26.12.2014 Views

Numerical modelling of geothermal systems A short ... - Geo.X

Numerical modelling of geothermal systems A short ... - Geo.X

Numerical modelling of geothermal systems A short ... - Geo.X

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Numerical</strong> <strong>modelling</strong> <strong>of</strong> <strong>geothermal</strong><br />

<strong>systems</strong><br />

A <strong>short</strong> introduction<br />

Mauro Cacace<br />

Björn Onno Kaiser<br />

Yvonne Cherubini


Mathematical model<br />

Description (approximated) <strong>of</strong> a system using mathematical concepts<br />

Mathematical representation<br />

o<br />

o<br />

o<br />

o<br />

Variables<br />

Inputs<br />

Outputs<br />

Internal state<br />

Internal processes<br />

Mathematical equations<br />

Description <strong>of</strong> the<br />

interactions among these<br />

variables<br />

Conceptual model<br />

Analytical model<br />

<strong>Numerical</strong> model<br />

Homogeneous and simple (linear) processes Heterogenous, coupled (non-linear) processes<br />

<strong>Geo</strong>thermal Reservoirs<br />

Modelling


Conceptual model<br />

<strong>Numerical</strong> model<br />

Continuos<br />

PDEs<br />

∆f x, y, z = 0<br />

Discretization<br />

Linear Algebraic<br />

Systems<br />

A ij ∙ f i = 0<br />

<strong>Geo</strong>thermal Reservoirs<br />

Modelling


Finite Differences vs Finite Element<br />

o Linear approximations<br />

o Regular or pseudo-irregular<br />

supprting meshes (grids)<br />

o Simple geometries<br />

o Low computational efforts<br />

o Polynomial approximations<br />

(Weak solution)<br />

o Fully irregular supporting<br />

meshes<br />

o Complex geometries<br />

o High Computational efforts<br />

<strong>Geo</strong>thermal Reservoirs<br />

Modelling


Regionally localized geological setting where heat flow from the Earth‘s interior is<br />

transported close enough to the surface by circulating steam or hot water to be readily<br />

harnesed for use<br />

Heat<br />

Water<br />

Energy<br />

Working Fluid<br />

© 2000 <strong>Geo</strong>thermal Education Office<br />

Requirements<br />

Reservoir Permeable and porous rock bounded by impermeable formations<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


Reservoir <strong>systems</strong><br />

Engineering perspective<br />

Courtesy <strong>of</strong> Guido Blöcher GFZ Potsdam<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


Reservoir <strong>systems</strong><br />

Engineering perspective<br />

<strong>Geo</strong>thermal reservoir is …<br />

Heat<br />

and<br />

! PERMEABILITY, PERMEABILITY, PERMEABILITY !<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


Multiphysics <strong>systems</strong><br />

Reservoir <strong>systems</strong><br />

Modelling perspective<br />

Coupled Processes<br />

H<br />

T<br />

M<br />

C<br />

Hydraulic processes<br />

Fluid and two phase flow, heat and<br />

mass transport, fluid pressure changes<br />

Thermal<br />

Conductive and convective heat flux,<br />

internal heat production<br />

Mechanical<br />

Rock deformation, fracture initiation and<br />

propagation, thermo and poroelastic<br />

effects<br />

Chemical<br />

Chemical reactions, corrosion and<br />

scaling<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


H T M<br />

Processes<br />

Fluid or Two Phase<br />

Flow<br />

Permeability<br />

Heat flow<br />

Fracture & Fault<br />

Mechanics<br />

Poroelastics<br />

C<br />

Thermoelastics<br />

Chemical Reactions<br />

Corrosion & Scaling<br />

Natural<br />

Engineered<br />

Reservoir<br />

Components<br />

<strong>Geo</strong>logy<br />

Fault Systems<br />

Natural Fractures<br />

Completed wells<br />

Induced Fractures<br />

<strong>Geo</strong>thermal fluid<br />

loop<br />

Enhanced<br />

<strong>Geo</strong>thermal<br />

System<br />

Courtesy <strong>of</strong> Guido Blöcher GFZ Potsdam<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


