26.12.2014 Views

generalization of the sign reversing involution on the special rim ...

generalization of the sign reversing involution on the special rim ...

generalization of the sign reversing involution on the special rim ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Korean J. Math. 18 (2010), No. 3, pp. 289–298<br />

GENERALIZATION OF THE SIGN REVERSING<br />

INVOLUTION ON THE SPECIAL RIM HOOK<br />

TABLEAUX<br />

Jaejin Lee<br />

Abstract. Eğecioğlu and Remmel [1] gave a combinatorial interpretati<strong>on</strong><br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> entries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse Kostka matrix K −1 . Using<br />

this interpretati<strong>on</strong> Sagan and Lee [8] c<strong>on</strong>structed a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g><br />

<str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>special</strong> <strong>rim</strong> hook tableaux. In this paper we generalize<br />

Sagan and Lee’s algorithm <strong>on</strong> <strong>special</strong> <strong>rim</strong> hook tableaux to give a<br />

combinatorial partial pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> K −1 K = I.<br />

1. Introducti<strong>on</strong><br />

Let λ, µ be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>negative integer n. Kostka number<br />

K λ,µ is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> column strict tableaux T <str<strong>on</strong>g>of</str<strong>on</strong>g> shape sh(T ) = λ<br />

and c<strong>on</strong>tent(T ) = µ. For fixed n, we collect <str<strong>on</strong>g>the</str<strong>on</strong>g>se numbers into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Kostka matrix K = (K λ,µ ). If we use <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse lexicographic order <strong>on</strong><br />

partiti<strong>on</strong>s, K is an upper unitriangular matrix, and so K is invertible.<br />

In [1] Eğecioğlu and Remmel gave a combinatorial interpretati<strong>on</strong> for<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> entries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse Kostka matrix K −1 and used <str<strong>on</strong>g>the</str<strong>on</strong>g> combinatorial<br />

interpretati<strong>on</strong> to give a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that KK −1 = I using a <str<strong>on</strong>g>sign</str<strong>on</strong>g><br />

<str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g>, but were not able to do <str<strong>on</strong>g>the</str<strong>on</strong>g> same thing for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

identity K −1 K = I.<br />

In [8] Sagan and Lee c<strong>on</strong>structed an algorithmic <str<strong>on</strong>g>sign</str<strong>on</strong>g>-<str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g><br />

which proves that <str<strong>on</strong>g>the</str<strong>on</strong>g> last column <str<strong>on</strong>g>of</str<strong>on</strong>g> K −1 K = I is correct. Parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sagan and Lee’ procedure are reminiscent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice path <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Lindström [5] and Gessel-Viennot [3, 4] as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rim</strong> hook<br />

Robins<strong>on</strong>-Schensted algorithm <str<strong>on</strong>g>of</str<strong>on</strong>g> White [11] and Stant<strong>on</strong>-White [10].<br />

Received August 16, 2010. Revised September 7, 2010. Accepted September 10,<br />

2010.<br />

2000 Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Subject Classificati<strong>on</strong>: 05E10.<br />

Key words and phrases: <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g>, Kostka number, <strong>special</strong> <strong>rim</strong><br />

hook tableaux.


290 Jaejin Lee<br />

In this paper we generalize Sagan and Lee’s algorithm <strong>on</strong> <strong>special</strong> <strong>rim</strong><br />

hook tableaux, which gives a combinatorial partial pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> K −1 K = I.<br />

2. Definiti<strong>on</strong>s and combinatorial interpretati<strong>on</strong> for K −1<br />

µ,λ<br />

In this secti<strong>on</strong> we describe some definiti<strong>on</strong>s necessary for later. See<br />

[2], [6], [7] or [9] for definiti<strong>on</strong>s and notati<strong>on</strong>s not described here.<br />

