27.12.2014 Views

Chapter 7: Properties of Real Gases

Chapter 7: Properties of Real Gases

Chapter 7: Properties of Real Gases

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Winter 2013<br />

Chem 254: Introductory Thermodynamics<br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> ............................................................................................. 83<br />

<strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> ........................................................................................................... 83<br />

Compression Factor Z ............................................................................................................... 86<br />

Law <strong>of</strong> Corresponding State ...................................................................................................... 86<br />

Fugacities (pure substances) ..................................................................................................... 87<br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong><br />

<strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong><br />

Ideal gases:<br />

- molecules have no intrinsic volume<br />

- molecules do not interact<br />

This works pretty well at :<br />

- Low pressures<br />

- Low densities<br />

- High temperature (kinetic energy dominates)<br />

n RT PV for each component in gas<br />

i<br />

i<br />

n RT P V<br />

total<br />

P x P<br />

i i total<br />

total<br />

established experimentally<br />

Today we derive this from statistical mechanics (particle in<br />

box)<br />

Very complicated to solve QM + Stats mech<br />

experimentalist uses empirical laws<br />

Van der Waals:<br />

nRT n<br />

P a<br />

V nb V<br />

2<br />

2<br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> 83


Winter 2013<br />

Chem 254: Introductory Thermodynamics<br />

Redlich-Kwong:<br />

Virial equation <strong>of</strong> State (systematic)<br />

2<br />

nRT n a 1<br />

P V nb T V nb<br />

1 B( T) C( T)<br />

<br />

P RT ....<br />

V<br />

2 <br />

m V<br />

m V<br />

m <br />

BT ( ): power series in T<br />

<br />

<br />

V<br />

m<br />

V<br />

<br />

n<br />

for a range <strong>of</strong> volumes (condensation), pressure is<br />

the same<br />

no way to fit against analytical function<br />

Ideal gas: cannot capture gas liquid transition<br />

Van der Waals<br />

nRT n<br />

P a<br />

V nb V<br />

2<br />

2<br />

2 2 2<br />

<br />

P V nb V nRTV an V nb<br />

3 2 2 2 2<br />

PV PnbV nRTV an V an b 0<br />

solve cubic equation for V :<br />

x<br />

<br />

x x 1 2 0 x 0,1, 2<br />

<br />

<br />

2<br />

x x 1 0 x 0,<br />

i;<br />

2<br />

i <br />

1<br />

From VDW cubic solution construct the<br />

flat region <strong>of</strong> graph<br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> 84


Winter 2013<br />

Chem 254: Introductory Thermodynamics<br />

T c<br />

at which<br />

P<br />

<br />

P<br />

<br />

V<br />

<br />

<br />

Tc<br />

2<br />

0<br />

2 <br />

V<br />

Tc<br />

Do the calculation:<br />

8a<br />

Tc<br />

ab , are VDW parameters<br />

27Rb<br />

a<br />

Pc<br />

<br />

2<br />

27b<br />

V b<br />

mc ,<br />

3<br />

What if T<br />

T <br />

c<br />

Increase density, but all in one supercritical<br />

phase (no phase transition)<br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> 85


Winter 2013<br />

Chem 254: Introductory Thermodynamics<br />

Compression Factor Z<br />

V PV<br />

Z <br />

V RT<br />

actual<br />

m<br />

ideal<br />

m<br />

V<br />

Vm<br />

<br />

n<br />

ideal RT<br />

Vm<br />

<br />

P<br />

Z : tabulated for many gases<br />

m<br />

Low T , low P , Z 1,<br />

V<br />

m<br />

V<br />

High T , (very) high P , Z 1,<br />

ideal<br />

m<br />

V<br />

m<br />

attraction dominates<br />

V<br />

ideal<br />

m<br />

finite volume term dominates<br />

Law <strong>of</strong> Corresponding State<br />

-reduced, dimensionless variables<br />

T<br />

r<br />

T<br />

, Pr<br />

T<br />

c<br />

P<br />

, V<br />

,<br />

P<br />

c<br />

mr<br />

V<br />

<br />

V<br />

m<br />

mc ,<br />

T , P , V<br />

c c m,<br />

c<br />

= parameters for specific gas<br />

Van der Waals has a unique form:<br />

T<br />

c<br />

8T<br />

3<br />

Pr<br />

<br />

3V<br />

1<br />

r<br />

2<br />

mr ,<br />

Vmr<br />

,<br />

same for every gas<br />

8a<br />

a<br />

, Pc<br />

, V<br />

2 mc ,<br />

3b<br />

ab , = VDW parameters<br />

27Rb<br />

27b<br />

actual<br />

Vm<br />

For any gas: Plot Z vs T ,<br />

ideal r<br />

P<br />

r<br />

V<br />

c<br />

c<br />

m<br />

virtually the same plot for any gas (not exactly)<br />

know T , P for gas, use numerical curve to get V<br />

mr ,<br />

(figure 7.8 in book)<br />

Example:<br />

1.00 kg <strong>of</strong> CH4<br />

at T 200 K, P 68 , V <br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> 86


