28.12.2014 Views

The Underground Laboratory at Boulby: An opportunity for Nuclear ...

The Underground Laboratory at Boulby: An opportunity for Nuclear ...

The Underground Laboratory at Boulby: An opportunity for Nuclear ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Underground</strong> <strong>Labor<strong>at</strong>ory</strong> <strong>at</strong> <strong>Boulby</strong>:<br />

<strong>An</strong> <strong>opportunity</strong> <strong>for</strong> <strong>Nuclear</strong> Astrophysics<br />

Marialuisa Aliotta<br />

School of Physics and Astronomy - University of Edinburgh<br />

Scottish Universities Physics Alliance<br />

<strong>Boulby</strong> mine<br />

ELENA project<br />

a virtual tour<br />

overview<br />

opportunities <strong>for</strong> NA community<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


Scientific motiv<strong>at</strong>ion: why underground<br />

<strong>The</strong>rmonuclear Reactions in Stars<br />

take place <strong>at</strong> very low interaction energies (keV)<br />

quantum tunnelling<br />

rare processes small cross sections<br />

(10 -18 barn < σ < 10 -9 barn)<br />

<strong>The</strong>rmonuclear Reactions in the <strong>Labor<strong>at</strong>ory</strong><br />

small cross sections low yields poor signal-to-noise r<strong>at</strong>io<br />

extremely difficult to measure<br />

typical approach: measure cross section<br />

to lowest possible energies<br />

then extrapol<strong>at</strong>e


<strong>Labor<strong>at</strong>ory</strong> measurements<br />

Yield = N projectiles<br />

x N target<br />

x cross section x detection efficiency<br />

maximising the yield requires:<br />

improving “signal” (e.g. high beam currents, high target density, high efficiency)<br />

reducing “noise” (i.e. background)<br />

combin<strong>at</strong>ion of both<br />

Main Sources of Background:<br />

n<strong>at</strong>ural radioactivity (mainly U and Th)<br />

neutrons from (a,n) reactions and fission<br />

cosmic rays<br />

ideal loc<strong>at</strong>ion:<br />

underground + low concentr<strong>at</strong>ion of U and Th


<strong>The</strong><br />

<strong>Boulby</strong> Mine<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


<strong>Boulby</strong> Mine<br />

<br />

<br />

<br />

commercial potash and salt mine<br />

Cleveland Potash Ltd<br />

deepest mine in Britain<br />

(850m to 1.3km deep)<br />

Peterlee<br />

Hartlepool<br />

Middlesborough<br />

Newton Aycliffe<br />

Redcar<br />

Inverness<br />

Darlington<br />

Billingham<br />

StocktonMiddlesbrough<br />

Staithes<br />

Edinburgh<br />

Whitby<br />

Belfast<br />

Newcastle<br />

York<br />

Dublin<br />

Liverpool<br />

Birmingham<br />

London<br />

Plymouth<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


Proximity of services<br />

Newcastle<br />

Edinburgh<br />

Whitby<br />

York<br />

Manchester<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


<strong>The</strong> Mine:<br />

<strong>Underground</strong> facility:<br />

roadways & cavern excav<strong>at</strong>ed<br />

in potash & rock salt layer<br />

over 40kms of tunnel dug<br />

each year (now > 1000kms in total)<br />

1000m 2 lab space, workshops, cranes,<br />

power, communic<strong>at</strong>ions, air conditioning<br />

& filtr<strong>at</strong>ion<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


Surface facilities<br />

<strong>The</strong> John Barton Building<br />

Surface facilities<br />

~200m 2 : admin & support facility<br />

office space - computing<br />

facilities – workshop - loading<br />

bay – showers – kitchen – laundry<br />

- conference room - remote<br />

monitoring of underground<br />

courtesy: S. Paling


CPL support & services<br />

Cleveland Potash Facilities<br />

Shaft and Tunnel Maintenance<br />

Ventil<strong>at</strong>ion<br />

Health and Safety<br />

Emergency rescue<br />

Surface & <strong>Underground</strong> transport<br />

Mechanical / Electrical workshops<br />

Clean rooms<br />

Chemical handling facilities<br />

Electrical Supply


Why <strong>Boulby</strong><br />

why is <strong>Boulby</strong> ideal <strong>for</strong> <strong>Nuclear</strong> Astrophysics<br />

deep mine 1100 m (2800 m.w.e.)<br />

salt environment low in U/Th<br />

no space constraints<br />

easy access <strong>for</strong> equipment<br />

mine management support<br />

~10 6 reduction in CR<br />

+ uni<strong>for</strong>m shielding<br />

lower n- and γ-background<br />

no interference issues<br />

vertical shafts<br />

+ underground transport<br />

infrastructure & services<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


Background comparison<br />

10000<br />

1000<br />

100<br />

γ-ray background comparison<br />

Gran Sasso<br />

<strong>Boulby</strong> surface lab<br />

surface Gran Sasso<br />

<strong>Boulby</strong><br />

counts /h/keV<br />

10<br />

1<br />

0.1<br />

0.01<br />

5-30x lower<br />

(lower U & Th)<br />

10 2 -10 3 x lower<br />

1E-3<br />

1000 2000 3000 4000 5000 6000 7000 8000<br />

E γ<br />

[keV]<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


<strong>The</strong> Physics


key open questions<br />

f<strong>at</strong>e of massive stars (supernovae explosions)<br />

carbon burning [ 12 C+ 12 C] in advanced stages of stellar evolution<br />

Crab Nebula SN 1054<br />

where and how are heavy elements produced<br />

neutron sources [ 13 C(α,n) 16 O and 22 Ne(α,n) 26 Mg] <strong>for</strong> s-process<br />