Definiti<strong>on</strong> 2.1. A partiti<strong>on</strong> λ <str<strong>on</strong>g>of</str<strong>on</strong>g> a positive integer n, denoted λ ⊢ n,<br />

is a weakly decreasing sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive integers summing to n. We<br />

say each term λ i is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> λ and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>zero parts is called<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> λ and is written l = l(λ). In additi<strong>on</strong>, we will use <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

notati<strong>on</strong> λ = (1 m 1<br />

, 2 m 2<br />

, . . . , n mn ) which means that <str<strong>on</strong>g>the</str<strong>on</strong>g> integer j appears<br />

m j times in λ.<br />

Definiti<strong>on</strong> 2.2. Let λ = (λ 1 , . . . , λ l ) be a partiti<strong>on</strong>. The Ferrers<br />

diagram D λ <str<strong>on</strong>g>of</str<strong>on</strong>g> λ is <str<strong>on</strong>g>the</str<strong>on</strong>g> array <str<strong>on</strong>g>of</str<strong>on</strong>g> cells or boxes arranged in rows and<br />

columns, λ 1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> first row, λ 2 in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d row, etc., with each row<br />

left-justified. That is,<br />

D λ = {(i, j) ∈ Z 2 | 1 ≤ i ≤ l(λ), 1 ≤ j ≤ λ i },<br />

where we regard <str<strong>on</strong>g>the</str<strong>on</strong>g> elements <str<strong>on</strong>g>of</str<strong>on</strong>g> D λ as a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> boxes in <str<strong>on</strong>g>the</str<strong>on</strong>g> plane<br />

with matrix-style coordinates.<br />

Definiti<strong>on</strong> 2.3. If λ, µ are partiti<strong>on</strong>s with D λ ⊇ D µ , <str<strong>on</strong>g>the</str<strong>on</strong>g> skew shape<br />

D λ/µ or just λ/µ is defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> set-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic difference D λ \ D µ . Thus<br />

D λ/µ = {(i, j) ∈ Z 2 | 1 ≤ i ≤ l(λ), µ i < j ≤ λ i }.<br />

Figure 2.1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> Ferrers diagram D λ and skew shape D λ/µ , respectively,<br />

when λ = (5, 4, 2, 1) ⊢ 12 and µ = (2, 2, 1) ⊢ 5.<br />

D λ = D λ/µ =<br />

Figure 2.1


Generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>special</strong> <strong>rim</strong> hook tableaux 291<br />

Definiti<strong>on</strong> 2.4. Let λ be a partiti<strong>on</strong>. A tableau T <str<strong>on</strong>g>of</str<strong>on</strong>g> shape λ is an<br />

as<str<strong>on</strong>g>sign</str<strong>on</strong>g>ment T : D λ → P <str<strong>on</strong>g>of</str<strong>on</strong>g> positive integers to <str<strong>on</strong>g>the</str<strong>on</strong>g> cells <str<strong>on</strong>g>of</str<strong>on</strong>g> λ. The c<strong>on</strong>tent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tableau T , denoted by c<strong>on</strong>tent(T ), is <str<strong>on</strong>g>the</str<strong>on</strong>g> finite n<strong>on</strong>negative vector<br />

whose ith comp<strong>on</strong>ent is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> entries i in T .<br />

A tableau T <str<strong>on</strong>g>of</str<strong>on</strong>g> shape λ is said to be column strict if it satisfies <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

following two c<strong>on</strong>diti<strong>on</strong>s:<br />

(i) T (i, j) ≤ T (i, j +1), i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> entries increase weakly al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> rows<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> λ from left to right.<br />

(ii) T (i, j) < T (i + 1, j), i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> entries increase strictly al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

columns <str<strong>on</strong>g>of</str<strong>on</strong>g> λ from top to bottom.<br />

In Figure 2.2, T is a tableau <str<strong>on</strong>g>of</str<strong>on</strong>g> shape (5, 4, 2, 1) and S is a column<br />

strict tableau <str<strong>on</strong>g>of</str<strong>on</strong>g> shape (5, 4, 2, 1) and <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tent (3, 3, 1, 2, 2, 1).<br />

1 3 1<br />

8 3<br />

1 1 1<br />

4<br />

6<br />

T =<br />

5 2 2<br />

6 7<br />

5<br />

S =<br />

2 2 2<br />

3 5<br />

5<br />

4<br />

4<br />

Figure 2.2<br />

Definiti<strong>on</strong> 2.5. For partiti<strong>on</strong>s λ and µ <str<strong>on</strong>g>of</str<strong>on</strong>g> a positive integer n, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Kostka number K λ,µ is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> column strict tableaux <str<strong>on</strong>g>of</str<strong>on</strong>g> shape λ<br />

and c<strong>on</strong>tent µ.<br />

If we use <str<strong>on</strong>g>the</str<strong>on</strong>g> reverse lexicographic order <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

