28.12.2014 Views

Solutions to Final Examination

Solutions to Final Examination

Solutions to Final Examination

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EE32a Signals, Systems, and Transforms<br />

December 15, 2001<br />

<strong>Final</strong> <strong>Examination</strong> — <strong>Solutions</strong><br />

R. J. McEliece<br />

162 Moore<br />

Problem 1. (Graded by Muhammed) The first step is <strong>to</strong> decompose X(s) in<strong>to</strong> partial<br />

fractions:<br />

s − 1<br />

(s + 2)(s + 3)(s 2 + s +1) = −1<br />

s +2 + 4/7 (3s +1)/7<br />

+<br />

s +3 s 2 + s +1<br />

= X 1 (s)+X 2 (s)+X 3 (s).<br />

Note that the poles of X(s) are at s = −2, −3, and −1/2 ± j √ 3/2.<br />

The inverse Laplace transforms of X 1 (s), X 2 (s), and X 3 (s) are<br />

{<br />

x<br />

R<br />

x 1 (t) = 1 (t) =−e −2t u(t) Re(s) > −2<br />

x L 1 (t) =e −2t u(−t) Re(s) < −2<br />

{<br />

x<br />

R<br />

x 2 (t) = 2 (t) =(4/7)e −3t u(t) Re(s) > −3<br />

x L 2 (t) =−(4/7)e −3t u(−t) Re(s) > −3<br />

(<br />

x<br />

R<br />

x 3 (t) ={<br />

3 (t) = 1 7 3e −t/2 cos( √ 3t/2) − (1/ √ 3)e −t/2 sin( √ 3t/2) ) u(t) Re(s) > −1/2<br />

(<br />

x L 3 (t) =− 1 7 3e −t/2 cos( √ 3t/2) − (1/ √ 3)e −t/2 sin( √ 3t/2) ) u(−t) Re(s) < −1/2<br />

.<br />

The four inverse Laplace transforms of the original X(s) are then<br />

Re(s) < −3 :x L 1 (t)+x L 2 (t)+x L 3 (t)<br />

−3 < Re(s) < −2 :x L 1 (t)+x R 2 (t)+x L 3 (t)<br />

−2 < Re(s) < −1/2 :x R 1 (t)+x R 2 (t)+x L 3 (t)<br />

Re(s) > −1/2 :x R 1 (t)+x R 2 (t)+x R 3 (t)<br />

-2 -1.5 -1<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

x(t), Re(s) < −3.<br />

1


6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

-1 -0.5 0.5 1<br />

x(t), −3 < Re(s) < −2.<br />

2<br />

-8 -6 -4 2<br />

-2<br />

-4<br />

-6<br />

x(t), −2 < Re(s) < −1/2.<br />

2


0.04<br />

0.02<br />

-0.02<br />

2 4 6 8 10<br />

-0.04<br />

-0.06<br />

-0.08<br />

x(t), Re(s) > −1/2.<br />

3


Problem 2. (Graded by all.)<br />

(a) Use the fact that Re x(t) =(x(t)+x ∗ (t))/2, and entry 4.3.3 in Table 4.1, p. 328:<br />

Re x(t) ←→ F X(jΩ) + X∗ (−jΩ)<br />

.<br />

2<br />

(b) Using entries 4.3.3 and 4.3.5 in Table 4.1 :<br />

x ∗ (−t) F<br />

←→X ∗ (jΩ).<br />

(c) Using the given decomposition and entry 4.3.5 in Table 4.1 :<br />

Ev x(t) ←→ F X(jΩ) + X(−jΩ)<br />

.<br />

2<br />

4


Problem 3. (Graded by RJM) The key <strong>to</strong> this problem is <strong>to</strong> use z-transforms. Indeed, if<br />

g[n] ∗ g[n] =h[n], we have<br />

G(z) 2 = H(z).<br />

Thus if g[n] isaconvolution square root of h[n], we have<br />

G(z) =± √ H(z).<br />

(a) Here H(z) =1+2z −1 + z −2 =(1+z −1 ) 2 ,soG(z) =±(1 + z −1 ) 2 . Ignoring the<br />

possible minus sign, we have<br />

{ 1 if n =0orn =1<br />

g[n] =<br />

0 otherwise.<br />

(b) Here we have<br />

H(z) = ∑ n≥0(n +1)z −n =<br />

1<br />

(1 − z −1 ) 2 .<br />

Thus G(z) =1/(1 − z −1 ), so that (again ignoring the possible minus sign)<br />

h[n] =u[n].<br />

(c) Here H(z) = ∑ n≥0 z−1 =1/(1 − z −1 ), so that G(z) =(1− z −1 ) −1/2 . But as we<br />

