Genomic Hybridization ) <strong>in</strong><br />

<strong>Prenatal</strong> <strong>Diagnosis</strong><br />

<strong>Arda</strong> <strong>Lembet</strong>,MD<br />

Associate Professor<br />

Obstetrics and Gynecology<br />

Total


• Postnatal genetic evaluation<br />

–Dysmorphic feautures<br />

–Cognitive difficulties<br />

• <strong>Prenatal</strong> conditions<br />

–Structural anomalies<br />

–Stillborn <strong>in</strong>fants


Basic <strong>in</strong>troduction to arrays<br />

• Metaphase karyotyp<strong>in</strong>g:<br />

–Aneuploidy,deletions,duplications,rearrangements<br />

–5-10 megabases<br />

• Microarray analysis:<br />

–Submicroscopic deletions, duplications<br />

–100 times smaller than ( kilobase range )


Basic <strong>in</strong>troduction to arrays<br />

• Microarray analysis:<br />

– Copy number varitions ( CNV ):<br />

•Regions of DNA larger than a kilobase ( 1000<br />

basepair )<br />

•Autosomes each DNA has 2 copies<br />

•Deletions, duplications, trisomies<br />

•Benign CNVs<br />

•Disease caus<strong>in</strong>g CNVs<br />

•CNVs with unknown significance<br />

•1 Mb


The impact of human copy number variation<br />

on a new era of genetic test<strong>in</strong>g<br />

• Copy number variations ( CNV ):<br />

–Normally found only once on each chromosome<br />

–29,133 CNVs <strong>in</strong> Database of Genomic Variants<br />

–12 % of the human genome is CNV<br />

–CNVs contribute 0.12% -7.3 % of g. variability<br />

–41% of all CNVs overlap with known genes<br />

– www.1000genoems.org<br />

–NAHR , 10 -4 per generation


The impact of human copy number variation<br />

on a new era of genetic test<strong>in</strong>g<br />

• Copy number variations ( CNV ):<br />

• S<strong>in</strong>gle nucleotide polmorphism arrays<br />

– Loss of one allele<br />

– Loss of heterozygosity ( LOH )<br />

– Uniparental disomy<br />

– Non – paternity<br />

– Consangu<strong>in</strong>ity


Basic <strong>in</strong>troduction to arrays<br />

• Microarray analysis:<br />

–Comparative genomic hybridization<br />

•Method: DNA comparison<br />

•Deletions and duplications<br />

•Po<strong>in</strong>t mutaions, balanced translocations, <strong>in</strong>versions can<br />

not be detected<br />

•Microarray analysis technique


<strong>Array</strong> coverage: Density / backbone<br />

• Probes on arrays:<br />

– Oligonucleotides : 30-50 base pair ( bp )<br />

– Bacterial artificial chromosome ( BAC ) :<br />

• 150-750 bp<br />

– S<strong>in</strong>gle nucleotide polymorphisms ( SNP )<br />

– Targeted array<br />

– Whole genome arrays


Comparison of the types of chromosomal abnormalities<br />

that can be detected by karyotype and array <strong>CGH</strong>


Resolution and detection rate of arrays


Construction of a prenatal microarray<br />

• NICHD :Summer 2011, <strong>Prenatal</strong> vs. postnatal<br />

• 5-18 % of children with multipl anomalies<br />

and /or developmental delay and a normal<br />

karyotype will have a disease caus<strong>in</strong>g CNV<br />

• Low density targeted arrays vs / whole<br />

genome arrays


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Evaluation of ultrasound structural<br />

anomalies<br />

• Del<strong>in</strong>eat<strong>in</strong>g marker chromosomes<br />

• Reciprocal balanced translocations<br />

• Evaluation of stillborn <strong>in</strong>fants


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Evaluation of ultrasound structural anomalies :<br />