Winter 2013<br />

Chem 254: Introductory Thermodynamics<br />

1 kg<br />

16.09 10 kg mol<br />

n <br />

3 1<br />

ideal nRT<br />

Vm<br />

17.52 L<br />

P<br />

Table 7.2 in book CH<br />

4<br />

Tc<br />

190.56 K , Pc<br />

45.99 bar<br />

T<br />

r<br />

T<br />

P<br />

1.21 Pr<br />

1.48<br />

T<br />

P<br />

c<br />

look at figure 7.8 <br />

c<br />

Z T , P 0.63<br />

ideal<br />

V ZV m<br />

0.6317.52 L 11.04 L<br />

r<br />

r<br />

Two gases with the same T , P have the same V<br />

,<br />

r<br />

r<br />

mr<br />

Fugacities (pure substances)<br />

o<br />

For ideal gases <br />

P <br />

T, P T RT<br />

ln , where<br />

Po<br />

<br />

substance at pressure P<br />

o<br />

= 1bar. This is not really correct<br />

o<br />

is for the pure<br />

<strong>Real</strong> gases<br />

Pf<br />

Pi<br />

d V dP (constant T )<br />

m<br />

ideal RT<br />

Vm<br />

<br />

P<br />

RT<br />

d dP<br />

P<br />

P P <br />

d<br />

RT dP RT ln <br />

Po<br />

Po<br />

<br />

<br />

V<br />

m<br />

ZV<br />

ideal<br />

m<br />

ideal<br />

V Z 1 V<br />

m<br />

<br />

<br />

ideal<br />

m<br />

RT RT<br />

Z<br />

1<br />

P P<br />

dP<br />

RT<br />

d VmdP RT RT Z 1<br />

dP<br />

P<br />

P<br />

Pf<br />

P P P<br />

<br />

Pi Po Po Po<br />

P <br />

RT ln RT<br />

ln <br />

Po<br />

<br />

= fugacity coefficient (calculated from integral)<br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> 87


Winter 2013<br />

Chem 254: Introductory Thermodynamics<br />

Fugacity: f P<br />

f is like pressure, correction for non ideal gas behavior<br />

<br />

P <br />

T, P T, Po<br />

RT<br />

ln <br />

Po<br />

<br />

f <br />

T, Po<br />

RT<br />

ln <br />

Po<br />

<br />

Back to chemical equilibrium<br />

G<br />

<br />

<br />

<br />

<br />

TP ,<br />

<br />

<br />

<br />

T,<br />

P<br />

i<br />

i<br />

o<br />

f <br />

i<br />

rGT<br />

RT ln <br />

Po<br />

<br />

o<br />

0 G RT ln K<br />

r T f<br />

o<br />

f <br />

i<br />

rGT<br />

RT ln<br />

<br />

Po<br />

<br />

o<br />

<br />

P <br />

i<br />

rGT<br />

RT ln <br />

Po<br />

<br />

<br />

<br />

<br />

i<br />

K<br />

f<br />

<br />

i<br />

<br />

i<br />

K<br />

P<br />

i<br />

o<br />

P <br />

i<br />

o<br />

P <br />

i<br />

i<br />

rGT RT ln rGT<br />

RT ln<br />

RT ln<br />

<br />

Po<br />

Po<br />

<br />

i<br />

o<br />

P <br />

rGT RT ln RT ln RT ln xi<br />

Po<br />

<br />

<br />

<br />

i<br />

i<br />

<br />

K<br />

x<br />

K<br />

K<br />

<br />

i<br />

f<br />

Kp <br />

i<br />

<br />

ngas<br />

<br />

i<br />

P <br />

f<br />

Kx <br />

<br />

i <br />

Po<br />

<br />

<br />

<br />

i<br />

o<br />

RT ln K G Where<br />

f r T<br />

G is found from G f<br />

r<br />

o<br />

T<br />

<strong>Chapter</strong> 7: <strong>Properties</strong> <strong>of</strong> <strong>Real</strong> <strong>Gases</strong> 88

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!