discussed in class on Nov. 9, we can apply the binomial theorem, even when the exponent<br />

is negative, so that<br />

g(z) =(1− z −1 ) −1/2 = ∑ ( ) −1/2<br />

(−1) n z −n .<br />

n<br />

n≥0<br />

Thus<br />

( ) −1/2<br />

g[n] =(−1) n u[n].<br />

n<br />

This expression can be simplified considerably.:<br />

(−1) n ( −1/2<br />

n<br />

Thus g[0] = 1, and for n ≥ 1,<br />

)<br />

=(−1) n · (− 1 2 )(− 3 2n−1<br />

2<br />

) ···(−<br />

2<br />

)<br />

1 · 2 ···n<br />

=( 1 2 ) · (3 4 ) ···(2n − 1<br />

2n ).<br />

n∏<br />

(<br />

g[n] = 1 − 1 )<br />

.<br />

2k<br />

k=1<br />

For example g[1] = 1/2, g[2] = 3/8, g[3] = 5/16, etc.<br />

Notess: A few studeents used Mathematica <strong>to</strong> find the inverse z-transform of G(z), and<br />

obtained the remarkable expression<br />

Γ(n +1/2)<br />

g[n] =<br />

Γ(n +1) √ π .<br />

I reluctantly accepted this formula. Also, some students found a recursive method for<br />

computing the sequence of g[n]’s. I <strong>to</strong>ok off 2.5 points for this approach.<br />

5


Problem 4. (Graded by Donald) This system in the serial iterconnection of two simpler<br />

systems, with systems functions (obtained by “inspection,” perhaps)<br />

H 1 (D) = 1 − 1 2 D<br />

1 − 1 3 D<br />

H 2 (D) =<br />

1<br />

4 + D<br />

1+ 1 2 D ,<br />

where I have substituted the delay opera<strong>to</strong>r D for the cumbersome z −1 . Thsu the overall<br />

system function is<br />

1<br />

4<br />

H(D) =H 1 (D)H 2 (D) =<br />

+ 7 8 D − 1 2 D2<br />

1+ 1 6 D − 1 .<br />

6 D2<br />

from this we can read off the difference equation. It is<br />

(a) y[n]+ 1 6 y[n − 1] − 1 6 y[n − 2] = 1 4 x[n]+7 8 x[n − 1] − 1 x[n − 2].<br />

2<br />

Of course the frequency responce is just the systems function evaluated at z = e jΩ :<br />

(b) H(e jΩ )=<br />

1<br />

4 + 7 8 e−jΩ − 1 2 e−2jΩ<br />

1+ 1 6 e−jΩ − 1 6 e−2jΩ .<br />

<strong>Final</strong>ly, <strong>to</strong> obtain the impulse response, we first decompose the expression for H(z) in<strong>to</strong><br />

partial fractions:<br />

13<br />

21<br />

20<br />

H(D) =3−<br />

1 − 1 3 D − 10<br />

1+ 1 2 D .<br />

The impulse response h[n] isjust the coefficient of D n in the expansion of H(D) asapower<br />

series in D, and so:<br />

(c) h[n] =3δ[n] − 13<br />

20 (1 3 )n − 21<br />

10 (−1 2 )n ,<br />

for n ≥ 0.<br />

6


Problem 5. (Graded by Cedric)<br />

(a) The easy way <strong>to</strong> do this problem is <strong>to</strong> observe that “the triangle is the convolution<br />

of the box with itself,” i.e.,<br />

x(t) =y(t) ∗ y(t),<br />

where<br />

y(t) =<br />

{<br />

1 if |t| ≤1/2<br />

0 if |t| > 1/2.<br />

Using the result of Example 4.4 (or Table 4.2), we have<br />

Y (jω)=2<br />

sin ω/2<br />

,<br />

ω<br />

so that<br />

X(jω)=Y (jω) 2 =4 sin2 ω/2<br />

ω 2 .<br />

(b)<br />

1<br />

-5 -4 -3 -2 --1 1 2 3 4<br />

Sketch of x(t) ∗ ∑ +∞<br />

k=−∞<br />

δ(t − 4k).<br />

(c) Here are two such g(t)’s (there are infinitely many more):<br />

7


1<br />

-5 -4 -3 -2 --1 0 1 2 3 4<br />

1<br />

-5 -4 -3 -2 --1 0 1 2 3 4<br />

8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!