–Fetal samples for standart <strong>in</strong>dications ,<br />

– 5-6 % cl<strong>in</strong>ically significant CNV ,<br />

–When structural anomaly present microarray analysis will<br />

have a detection rate of 1-3 % beyond that of karyotype.<br />

–What is the value if no ultrasound abnomality <br />

–Expert op<strong>in</strong>ion


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Evaluation of ultrasound structural anomalies :<br />

–Cardiac, CNS, skeletal, urogenital, renal<br />

–Increased NT<br />

–IUGR


• 50 fetuses with major structural anomaly<br />

–Cardiac,CNS,skeletal,urogenital,growth disorder,GI<br />

• Mean GA : 24.5 weeks<br />

• 4 / 50 fetuses had abnormal array<br />

• 1 cl<strong>in</strong>ically significant 2%<br />

• 3 <strong>in</strong>herited benign variants 6%


• 300 samples AS – CVS<br />

• AMA, US abnormality, family history, p. concern<br />

• 58 ( 19.3 % ) CNVs<br />

–40 (13.3 %) Benign<br />

–15 ( 5 % ) Pathological<br />

–3 ( 1 % ) Uncerta<strong>in</strong> cl<strong>in</strong>ical significance<br />

–7 (2.3 %) a <strong>CGH</strong> contributed new <strong>in</strong>formation<br />

–2 ( 1 % ) w/o a <strong>CGH</strong> no abnormality would have<br />

been detected


• NT > 99 th, CVS- normal G band,<br />

• 100 fetuses f/u 22 months<br />

• HR-<strong>CGH</strong> and MLPA<br />

• 80 liveborn<br />

–3 ( 4 % ) had syndromes ( MR,sotos syndrome )<br />

–18 % adverse pregnancy outcome overall<br />

–<strong>CGH</strong> and MLPA did not detect any chromosome abn.with<br />

syndromes


Identification of submicroscopic chromosomal aberrations <strong>in</strong><br />

fetuses with <strong>in</strong>creased NT and an apparently normal karyotype<br />

Leung et al,UOG March 2011<br />

• NT > 3.5 , a<strong>CGH</strong> 44 K oligonucleotide , validation<br />

• CNV 6 / 48 ( 12.5 % ) , 1-7.8 Mb<br />

• 5 / 48 ( 9.5 % ) cl<strong>in</strong>ical significant – validated<br />

• 4 / 48 ( 8.3% ), 1p36 excluded ( normal v )<br />

–Pathogenic CNV 20 % -US abnormality<br />

5.3% -No US abnormality<br />

• Abnormal array, median NT 4.35 mm


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Evaluation of ultrasound structural<br />

anomalies<br />

• Del<strong>in</strong>eat<strong>in</strong>g marker chromosomes<br />

• Reciprocal balanced translocations<br />

• Evaluation of stillborn <strong>in</strong>fants


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Del<strong>in</strong>eat<strong>in</strong>g marker chromosomes.<br />

–Nonsatellited markers:15% abnormal phenotype<br />

–Satellited marker risk: 11 %<br />

–Acrocentric chromosome<br />

–Heterochromat<strong>in</strong> vs euchromat<strong>in</strong>


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Evaluation of ultrasound structural<br />

anomalies<br />

• Del<strong>in</strong>eat<strong>in</strong>g marker chromosomes<br />

• Reciprocal balanced translocations<br />

• Evaluation of stillborn <strong>in</strong>fants


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Evaluation of ultrasound structural<br />