H T M<br />

Processes<br />

Fluid or Two Phase<br />

Flow<br />

Permeability<br />

Heat flow<br />

Fracture & Fault<br />

Mechanics<br />

Poroelastics<br />

C<br />

Thermoelastics<br />

Chemical Reactions<br />

Corrosion & Scaling<br />

Natural<br />

Engineered<br />

Reservoir<br />

Components<br />

<strong>Geo</strong>logy<br />

Fault Systems<br />

Natural Fractures<br />

Completed wells<br />

Induced Fractures<br />

<strong>Geo</strong>thermal fluid<br />

loop<br />

Enhanced<br />

<strong>Geo</strong>thermal<br />

System<br />

Courtesy <strong>of</strong> Guido Blöcher GFZ Potsdam<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


Groß Schönebeck at a glance<br />

Hamburg<br />

Groß<br />

Schönebeck<br />

o<br />

Location<br />

approx. 40 km north <strong>of</strong> Berlin<br />

Hannover<br />

Berlin<br />

o<br />

Doublet system<br />

January 2007<br />

Köln<br />

o<br />

o<br />

o<br />

o<br />

Low-enthalpy Reservoir<br />

-3850 m to -4260 m<br />

Reservoir rocks Lower Permian<br />

Siliclastics and Volcanics<br />

Natural major fault zones<br />

NW-, and NNE-striking<br />

Hydraulically Induced fractures<br />

3 stimulation treatments<br />

Moeck et al. (2009)<br />

Groß Schönebeck <strong>Geo</strong>thermal Facility


Groß Schönebeck <strong>Geo</strong>thermal Facility


H T M<br />

Processes<br />

Fluid or Two Phase<br />

Flow<br />

Permeability<br />

Heat flow<br />

Fracture & Fault<br />

Mechanics<br />

Poroelastics<br />

C<br />

Thermoelastics<br />

Chemical Reactions<br />

Corrosion & Scaling<br />

Natural<br />

Engineered<br />

Reservoir<br />

Components<br />

<strong>Geo</strong>logy<br />

Fault Systems<br />

Natural Fractures<br />

Completed wells<br />

Induced Fractures<br />

<strong>Geo</strong>thermal fluid<br />

loop<br />

Enhanced<br />

<strong>Geo</strong>thermal<br />

System<br />

Courtesy <strong>of</strong> Guido Blöcher GFZ Potsdam<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Components


• <strong>Geo</strong>logical Units <br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Components


• <strong>Geo</strong>logical Units <br />

• Induced Fractures / Natural fault Systems <br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Components


• <strong>Geo</strong>logical Units <br />

• Induced Fractures / Natural fault Systems <br />

• Injection & Production Well <br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Components


H T M<br />

Processes<br />

Fluid or Two Phase<br />

Flow<br />

Permeability<br />

Heat flow<br />

Fracture & Fault<br />

Mechanics<br />

Poroelastics<br />

C<br />

Thermoelastics<br />

Chemical Reactions<br />

Corrosion & Scaling<br />

Natural<br />

Engineered<br />

Reservoir<br />

Components<br />

<strong>Geo</strong>logy<br />

Fault Systems<br />

Natural Fractures<br />

Completed wells<br />

Induced Fractures<br />

<strong>Geo</strong>thermal fluid<br />

loop<br />

Enhanced<br />

<strong>Geo</strong>thermal<br />

System<br />

Courtesy <strong>of</strong> Guido Blöcher GFZ Potsdam<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Fluid flow<br />

H T M<br />

C<br />

Darcy‘s<br />

Law<br />

v f = − k μ ∇ (p + ρgze z)<br />

v f = Darcy velocity m ∙ s −1<br />

k = permeability [m 2 ]<br />

μ = dynamic viscosity [Pa ∙ s]<br />

p = pressure [Pa]<br />

ρ = fluid density [kg ∙ m −3 ]<br />

g = acceleration coefficient [m ∙ s −2 ]<br />

z = reference height [m]<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Fluid flow<br />

H T M<br />

C<br />

Piezometric head [h]<br />

h ≝ z + p<br />

ρg<br />

Hydraulic conductivity [K]<br />

K ≝ (ρg) k μ<br />

v f = −K ∇ ∙ h = −K grad(h)<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Permeability – porous medium<br />