AGB stars nucleosynthesis, Novae ejecta, Galaxy composition<br />

Ne, Na, Mg and Al nucleosynthesis [(p,γ) and (p,α) reactions]


L<strong>at</strong>e stages of stellar evolution<br />

12<br />

C+ 12 C<br />

importance:<br />

astrophysical energy:<br />

minimum measured E:<br />

evolution of massive stars<br />

1 – 3 MeV<br />

2.1 MeV (by γ-ray spectroscopy)<br />

Crab Nebula SN 1054<br />

Strieder, J. Phys. G35 (2008) 14009<br />

extrapol<strong>at</strong>ions differ by<br />

3 orders of magnitude<br />

10 18 Spillane et al.<br />

Aguilera et al.<br />

Becker et al.<br />

High and Cujec<br />

P<strong>at</strong>terson et al.<br />

10 17<br />

Jiang et al.<br />

Gasques et al.<br />

Caughlan and Fowler<br />

PA<br />

KNS<br />

large uncertainties<br />

in astrophysical models<br />

of stellar evolution<br />

and nucleosynthesis<br />

[MeV b]<br />

S * tot<br />

10 16<br />

10 15<br />

10 14<br />

1 2 3 4 5 6 7 8<br />

E cm<br />

[MeV]


wh<strong>at</strong> improvements <strong>at</strong> <strong>Boulby</strong><br />

exploit lower γ-ray background γ-ray measurements<br />

12 C+ 12 C p + 23 Na * 23 Na + γ E γ = 440 keV<br />

α + 20 Ne * 20 Ne + γ<br />

E γ = 1.63 MeV<br />

expected background <strong>at</strong> least 100x lower than on surface<br />

lowest energy achievable E cm<br />

~1.5 MeV<br />

gre<strong>at</strong>ly improved precision (~ 10-15%, i.e. 10x lower than present)<br />

astrophysical impact<br />

constrain/discrimin<strong>at</strong>e between extrapol<strong>at</strong>ions<br />

determine ignition temper<strong>at</strong>ure <strong>for</strong> 12 C+ 12 C fusion<br />

show if lower-mass stars end up as supernovae<br />

solve current discrepancy on mass estim<strong>at</strong>es of SN progenitors


Neutron sources <strong>for</strong> heavy elements<br />

13<br />

C(α,n) 16 O<br />

importance:<br />

neutron source <strong>for</strong> s-process in AGB stars<br />

astrophysical energies: 130 - 250 keV<br />

minimum measured E: 270 keV<br />

(s-process = slow neutron-capture <strong>for</strong> heavy elements nucleosynthesis)<br />

current st<strong>at</strong>us<br />

improvements <strong>at</strong> <strong>Boulby</strong><br />

neutron detection<br />

expected n-background ~ 50x lower<br />

lowest energy achievable E cm ~200 keV<br />

gre<strong>at</strong>ly improved precision (~15%)<br />

astrophysical impact<br />

neutron density <strong>for</strong> s-process<br />

nucleosynthesis p<strong>at</strong>hs & abundances<br />

options <strong>for</strong> improvements of surface measurements: exhausted


Neutron sources <strong>for</strong> heavy elements<br />

22<br />

Ne(α,n) 25 Mg<br />

current st<strong>at</strong>us<br />

importance:<br />

astrophysical energies:<br />

minimum measured E:<br />

s-process in AGB stars<br />

400 - 700 keV<br />

~550 keV<br />

improvements <strong>at</strong> <strong>Boulby</strong><br />

neutron detection<br />

upper limits<br />

increased sensitivity ~ 100x<br />

lowest energy achievable E cm ~ 537 keV<br />

gre<strong>at</strong>ly improved precision (~ 15%)<br />

astrophysical implic<strong>at</strong>ions<br />

alter nucleosynthesis p<strong>at</strong>hs<br />

change elemental abundances<br />

options <strong>for</strong> improvements of surface measurements: exhausted


Other examples<br />

abundances of Ne, Na, Mg, Al, … in AGB stars and nova ejecta<br />

affected by many (p,γ) and (p,α) reactions<br />

shaded areas indic<strong>at</strong>e order of magnitude(s) uncertainties<br />

Iliadis et al. ApJ S134 (2001) 151; S142 (2002) 105; Izzard et al A&A (2007)<br />

!! underground measurements are necessary !!


