29.12.2014 Views

Overview of FHWA Current Coatings and Corrosion Research ...

Overview of FHWA Current Coatings and Corrosion Research ...

Overview of FHWA Current Coatings and Corrosion Research ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Overview</strong> <strong>of</strong> <strong>FHWA</strong> <strong>Current</strong> <strong>Coatings</strong> <strong>and</strong><br />

<strong>Corrosion</strong> <strong>Research</strong> Programs<br />

Seung-Kyoung Lee<br />

Manager <strong>of</strong> <strong>Coatings</strong> <strong>and</strong> <strong>Corrosion</strong> Laboratory<br />

Office <strong>of</strong> Infrastructure R&D<br />

Turner-Fairbank Highway <strong>Research</strong> Center<br />

Federal Highway Administration<br />

AASHTO Bridge 2009, New Orleans, July 6, 2009


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

One-Coat Systems<br />

1. 3-coat control (Organic Zn + Epoxy + Polyurethane)<br />

2. 2-coat control (MCU-Zn + Polyaspartic)<br />

3. Polyaspartic (ASP)<br />

4. Epoxy Mastic (EM)<br />

5. Calcium Sulfonate Alkyd (CSA)<br />

6. Glass Flake Polyester (GFP)<br />

7. High Build Acrylic (HBAC)<br />

8. Waterborne Epoxy (WBEP)<br />

9. Polysiloxane (SLX)<br />

10. Urethane Mastic (UM)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Test Panels


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Outdoor Exposure Testing<br />

TFHRC, VA<br />

Sea Isle City, NJ<br />

Periodic performance evaluation every six months


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Comparative Photographs<br />

3-coat (6,840) 2-coat (6,840) CSA (6,840) GFP (6,840) EM (6,840)<br />

HBAC (5,040) WBEP (5,040) ASP (4,320) SLX (4,320) UM (4,320)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

100-Year Life Coating Systems<br />

1. This is a <strong>FHWA</strong> in-house study under a Congress<br />

m<strong>and</strong>ated High Performance Steel program.<br />

2. Main objective is to identify <strong>and</strong> evaluate coating materials<br />

that can provide 100 years <strong>of</strong> virtually maintenance-free<br />

service life for the steel bridge structures.<br />

3. This study started in November 2008 as a 42-month inhouse<br />

research project.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Coating Systems Selected<br />

System<br />

Number<br />

Category<br />

Generic Coating Name<br />

1 Control - Conventional 3-coat Shop System IOZ / Epoxy / Aliphatic Polyurethane<br />

2 Control -3-coat OZ Shop System Zn-rich Epoxy / Epoxy / Aliphatic Polyurethane<br />

3 3-coat Fluoro-Topcoat System MCU Zn / Epoxy / Fluorourethane<br />

4 2-coat Fast Dry Coating Zn-rich Epoxy / Aliphatic Polyurethane<br />

5 2-coat Polysiloxane Inorganic Zinc / Polysiloxane<br />

6 Metallizing (conventional) + Topcoat Thermal Sprayed Zinc / Linear Epoxy<br />

7 Organic Zinc Rich Epoxy (Zinc Flake)/Linear Epoxy Experimental Primer / Topcoat<br />

8 Calcium Sulfonate Alkyd HR Single Coat CSA


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

100-Year Coating Study - Test Panels


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Field Coating Performance Monitoring<br />

Golden Gate Bridge, San Francisco, CA


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Field Coating Performance Monitoring<br />

Octoraro Creek Bridge, Conowingo, MD


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Concrete Slab


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Extracted Dowel Bars after 450 Days in Concrete


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Field Monitoring Study <strong>of</strong> TPO<br />

Black Creek Bridge, New Paltz, NY


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Field Monitoring Study <strong>of</strong> TPO<br />