fixed n, <str<strong>on</strong>g>the</str<strong>on</strong>g> Kostka matrix K = (K λ,µ ) becomes upper unitriangular so<br />

that K is invertible.<br />

Definiti<strong>on</strong> 2.6. A <strong>rim</strong> hook H is a skew shape which is c<strong>on</strong>nected<br />

and c<strong>on</strong>tains no 2 × 2 square <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. The size <str<strong>on</strong>g>of</str<strong>on</strong>g> H is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cells it c<strong>on</strong>tains. The leg length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rim</strong> hook H, l(H), is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vertical edges in H when viewed as in Figure 2.3. We define <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a <strong>rim</strong> hook H to be ɛ(H) = (−1) l(H) .<br />

Figure 2.3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rim</strong> hook H <str<strong>on</strong>g>of</str<strong>on</strong>g> size 6 with l(H) = 2 and ɛ(H) =<br />

(−1) 2 = 1.


292 Jaejin Lee<br />

✉ ✉ ✉<br />

H =<br />

✉<br />

✉<br />

✉<br />

Figure 2.3<br />

Definiti<strong>on</strong> 2.7. A <strong>rim</strong> hook tableau T <str<strong>on</strong>g>of</str<strong>on</strong>g> shape λ is a partiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> λ into <strong>rim</strong> hooks. The type <str<strong>on</strong>g>of</str<strong>on</strong>g> T is type(T ) =<br />

(1 m 1<br />

, 2 m 2<br />

, . . . , n m n<br />

) where m k is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rim</strong> hooks in T <str<strong>on</strong>g>of</str<strong>on</strong>g> size<br />

k. We now define <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>rim</strong> hook tableau T as<br />

ɛ(T ) = ∏ H∈T<br />

ɛ(H).<br />

A <strong>rim</strong> hook tableau S is called <strong>special</strong> if each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rim</strong> hooks c<strong>on</strong>tains<br />

a cell from <str<strong>on</strong>g>the</str<strong>on</strong>g> first column <str<strong>on</strong>g>of</str<strong>on</strong>g> λ. We use nodes for <str<strong>on</strong>g>the</str<strong>on</strong>g> Ferrers diagram<br />

and c<strong>on</strong>nect <str<strong>on</strong>g>the</str<strong>on</strong>g>m if <str<strong>on</strong>g>the</str<strong>on</strong>g>y are adjacent in <str<strong>on</strong>g>the</str<strong>on</strong>g> same <strong>rim</strong> hook as S in<br />

Figure 2.4.<br />

T =<br />

1 1 1<br />

1 2 2<br />

2 2<br />

4<br />

3 3<br />

5<br />

S =<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉ ✉ ✉ ✉<br />

✉ ✉<br />

✉<br />

Figure 2.4<br />

In Figure 2.4, T is a <strong>rim</strong> hook tableau <str<strong>on</strong>g>of</str<strong>on</strong>g> shape (5, 4, 2, 1), type(T ) =<br />

(1 2 , 2, 4 2 ) and ɛ(T ) = (−1) 1 · (−1) 1 · (−1) 0 · (−1) 0 · (−1) 0 = 1, while S is<br />

a <strong>special</strong> <strong>rim</strong> hook tableau with shape (5, 3, 2, 1, 1), type(S) = (2, 4, 6)<br />

and ɛ(S) = (−1) 0 · (−1) 1 · (−1) 2 = −1.<br />

We can now state Eğecioğlu and Remmel’s interpretati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> entries<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> Kostka matrix.<br />

Theorem 2.8 (Eğecioğlu and Remmel[1]). The entries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse<br />

Kostka matrix are given by<br />

K −1<br />

µ,λ = ∑ S<br />

ɛ(S)


Generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>special</strong> <strong>rim</strong> hook tableaux 293<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> sum is over all <strong>special</strong> <strong>rim</strong> hook tableaux S with shape λ and<br />

type µ.<br />

3. Sagan and Lee’s <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g><br />

In this secti<strong>on</strong> we introduce Sagan and Lee’s <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>special</strong> <strong>rim</strong> hook tableaux. See [8] for details.<br />

Let S be a <strong>special</strong> <strong>rim</strong> hook tableau with t(S) = µ, and T be a<br />

standard Young tableau <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same shape as S, where µ is a partiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n. Sagan and Lee exhibited a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> I <strong>on</strong> such pairs<br />