H T M<br />

C<br />

o Permeability in an intrinsic property <strong>of</strong> the porous medium<br />

o Measure the easiness <strong>of</strong> flow<br />

o Magnitude is controlled by the grain size (pore size)<br />

Hornberger et al. (1998)<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


Permeability – fractures<br />

H T M<br />

Formulas are analytical solutions and valid for laminar (Hagen Poiseuille or<br />

Couette) flow between two ideal plates without roughness<br />

C<br />

Fracture permeability<br />

Fracture conductivity<br />

k = a2<br />

12<br />

K = a2 ∙ ρ ∙ g<br />

12 ∙ μ<br />

<strong>Geo</strong>thermal Reservoirs<br />

Introduction


Fluid flow<br />

H T M<br />

C<br />

Balance equation<br />

S ∂h<br />

∂t = −∇ ρK∇h + Q = −∇ ρv f<br />

+ Q<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Fluid flow<br />

H T M<br />

C<br />

Balance equation<br />

S ∂h<br />

∂t = −∇ ρK∇h + Q = −∇ ρv f<br />

+ Q<br />

Specific Storativity<br />

Mass source term<br />

S = γ α + φ ∙ β<br />

γ = ρg = Specific weight <strong>of</strong> water [Nm −3 ]<br />

φ = Effective porosity [−]<br />

α = Bulk compressibility [m 2 N −1 ]<br />

β = Fluid compressibility [m 2 N −1 ]<br />

Darcy velocity<br />

v f = −K ∇ ∙ h<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Heat flow<br />

Conductive and convective<br />

H T M<br />

C<br />

[φ ρc p f<br />

+(1 − φ) ρc p S<br />

] ∂T<br />

∂t + ρc p f<br />

∇ ∙ v f T − ∇ ∙ φλ f + 1 − φ λ S ∇T = H Sf<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Heat flow<br />

Conductive and convective<br />

H T M<br />

C<br />

[φ ρc p f<br />

+(1 − φ) ρc p S<br />

] ∂T<br />

∂t + ρc p f<br />

∇ ∙ v f T − ∇ ∙ φλ f + 1 − φ λ S ∇T = H Sf<br />

Fourier‘s Law<br />

q = −λ ∙ ∇T<br />

q = heat flow density [W ∙ m −2 ]<br />

λ = heat conductivity W ∙ (m ∙ K) −1<br />

∇T = thermal gradient [K ∙ m −1 ]<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Heat flow<br />

Conductive and convective<br />

H T M<br />

C<br />

[φ ρc p f<br />

+(1 − φ) ρc p S<br />

] ∂T<br />

∂t + ρc p f<br />

∇ ∙ v f T − ∇ ∙ φλ f + 1 − φ λ S ∇T = H Sf<br />

Darcy‘s Law<br />

v f = −K ∇ ∙ h<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Fluid and Heat flow<br />

H T M<br />

C<br />

S ∂h<br />

∂t = −∇ ρv f<br />

+ Q<br />

[φ ρc p f<br />

+(1 − φ) ρc p S<br />

] ∂T<br />

∂t + ρc p f<br />

∇ ∙ v f T − ∇ ∙ φλ f + 1 − φ λ S ∇T = H Sf<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Fluid and Heat flow<br />

H T M<br />

C<br />

S ∂h<br />

∂t = −∇ ρv f<br />

+ Q<br />

v f = −K ∇ ∙ h<br />

[φ ρc p f<br />

+(1 − φ) ρc p S<br />

] ∂T<br />

∂t + ρc p f<br />

∇ ∙ v f T − ∇ ∙ φλ f + 1 − φ λ S ∇T = H Sf<br />

<strong>Geo</strong>thermal Reservoirs Modelling<br />

Processes


Boundary conditions<br />

1 st type (Dirichlet):<br />

• pressure (head), temperature,<br />

concentration<br />

2 nd type (Neumann):<br />

• flux<br />

3 rd type (Cauchy):<br />

• transfer<br />

4 th type (FeFlow):<br />

• well


Results – Step 1<br />

Natural flow field


Results – Step 2<br />

Doublet System (hydraulic)


Results – Step 3<br />

Doublet System (hydro-thermal)


Results – Step 4<br />

Doublet System with induced fractures

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!