0.000<br />

900<br />

<strong>Corrosion</strong> Potential (V vs. CSE)<br />

-0.050<br />

-0.100<br />

-0.150<br />

-0.200<br />

-0.250<br />

CR #1<br />

CR #2<br />

CR #3<br />

CR #4<br />

CR #5 (control)<br />

Resistance (ohm)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

CR #1<br />

CR #2<br />

CR #3<br />

CR #4<br />

CR #5 (control)<br />

-0.300<br />

100<br />

-0.350<br />

Sept. 10, 2008 (lab)<br />

Sept. 19, 2008 (field<br />

installation day)<br />

Time<br />

Feb. 26, 2009 (2nd<br />

field measurement)<br />

June 3, 2009 (3rd<br />

field measurement)<br />

0<br />

Sept. 10, 2008 (lab)<br />

Sept. 19, 2008 (field<br />

installation day)<br />

Time<br />

Feb. 26, 2009 (2nd<br />

field measurement)<br />

June 3, 2009 (3rd<br />

field measurement)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Objectives<br />

• To determine mean chloride threshold values <strong>and</strong> timeto-corrosion<br />

initiation for twelve types <strong>of</strong> reinforcing steel<br />

materials<br />

• To develop a concrete bridge deck design guideline for<br />

use <strong>of</strong> reinforcing steel materials based on corrosion<br />

performance data <strong>and</strong> life cycle cost analysis.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Reinforcing Steel Materials<br />

• Twelve types <strong>of</strong> #5 or #6 reinforcing<br />

materials were acquired from 11 sources<br />

<strong>and</strong> they were embedded in eight slabs.<br />

• The rebars were placed in the top <strong>and</strong><br />

bottom mats.<br />

• Three levels <strong>of</strong> artificial defects (0.15, 0.5<br />

<strong>and</strong> 1.0 %) were introduced on ECR, Zbar,<br />

Arminox (2304)<br />

<strong>and</strong> galvanized. 12 EnduraMet 32<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

Black<br />

ECR<br />

Zbar<br />

Galvanized<br />

MMFX<br />

Duracorr<br />

CMC<br />

NX Infrastructure<br />

3Cr12<br />

2201


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Slab Configuration<br />

Transverse bar<br />

Left section<br />

Right section<br />

Longitudinal bar<br />

Internal ducts<br />

[Plan]<br />

Insulator<br />

[Pr<strong>of</strong>ile]<br />

[Cross-section]


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Overview</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Cross-section


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Concrete Casting


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Final Experimental Setup


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Experimental Procedure – Data Measurements<br />

1. Galvanic (Mixed) Potential<br />

2. Macro-cell <strong>Current</strong> Between Top <strong>and</strong> Bottom Mats ( circuit break)<br />

3. AC Resistance Between Top <strong>and</strong> Bottom Mats<br />

4. Open Circuit (<strong>Corrosion</strong>) Potential in the Top Mat<br />

5. <strong>Corrosion</strong> Rate (Linear Polarization Resistance) in the Top Mat<br />

6. Electrochemical Impedance Spectroscopy


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Experimental Procedure – Chloride Data<br />

• As soon as a top mat rebar indicates corrosion initiation, concrete<br />

powder will be collected adjacent locations accessible from the sides.<br />

• Acid-soluble chloride concentration will be determined as a chloride<br />

threshold value.<br />

• This process will be repeated for every rebar in the top mat.<br />

• Average chloride threshold value <strong>and</strong> its time-to-corrosion initiation<br />

will be determined for the particular rebar material.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Future Studies Related to Reinforcement<br />

• Determination <strong>of</strong> Time-to-<strong>Corrosion</strong> Propagation (Lab Study)<br />

• Development <strong>of</strong> a Bridge Deck Design Guideline<br />

• Field Survey <strong>of</strong> Representative Bridge Decks Containing<br />

Various Rebar Materials<br />

• Full Scale Accelerated <strong>Corrosion</strong> Testing Using Environmental<br />