(S, T ).<br />

If <str<strong>on</strong>g>the</str<strong>on</strong>g> cell <str<strong>on</strong>g>of</str<strong>on</strong>g> n in T corresp<strong>on</strong>ds to a hook <str<strong>on</strong>g>of</str<strong>on</strong>g> size <strong>on</strong>e in S, I can be<br />

clearly defined by inducti<strong>on</strong>. So for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> assume that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> cell c<strong>on</strong>taining n in T corresp<strong>on</strong>ds to a cell in a hook <str<strong>on</strong>g>of</str<strong>on</strong>g> at least two<br />

cells in S.<br />

To describe I under this assumpti<strong>on</strong>, a rooted Ferrers diagram is<br />

defined as a Ferrers diagram where <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nodes has been marked.<br />

Marked cell will be indicated in <str<strong>on</strong>g>the</str<strong>on</strong>g> figures by making <str<strong>on</strong>g>the</str<strong>on</strong>g> distinguished<br />

node a square.<br />

Now associate with any pair (S, T ) a rooted <strong>special</strong> <strong>rim</strong> hook tableau Ṡ<br />

by rooting S at <str<strong>on</strong>g>the</str<strong>on</strong>g> node where <str<strong>on</strong>g>the</str<strong>on</strong>g> entry n occurs in T . A <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g><br />

<str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> ι will be defined <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> set <str<strong>on</strong>g>of</str<strong>on</strong>g> rooted <strong>special</strong> <strong>rim</strong> hook tableaux<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> given type which are obtainable in this way. In additi<strong>on</strong>, ι will have<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> property that if ι(Ṡ) = Ṡ′ and Ṡ, Ṡ′ have roots r, r ′ respectively, <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

(1) sh(Ṡ) − r = sh(Ṡ′ ) − r ′<br />

where <str<strong>on</strong>g>the</str<strong>on</strong>g> minus <str<strong>on</strong>g>sign</str<strong>on</strong>g> represents set-<str<strong>on</strong>g>the</str<strong>on</strong>g>oretic difference <str<strong>on</strong>g>of</str<strong>on</strong>g> diagrams. The<br />

full <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> I(S, T ) = (S ′ , T ′ ) will <str<strong>on</strong>g>the</str<strong>on</strong>g>n be <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong><br />

(S, T ) −→ Ṡ<br />

ι<br />

−→ Ṡ′ −→ (S ′ , T ′ )<br />

where S ′ is obtained from Ṡ′ by forgetting about <str<strong>on</strong>g>the</str<strong>on</strong>g> root and T ′ is<br />

obtained by replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> root <str<strong>on</strong>g>of</str<strong>on</strong>g> Ṡ ′ by n and leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers<br />

1, 2, . . . , n − 1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> same positi<strong>on</strong>s as <str<strong>on</strong>g>the</str<strong>on</strong>g>y were in T . Note that (1)<br />

guarantees that T ′ is well defined. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, it is clear from c<strong>on</strong>structi<strong>on</strong><br />

that I will be a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> because ι is. Even though<br />

ι has not been fully defined, an example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> algorithm can<br />

be given as follows. See [8] for <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ι. Given (S, T ), Figure<br />

3.1 shows how a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> I works <strong>on</strong> (S, T ).


294 Jaejin Lee<br />

⎛ ✉ ✉ , 1 3 ⎞ ✉ ✉<br />

✉<br />

⎜<br />

⎝ ✉<br />

✉<br />

✉<br />

2<br />

4<br />

6<br />

5<br />

✉<br />

⎟<br />

⎠ −→ ✉<br />

✉<br />

ι<br />

−→<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

−→<br />

⎛<br />

⎝<br />

✉<br />

✉<br />

✉<br />

✉ , 1<br />

✉ 2<br />

✉ 4<br />

3 ⎞<br />

5 ⎠<br />

6<br />

Figure 3.1<br />

Theorem 3.1 (Sagan and Lee[8]). Let µ be a partiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n with<br />

µ ≠ 1 n . Let<br />

Γ = { (S, T ) | t(S) = µ, sh(S) = sh(T ) },<br />

where S is a <strong>special</strong> <strong>rim</strong> hook tableau and T is a standard Young tableau.<br />