AGB Stars’ nucleosynthesis<br />

Current Uncertainties<br />

r<strong>at</strong>e change implic<strong>at</strong>ions:<br />

conversion of 22 Ne to 23 Na (up to a factor ~40)<br />

factor 2 uncertainty in 26 Al abundance<br />

20% vari<strong>at</strong>ion in abundances of most isotopes


<strong>The</strong> Project<br />

Experimental Low-Energy <strong>Nuclear</strong> Astrophysics<br />

European <strong>Labor<strong>at</strong>ory</strong> <strong>for</strong> Experimental <strong>Nuclear</strong> Astrophysics<br />

CANFRANC Workshop – Barcelona, 19-20 th February 2009


Overview<br />

<strong>The</strong> ELENA Project<br />

Stage I: Feasibility Study & Design<br />

(dur<strong>at</strong>ion: 24 months, cost: £410k)<br />

neutron & γ-ray background measurements <strong>at</strong> <strong>Boulby</strong><br />

infrastructure design (by engineering company)<br />

acceler<strong>at</strong>or and beam tests<br />

Stage II: Construction, Commissioning, Exploit<strong>at</strong>ion<br />

(dur<strong>at</strong>ion: ~24 months (C,C) + 60 months (E); cost: ~ £6M)<br />

construction of labor<strong>at</strong>ory infrastructure<br />

commissioning of acceler<strong>at</strong>or + ion source facility<br />

initial scientific exploit<strong>at</strong>ion (5 years)


ELENA - Stage I<br />

Feasibility Study and Design<br />

PI: Marialuisa Aliotta* University of Edinburgh UK<br />

Co-I: Wilfried Galster* University of Str<strong>at</strong>hclyde UK<br />

Co-I: Sean Paling $ University of Sheffield UK<br />

Frank Strieder* $ Ruhr-Universität Bochum Germany<br />

Lucio Gialanella* INFN, Naples Italy<br />

Cristina Bordeanu* HH-NIPNE<br />

Romania<br />

Nigel Smith $ Ruther<strong>for</strong>d Appleton Lab UK<br />

David Pybus Cleveland Potash Ltd, <strong>Boulby</strong> UK<br />

PDRA* $ University of Edinburgh UK<br />

(*) expertise in <strong>Nuclear</strong> Astrophysics<br />

($) expertise in <strong>Underground</strong> Science<br />

+ strong support from RAL & CPL


Work Breakdown Structure<br />

ELENA-I Workpackages<br />

WP1: Background measurements<br />

WP2: Acceler<strong>at</strong>or & ion source tests<br />

WP3: Scientific equipment & requirements<br />

WP4: <strong>Labor<strong>at</strong>ory</strong> design<br />

WP5: Health & Safety<br />

identific<strong>at</strong>ion of site <strong>for</strong> infrastructure<br />

Overall Objectives<br />

acceler<strong>at</strong>or specific<strong>at</strong>ions<br />

experimental requirements<br />

labor<strong>at</strong>ory design and specific<strong>at</strong>ions<br />

total cost and timescale estim<strong>at</strong>es<br />

Intern<strong>at</strong>ional Workshop to establish financial/scientific contributions<br />

to “ELENA – Stage II” from (inter)n<strong>at</strong>ional NA community


Wh<strong>at</strong> facility<br />

the acceler<strong>at</strong>or<br />

expected beams currents<br />

Ion (charge st<strong>at</strong>e)<br />

Particles per second<br />

H +<br />

He + 5.0x10 14<br />

5.0x10 13<br />

Xe 17+ 2.9x10 12<br />

Kr 15+ 4.1x10 11<br />

Ar 11+ 5.6x10 11<br />

Ne 6+ 1.0x10 12<br />

Fe 11+ 5.7x10 11 (estim<strong>at</strong>ed)<br />

Ni 11+<br />

5.7x10 11 (estim<strong>at</strong>ed)<br />

3 MV single-ended machine (e.g. Pelletron by NEC)<br />

ECR source (e.g. <strong>for</strong> high intensity (~500 µA) 12 C beam <strong>at</strong> high charge st<strong>at</strong>es)<br />

Beam-lines + detection systems (gamma, neutron, charged particles)<br />

allow <strong>for</strong> measurements over extended energy range<br />

studies possible both in direct and inverse kinem<strong>at</strong>ics


Current St<strong>at</strong>us<br />

Proposal <strong>for</strong> ELENA – Stage I submitted to STFC in December 2008<br />

Very positive Referees’ reports<br />

Present<strong>at</strong>ion made to STFC PPRP Panel meeting on February 4 th 2009<br />

STFC Executive meeting on Thursday, February 19 th 2009<br />

decision on funding expected soon<br />

Opportunities <strong>for</strong> <strong>Nuclear</strong> Astrophysics community<br />

unique facility worldwide<br />

complement & extend beyond current capabilities <strong>at</strong> LUNA<br />

further strengthen Europe’s leadership in the field


Contact: m.aliotta@ed.ac.uk

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!