Chamber <strong>and</strong> Wheel Loading


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Coatings</strong><br />

<strong>Current</strong> <strong>Research</strong> Programs<br />

• Performance Evaluation <strong>of</strong> One-Coat Systems<br />

• Exploration <strong>of</strong> 100-Year Maintenance-Free Coating Systems<br />

• Development <strong>of</strong> Field Coating Performance Monitoring Methodology<br />

<strong>Corrosion</strong><br />

• Laboratory Evaluation <strong>of</strong> <strong>Corrosion</strong> Resistance <strong>of</strong> Metallic Dowel Bars<br />

• Field Performance Monitoring <strong>of</strong> a Thin Polymer Overlay (TPO)<br />

• Development <strong>of</strong> a Design Guideline for Selecting Optimum Rebar<br />

Materials in Concrete Bridge Decks<br />

• Evaluation <strong>of</strong> NDE Technologies for High Strength Wire <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Corrosion</strong> <strong>of</strong> Post-Tensioned Tendons<br />

After 16 Years, Niles Channel Bridge, Keys, FL (1999)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Corrosion</strong> <strong>of</strong> Post-Tensioned Tendons<br />

After 13 Years, Sunshine Skyway Bridge, Tampa, FL (2000)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Corrosion</strong> <strong>of</strong> Post-Tensioned Tendons<br />

After 6 years, Mid-Bay Bridge, Destin, FL (2000)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

<strong>Corrosion</strong> <strong>of</strong> Ungrouted PT Tendons


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Deterioration <strong>of</strong> Stay Cables<br />

After 25 years, Luling Bridge, LA (2007)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Deterioration <strong>of</strong> Suspension Main Cables<br />

Courtesy <strong>of</strong> Parsons/Maine DOT<br />

After 70 years, Waldo-Hancock Bridge, Maine (2002)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Corroded<br />

Post-Tensioned Tendons<br />

After 17 years, Varina-Enon Bridge, Richmond, VA (2007)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Laboratory Study <strong>of</strong> PT Tendon <strong>Corrosion</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Artificial Defects by Saw Cuts


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Artificial Defects by Impressed <strong>Current</strong>


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Artificial Defects for Internal PT Tendons


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

NDE Technologies Evaluated<br />

• Ultrasonic <strong>and</strong> Sonic Echo/Impulse Response (SE/IR) – Olson<br />

Engineering<br />

• Magnetostrictive Sensor (MsS) Technology for Guided Long-Range<br />

Waves - SwRI<br />

• Microwave Thermoreflectometry - Dr. Ralf Arndt<br />

• Remnant Magnetic System/ Post-Tech TM CBD System – UT Berlin <strong>and</strong><br />

Vector <strong>Corrosion</strong> Technologies<br />

• Magnetic Main Flux Method (MFM) – Tokyo Rope MFG, Inc.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Main Flux Method (MFM)<br />

Tokyo Rope MFG <strong>and</strong> Carlton Lab at Columbia University


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

MFM on PT Tendons – 1 st Generation


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

MFM Principle<br />

N Pole<br />

Magnetic Flow<br />

S Pole<br />

Search<br />

サーチコイル<br />

Coil<br />

Flux 磁 束<br />

損 傷 部 と 検 出 波 形<br />

Area S<br />

Flux φ<br />

Normal<br />

Section<br />

Area S’<br />

Flux φ’<br />

Corroded<br />

Section<br />

Damage<br />

損 傷 部 モデル<br />

Model<br />

Detecting<br />

全 磁 束 検 出 波 形<br />

Wave<br />

* The absolute value <strong>of</strong> metallic area can be evaluated by<br />

measuring the parameter ΔØ.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Magnetic Flux Chart <strong>of</strong> Specimen A<br />

Estimation <strong>of</strong><br />

Section Loss (%)<br />

0.2 2.0 0.2


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Autopsy Result <strong>of</strong> Specimen A<br />