Then I defined in <str<strong>on</strong>g>the</str<strong>on</strong>g> above gives a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> Γ.<br />

4. Generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sagan and Lee’s <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g><br />

In this secti<strong>on</strong> we generalize Sagan and Lee’s algorithm <strong>on</strong> <strong>special</strong> <strong>rim</strong><br />

hook tableaux to get a combinatorial partial pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> K −1 K = I.<br />

We first define a linear extensi<strong>on</strong> tableau e(T ) for a column strict<br />

tableau T .<br />

Definiti<strong>on</strong> 4.1. Let T be a column strict tableau. The linear extensi<strong>on</strong><br />

tableau e(T ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> standard Young tableau <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> same shape as T<br />

defined in <str<strong>on</strong>g>the</str<strong>on</strong>g> following way.<br />

(i) If T (i, j) < T (k, l), define e(T )(i, j) < e(T )(k, l).<br />

(ii) Assume T (i, j) = T (k, l). Define e(T )(i, j) < e(T )(k, l) if i < k or<br />

i = k, j < l.<br />

See Figure 4.1 for an example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> linear extensi<strong>on</strong> tableau e(T ) <str<strong>on</strong>g>of</str<strong>on</strong>g> T .<br />

1 1 2<br />

3 3<br />

1 2 3<br />

5 6<br />

T =<br />

2<br />

3<br />

4<br />

5<br />

5<br />

5<br />

e(T ) =<br />

4<br />

7<br />

8<br />

11<br />

9<br />

10<br />

6<br />

12<br />

Figure 4.1


Generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>special</strong> <strong>rim</strong> hook tableaux 295<br />

We are now ready to describe our main <str<strong>on</strong>g>the</str<strong>on</strong>g>orem.<br />

Theorem 4.2. Let µ and ν = (1 m 1<br />

, 2 m 2<br />

) be partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n. Then<br />

∑<br />

(2)<br />

ɛ(S) = δ µ,ν<br />

(S,T )<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> sum being all pairs (S, T ) where S is a <strong>special</strong> <strong>rim</strong> hook tableau with<br />

t(S) = µ and T is a column strict tableau <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tent (T ) = ν with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

same shape as S, and where δ µ,ν is <str<strong>on</strong>g>the</str<strong>on</strong>g> Kr<strong>on</strong>ecker’s delta.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>. We will prove this identity by exhibiting a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g><br />

I ∗ <strong>on</strong> such pairs (S, T ), where (S, T ) ≠ (S 0 , T 0 ). Here I is <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> defined in Secti<strong>on</strong> 3 and<br />

⎛<br />

✉<br />

✉<br />

(S 0 , T 0 ) =<br />

✉<br />

⎜ ✉<br />

⎝<br />

.<br />

✉<br />

.<br />

✉<br />

✉ , 1<br />

✉<br />

✉<br />

Figure 4.2<br />

1 ⎞<br />

2 2<br />

.<br />

k k<br />

k + 1<br />

k + 2 ⎟<br />

⎠<br />

.<br />

m<br />

Suppose first that <str<strong>on</strong>g>the</str<strong>on</strong>g> cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biggest entry m in T corresp<strong>on</strong>ds to<br />

a hook <str<strong>on</strong>g>of</str<strong>on</strong>g> size <strong>on</strong>e in S. Then since S is <strong>special</strong>, this cell is at <str<strong>on</strong>g>the</str<strong>on</strong>g> end<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first column. In this case, remove that cell from both S and T<br />

to form S and T respectively. Now we can assume, by inducti<strong>on</strong>, that<br />

I ∗ (S, T ) = (S ′ , T ′ ) has been defined. So let I ∗ (S, T ) = (S ′ , T ′ ) where S ′<br />

is S ′ with a hook <str<strong>on</strong>g>of</str<strong>on</strong>g> size 1 added to <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first column and T ′<br />

is T ′ with a cell labeled m added to <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first column. Clearly<br />

this will result in a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> as l<strong>on</strong>g as this was true for<br />

pairs with n − 1 cells. So for <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> this secti<strong>on</strong> we will also assume<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> cell c<strong>on</strong>taining <str<strong>on</strong>g>the</str<strong>on</strong>g> biggest entry in T corresp<strong>on</strong>ds to a cell in a<br />

hook <str<strong>on</strong>g>of</str<strong>on</strong>g> at least two cells in S.<br />

With <str<strong>on</strong>g>the</str<strong>on</strong>g>se assumpti<strong>on</strong>s let (S ′′ , T ′′ ) be <str<strong>on</strong>g>the</str<strong>on</strong>g> image <str<strong>on</strong>g>of</str<strong>on</strong>g> (S, e(T )) under<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> I, i.e., (S ′′ , T ′′ ) = I(S, e(T )). We divide into <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

two cases.