anomalies<br />

• Del<strong>in</strong>eat<strong>in</strong>g marker chromosomes<br />

• Reciprocal balanced translocations<br />

• Evaluation of stillborn <strong>in</strong>fants


Current <strong>in</strong>dications for microarray<br />

analysis <strong>in</strong> prenatal diagnosis<br />

• Evaluation of stillborn <strong>in</strong>fants :<br />

–5% of structurally normal stillborn fetuses<br />

–35-40 % of structurally abnormal or macerated<br />

•Will have an abnormal karyotype<br />

–Quality of the karyotype


Other potential benefits of microarray<br />

• Turnaround time:<br />

–1-2 weeks for a conventional karyotype<br />

• No need for cell culture<br />

–Sample sites: DNA extraction sites ….<br />

–Also potential benefit for stillbirth


Limitations of microarray<br />

•Balanced translocations will not be detected.<br />

•Standart microarray will not identify<br />

polyploidies .<br />

•Low-level mosaicism :<br />

•Unknown cl<strong>in</strong>ical significance: ISCA-NIH


Current guidel<strong>in</strong>es<br />

• American College Medical Genetics:<br />

– Multiple anomalies not spesific to a well del<strong>in</strong>eated genetic<br />

syndrome, nonsyndromic developmental delay and<br />

<strong>in</strong>tellectual disability and autism spectrum disorders.<br />

– Children with growth retardation, speech delay..etc


Current guidel<strong>in</strong>es<br />

• American College of Obstetrics and<br />

Gynecologists ( ACOG )<br />

–First l<strong>in</strong>e test for prenatal evaluation of chromosomal<br />

abnormalities rema<strong>in</strong>s unknown and convent<strong>in</strong>al<br />

karyotyp<strong>in</strong>g rema<strong>in</strong>s the primary cytogenetic tool.


Current guidel<strong>in</strong>es<br />

• American College of Obstetrics and Gynecologists ( ACOG )<br />

– However, targeted arrays <strong>in</strong> comb<strong>in</strong>ation with genetic counsel<strong>in</strong>g can be<br />

offered <strong>in</strong> the sett<strong>in</strong>g of an abnormal ultrasound f<strong>in</strong>d<strong>in</strong>g and a normal<br />

karyotype result.<br />

– It can also be offered <strong>in</strong> cases of fetal demise with congeital anomalies<br />

when conventional karyotype is unobta<strong>in</strong>able.<br />

– Pretest and posttest genetic counsel<strong>in</strong>g


Future perspectives<br />

•Acceptable cost<br />

–<strong>Array</strong> <strong>CGH</strong>: 442 £ Karyotype: 117 £<br />

–FISH :214 £ MLPA: 245 £<br />

• Fetal cells from various sites<br />

–ECC, fetal cells, cell-free fetal DNA<br />

• S<strong>in</strong>gle nucleotide changes<br />

• Parental orig<strong>in</strong> of del / dup<br />

• Spesific po<strong>in</strong>t mutation analysis


Asphyxiat<strong>in</strong>g Thoracic Dystrophy:<br />

A case report<br />

31 yo<br />

G3P2, alive 0.<br />

Referred due to shortness of long bones.<br />

Gestational age : 14 w 4 d.<br />

No consangu<strong>in</strong>ity.<br />

Family history unremarkable


OB HISTORY<br />

• G 1 was term<strong>in</strong>ated at 24 th weeks.<br />

-USG exam<strong>in</strong>ation:<br />

• Shortness of long bones.( predom<strong>in</strong>atly humerus<br />

and femur. BPD: 24 wk, FL: 17 wk, HL: 18 wk)<br />

• Bow<strong>in</strong>g of humerus and femur<br />

• Narrow thorax<br />

-A/S: normal karyotype


Autopsy:<br />

•Rhizomelia<br />

•Brachydactyly<br />

•Narrow thorax<br />

•Cl<strong>in</strong>odactyly at 5 th f<strong>in</strong>gers


-Radiographic f<strong>in</strong>d<strong>in</strong>gs:<br />

• Bow<strong>in</strong>g at femur and humerus<br />

• Metaphyseal irregularities at all tubuler bones<br />

• Abnormalities at iliac bones. ( square-shaped iliac<br />

bone)<br />

• Short ribs<br />

• Handlebar clavicles<br />

• <strong>Diagnosis</strong>: ATD / Short limb polydactyly related<br />

syndromes


•2nd pregnancy was term<strong>in</strong>ated at 17 th<br />

week .<br />

•-USG:<br />

• Shortness of long bones ( FL


-G3 Current pregnancy USG f<strong>in</strong>d<strong>in</strong>gs:<br />

• Shortness of long bones ( FL, HL< 5 % )<br />

• Bell-shaped thorax<br />

• The other organs and systems were<br />

unremarkable.<br />

Karyotype analysis was normal.


