26.12.2014 Views

Luminous Flux Calibration of LEDs at NIST - cie

Luminous Flux Calibration of LEDs at NIST - cie

Luminous Flux Calibration of LEDs at NIST - cie

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Abstract for the 2nd CIE Expert Symposium on LED Measurement<br />

arrangements remain the same as the normal<br />

configur<strong>at</strong>ion for calibr<strong>at</strong>ion <strong>of</strong> lamps. The test<br />

LED is measured using our detector-based<br />

method [2] in comparison with the beam flux<br />

introduced from the external source, which is<br />

approxim<strong>at</strong>ely 2 lm. In spite <strong>of</strong> the size <strong>of</strong> the<br />

sphere, we have enough signals for typical<br />

high-intensity <strong>LEDs</strong> having luminous flux <strong>of</strong> 0.1<br />

lm to 1 lm, in part to the high reflectance (~98<br />

%) <strong>of</strong> the co<strong>at</strong>ing. The photometer head is a<br />

temper<strong>at</strong>ure-monitored type with a built-in<br />

amplifier having gain ranges up to 10 9 V/A.<br />

The spectral mism<strong>at</strong>ch correction is applied by<br />

measuring the spectral power distribution <strong>of</strong><br />

each test LED and the total spectral Figure 2. The LED mount in the sphere.<br />

responsivity <strong>of</strong> the sphere system. The<br />

measurement uncertainty arising from the sp<strong>at</strong>ial nonuniformity <strong>of</strong> the sphere response<br />

has been analyzed for this particular sphere geometry using the measured sp<strong>at</strong>ial<br />

response distribution function (SRDF) and an LED model with a variable beam angles<br />

(Fig.3). Figure 4 shows the calcul<strong>at</strong>ed correction factors with respect to an isotropic<br />

point source, as a function <strong>of</strong> the LED beam angle. The measurement errors, if not<br />

corrected, are shown to be within 0.15 % for beam angles from 20° to 120° (Lambertian),<br />

which is taken into account in the uncertainty budget. The calibr<strong>at</strong>ion service for<br />

luminous flux <strong>of</strong> limited types <strong>of</strong> <strong>LEDs</strong> is now available <strong>at</strong> <strong>NIST</strong>. The expanded<br />

uncertainty (k=2) <strong>of</strong> the calibr<strong>at</strong>ion is from 0.6 % to 2 % depending on the color and<br />

other characteristics <strong>of</strong> the reference <strong>LEDs</strong>. A dedic<strong>at</strong>ed integr<strong>at</strong>ing sphere system for<br />

LED measurements and standard <strong>LEDs</strong> for luminous flux are to be developed.<br />

References<br />

[1] CIE Public<strong>at</strong>ion No. 127, Measurement <strong>of</strong> <strong>LEDs</strong> (1997).<br />

[2] Y. Ohno and Y. Zong, "Detector-Based Integr<strong>at</strong>ing Sphere Photometry,"<br />

Proceedings, 24 th Session <strong>of</strong> the CIE Vol. 1, Part 1, 155-160 (1999).<br />

[3] Y. Ohno and R. O. Daubach, “Integr<strong>at</strong>ing Sphere Simul<strong>at</strong>ion on Sp<strong>at</strong>ial<br />

Nonuniformity Errors in <strong>Luminous</strong> <strong>Flux</strong> Measurement”, J. IES, Winter 2001 issue (to<br />

be published).<br />

325 330335340345350355<br />

20°<br />

320<br />

0.8<br />

315 40°<br />

310<br />

305 60° 0.6<br />

300<br />

80°<br />

295<br />

0.4<br />

290 100°<br />

285<br />

280<br />

260<br />

255<br />

250<br />

245<br />

240<br />

235<br />

120°<br />

1<br />

0.2<br />

230<br />

225<br />

220<br />

215<br />

210<br />

205<br />

200<br />

195190185<br />

0<br />

0<br />

180<br />

5 10 15 20 25<br />

3035<br />

40<br />

45<br />

50<br />

130<br />

135<br />

140<br />

145<br />

150<br />

155<br />

160<br />

165<br />

175170<br />

55<br />

60<br />

65<br />

70<br />

75<br />

80<br />

85<br />

90<br />

95<br />

100<br />

105<br />

110<br />

115<br />

120<br />

125<br />

Figure 3. LED model <strong>of</strong> varied beam angle.<br />

Correction factor<br />

1.0015<br />

1.0010<br />

1.0005<br />

1.0000<br />

0.9995<br />

0.9990<br />

0.9985<br />

Series1<br />

0 30 60 90 120 150 180<br />

LED beam angle (degree) FWHM<br />

Figure 4. Correction factor for the sp<strong>at</strong>ial nonuniformity <strong>of</strong><br />

the sphere, for an LED model <strong>of</strong> varied beam angle.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!