296 Jaejin Lee<br />

Case 1 If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a column strict tableau T ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tent ν such that e(T ′ ) =<br />

T ′′ , define I ∗ (S, T ) = (S ′ , T ′ ) with S ′ = S ′′ . See Figure 4.3.<br />

⎛<br />

✉<br />

✉<br />

(S, T ) = ⎜<br />

⎝ ✉<br />

✉<br />

✉ , 1<br />

✉<br />

2<br />

4<br />

6<br />

3 ⎞<br />

5<br />

⎟<br />

⎠<br />

Figure 4.3<br />

(S ′ , T ′ ) =<br />

⎛<br />

⎝<br />

✉<br />

✉<br />

✉<br />

✉ , 1<br />

✉<br />

✉<br />

2<br />

4<br />

3 ⎞<br />

5 ⎠<br />

Case 2 Assume now <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no column strict tableau T ′ <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tent ν such<br />

that e(T ′ ) = T ′′ . Under this assumpti<strong>on</strong> let b n−1 = (i, j) and<br />

b n = (k, l) be <str<strong>on</strong>g>the</str<strong>on</strong>g> cells in e(T ) whose entries are n − 1 and n,<br />

respectively.<br />

(2–a) If i < k, j ≠ l since <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no column strict tableau T ′<br />

such that e(T ′ ) = T ′′ . Let T 1 be <str<strong>on</strong>g>the</str<strong>on</strong>g> standard Young tableau<br />

obtained from e(T ) by exchanging entries n − 1 and n, and<br />

let (S 1 ′′ , T 1 ′′ ) = I(S, T 1 ). If T 1 ′ is <str<strong>on</strong>g>the</str<strong>on</strong>g> column strict tableau <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tent ν such that e(T 1) ′ = T 1 ′′ , define I ∗ (S, T ) = (S 1, ′ T 1) ′ with<br />

S 1 ′ = S 1 ′′ . See Figure 4.4.<br />

✉ ✉ ✉ 1 2 4 1 2 6 1 2 7<br />

S =<br />

✉<br />

✉<br />

✉<br />

✉<br />

T =<br />

S ′′<br />

1 = S ′ 1 =<br />

2<br />

3<br />

4<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

3<br />

e(T ) =<br />

T ′′<br />

1 =<br />

Figure 4.4<br />

3<br />

5<br />

7<br />

1<br />

3<br />

5<br />

6<br />

4<br />

2<br />

4<br />

7<br />

T ′ 1 =<br />

T 1 =<br />

(2–b) If i = k, <str<strong>on</strong>g>the</str<strong>on</strong>g>n l = j + 1 and <strong>on</strong>ly two cells b n−1 , b n are in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

last row <str<strong>on</strong>g>of</str<strong>on</strong>g> e(T ). Hence cells <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entries n − 1 and n in e(T )<br />

corresp<strong>on</strong>ds to a hook κ <str<strong>on</strong>g>of</str<strong>on</strong>g> size two which are in last row <str<strong>on</strong>g>of</str<strong>on</strong>g> S.<br />

See Figure 4.5. In this case, remove last hook κ from both S<br />

to form S, and remove two cells b n−1 , b n from e(T ) to form T .<br />

3<br />

5<br />

6<br />

1<br />

2<br />

3<br />

4<br />

6<br />

4<br />

2<br />

3<br />

4


Generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>special</strong> <strong>rim</strong> hook tableaux 297<br />

Let I(S, T ) = (S ′ , T ′ ). We define S 2 as S ′ with a hook <str<strong>on</strong>g>of</str<strong>on</strong>g> size 2<br />

added to <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first column, and define T 2 as T ′ with<br />

two cells labeled n − 1, n added to <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first column.<br />

Finally let I(S 2 , T 2 ) = (S 2 ′′ , T 2 ′′ ). If <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a column strict<br />

tableau T 2 ′ such that e(T 2) ′ = T 2 ′′ , define I ∗ (S, T ) = (S 2, ′ T 2)<br />