Estimation (%) 99.8 98.0 99.8<br />

Actual (%) 99.8 87.6 (16.5 wires) 99.8


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

MFM on PT Tendons – 2 nd Generation


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Test Results<br />

100<br />

99<br />

98<br />

97<br />

Tendon C - 1 wire cut<br />

Rate <strong>of</strong> Magnetic Flux (%)<br />

96<br />

95<br />

94<br />

93<br />

92<br />

Tendon C - 1 str<strong>and</strong> cut<br />

Tendon A - 1 wire cut<br />

91<br />

90<br />

Tendon A - 2 str<strong>and</strong>s cut<br />

Tendon A - 1 wire cut<br />

89<br />

88<br />

88 89 90 91 92 93 94 95 96 97 98 99 100<br />

Remaining Cross-sectional Area (%)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Test Results – Linear Regression<br />

100<br />

99<br />

98<br />

y = 0.999x - 0.1935<br />

R 2 = 0.9918<br />

Rate <strong>of</strong> Magnetic Flux (%)<br />

97<br />

96<br />

95<br />

94<br />

93<br />

92<br />

91<br />

90<br />

89<br />

88<br />

88 89 90 91 92 93 94 95 96 97 98 99 100<br />

Remaining Cross-sectional Area (%)


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Findings -MFM<br />

• MFM was determined to be the most accurate NDE system in terms <strong>of</strong><br />

defect location <strong>and</strong> section loss in the current evaluation study.<br />

• It has a great potential for detecting insidious corrosion as well as<br />

calculation <strong>of</strong> section loss in the external PT tendons, stay cables, <strong>and</strong><br />

suspension cables.<br />

• However, it needs to modify configuration <strong>of</strong> the magnetizer <strong>and</strong><br />

reduce weight <strong>of</strong> the system in order to be practical in the field.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Conclusions<br />

• None <strong>of</strong> the NDE systems was able to detect intentional<br />

defects in the internal PT tendons.<br />

• Presence <strong>of</strong> grout in the external PT tendons made<br />

propagating signals attenuate significantly <strong>and</strong> resulted in<br />

some NDE technologies ineffective.<br />

• Main Flux Method (MFM) is the most promising technology for<br />

external PT tendons, stay cables, <strong>and</strong> suspension cables.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Next Steps<br />

• The MFM will be tried in two bridge structures with known<br />

deterioration problems.<br />

• If these field trials yield good results, the MFM will be<br />

employed for two or three more bridges in Maine <strong>and</strong> Florida.<br />

• With successful performance proven in the field trials, a<br />

transportation pool fund study will be initiated to deploy this<br />

NDE system in various states.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Challenges Ahead <strong>of</strong> Us…<br />

• We still need to develop innovative NDE technologies to<br />

detect corrosion inside PT anchorage zones, internal PT<br />

tendons, <strong>and</strong> pre-tensioned prestressed str<strong>and</strong>s.<br />

• Also, we need to develop reliable monitoring sensors for<br />

new <strong>and</strong> existing structures containing tensioned highstrength<br />

wires.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Thank You.


TURNER-FAIRBANK HIGHWAY RESEARCH CENTER<br />

Example <strong>of</strong> <strong>Corrosion</strong> Potential Data (Assorted Slab)<br />

Potnetial (V, CSE)<br />

0.000<br />

-0.100<br />

-0.200<br />

-0.300<br />

-0.400<br />

-0.500<br />

-0.600<br />

-0.700<br />

-0.800<br />

-0.900<br />

-1.000<br />

ECR-0 Zinc clad-0 SS clad (A)-0 SS clad (C)-0<br />

Galvanized-0 SS clad (B)-0 Black-0<br />

0 30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480<br />

Time (day)<br />

Sudden potential shift in the negative direction indicated time to corrosion initiation. For zinc materials<br />

(galvanized <strong>and</strong> zinc-clad), corrosion potential started at negative potentials as expected for active metals.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!