•Molecular karyotype analysis ( cytogenetics<br />

whole genome 2.7 M <strong>Array</strong>)<br />

•Deletion at ACVR1 and ACVR1C genes<br />

located at 2q23-24 region)<br />

–Fibrodysplasia ossificans progressiva


ATD ( Jeune syndrome)<br />

• AR skeletal dysplasia, 1/100,000-1/130,000 live<br />

births<br />

Cl<strong>in</strong>ical and radiological f<strong>in</strong>d<strong>in</strong>gs:<br />

• Bell-shaped / long narrow thorax<br />

• Vary<strong>in</strong>g degree of rhizomelia<br />

• Short hands, polydactyly<br />

• Pelvic abnormalities ( trident acetabulum,<br />

hypoplastic ileum)<br />

• Renal, hepatic, ret<strong>in</strong>al, pancreatic abnormalities


•Most cases of ATD are sporadic, prenatal<br />

diagnosis is very difficult <strong>in</strong> low-risk<br />

women without a previous history<br />

•Cl<strong>in</strong>ical outcome is poor, early prenatal<br />

diagnosis is important. 70% of ATD cases<br />

die <strong>in</strong> early childhood from pulmonary<br />

hypoplasia and respiratory distress<br />

Chen et al. <strong>Prenatal</strong> Diagn 2003; 23


•ATD is known to be genetically<br />

heterogeneous.<br />

•The molecular basis of ATD is unknown,<br />

with few clues to the location of genes<br />

likely to contribute to pathogenesis.( Morgan et al. J<br />

Med Genet 2003.)


•To map a locus for ATD, we performed a<br />

genome wide l<strong>in</strong>kage search


RESULTS<br />

•15q13 region: heterozygote deletion<br />

Morgan et al identified homozygosity for<br />

mutations <strong>in</strong> a specific locus to<br />

chromosome 15q13 <strong>in</strong> five consang<strong>in</strong>eous<br />

families.


• DYNCH2H1 mutations on chromosom 11q. ,<br />

heterozygote deletion.<br />

In a consangu<strong>in</strong>eous family and <strong>in</strong> 2 isolated cases<br />

with short rib-polydactyly syndrome type III<br />

(263510), Merrill et al. (2009) identified<br />

homozygosity or compound heterozygosity for<br />

mutations <strong>in</strong> the DYNC2H1 gene. The<br />

abnormalities <strong>in</strong> short rib-polydactyly syndrome<br />

are primarily related to the effect on the skeleton,<br />

reflect<strong>in</strong>g an essential role for DYNC2H1 <strong>in</strong> cilia<br />

function <strong>in</strong> cartilage.


•We exclude IFT80 mutations.<br />

Mutations <strong>in</strong> the <strong>in</strong>traflagellar transport 80 (<br />

IFT80) gene have been identified <strong>in</strong> 3/ 39<br />

families , ascrib<strong>in</strong>g ATD to the ciliopathy<br />

group.<br />

.<br />

( Beasles et al. Nat. Genet. 2007).


CONCLUSION<br />

• We identified heterozygote mutations at<br />

chromosome 15q13 and 11q (DYNC2H1).<br />

• It is difficult to identify the exact responsibility of<br />

these mutations on the occurence of disease.<br />

• Whether the disease is the consequence of only<br />

one of these two mutations or their comb<strong>in</strong>ed<br />

effect rema<strong>in</strong>s to be determ<strong>in</strong>ed.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!