′<br />

with S 2 ′ = S ′′<br />

2 .<br />

S =<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

T =<br />

1<br />

2<br />

4<br />

1<br />

3<br />

4<br />

2<br />

3<br />

e(T ) =<br />

1<br />

4<br />

7<br />

2 3<br />

5 6<br />

8<br />

S =<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

1 2 3<br />

✉ ✉ ✉ ✉<br />

T = S ′ =<br />

4 5 6<br />

✉ ✉<br />

T ′ =<br />

1<br />

4 5<br />

2 3 6<br />

S 2 =<br />

✉ ✉ ✉ ✉<br />

✉ ✉<br />

✉<br />

✉<br />

T 2 =<br />

1<br />

4<br />

7<br />

8<br />

2<br />

5<br />

3 6<br />

S ′′<br />

2 = S ′ 2 =<br />

✉ ✉ ✉ ✉<br />

✉<br />

✉<br />

✉<br />

✉<br />

T ′′<br />

2 =<br />

1<br />

4<br />

7<br />

2<br />

5<br />

8<br />

3 6<br />

T ′ 2 =<br />

1<br />

2<br />

4<br />

1<br />

3<br />

4<br />

2 3<br />

Figure 4.5<br />

Clearly I ∗ is also a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> since I is a <str<strong>on</strong>g>sign</str<strong>on</strong>g> <str<strong>on</strong>g>reversing</str<strong>on</strong>g><br />

<str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g>. Hence all terms ɛ(S) in <str<strong>on</strong>g>the</str<strong>on</strong>g> summati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2) are cancelled<br />

out except ɛ(S 0 ), which is 1. This fact implies <str<strong>on</strong>g>the</str<strong>on</strong>g> identity in (2).


298 Jaejin Lee<br />

References<br />

[1] Ö. Eğecioğlu and J. Remmel, A combinatorial interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse<br />

Kostka matrix, Linear Multilinear Algebra 26(1990), 59–84.<br />

[2] W. Fult<strong>on</strong>, ”Young Tableaux”, L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Society Student Texts 35,<br />

Cambridge University Press, Cambridge, 1999.<br />

[3] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae,<br />

Adv. Math. 58 (1985), 300–321.<br />

[4] I. Gessel and G. Viennot, Determinants, paths, and plane partiti<strong>on</strong>s, in preparati<strong>on</strong>.<br />

[5] B. Lindström, On <str<strong>on</strong>g>the</str<strong>on</strong>g> vector representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> induced matroids, Bull. L<strong>on</strong>d.<br />

Math. Soc. 5 (1973), 85–90.<br />

[6] I. G. Macd<strong>on</strong>ald, Symmetric functi<strong>on</strong>s and Hall polynomials, 2nd editi<strong>on</strong>, Oxford<br />

University Press, Oxford, 1995.<br />

[7] B. Sagan, The Symmetric Group: Representati<strong>on</strong>s, Combinatorial Algorithms,<br />

and Symmetric Functi<strong>on</strong>s, 2nd editi<strong>on</strong>, Springer-Verlag, New York, 2001.<br />

[8] B. Sagan and Jaejin Lee, An algorithmic <str<strong>on</strong>g>sign</str<strong>on</strong>g>-<str<strong>on</strong>g>reversing</str<strong>on</strong>g> <str<strong>on</strong>g>involuti<strong>on</strong></str<strong>on</strong>g> for <strong>special</strong><br />

<strong>rim</strong>-hook tableaux, J. Algorithms 59(2006), 149–161.<br />

[9] R. P. Stanley, Enumerative Combinatorics, Volume 2, Cambridge University<br />

Press, Cambridge, 1999.<br />

[10] D. Stant<strong>on</strong> and D. White, A Schensted corresp<strong>on</strong>dence for <strong>rim</strong> hook tableaux, J.<br />

Combin. Theory Ser. A40 (1985), 211–247.<br />

[11] D. White, A bijecti<strong>on</strong> proving orthog<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> characters <str<strong>on</strong>g>of</str<strong>on</strong>g> S n , Adv. Math.<br />

50 (1983), 160–186.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics<br />

Hallym University<br />

Chunch<strong>on</strong> 200–702, Korea<br />

E-mail: jjlee@hallym.ac.kr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!