29.12.2014 Views

RC Circuits.pdf

RC Circuits.pdf

RC Circuits.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 32B - <strong>RC</strong> <strong>Circuits</strong><br />

A PowerPoint Presentation by<br />

Paul E. Tippens, Professor of Physics<br />

Southern Polytechnic State University<br />

© 2007


<strong>RC</strong> <strong>Circuits</strong>: The rise and decay<br />

of currents in capacitive circuits<br />

Optional: Check with Instructor<br />

The calculus is used only for derivation of<br />

equations for predicting the rise and decay<br />

of charge on a capacitor in series with a<br />

single resistance. Applications are not<br />

calculus based.<br />

Check with your instructor to see if this<br />

module is required for your course.


V<br />

<strong>RC</strong> Circuit<br />

<strong>RC</strong>-Circuit: Resistance R and capacitance C<br />

in series with a source of emf V.<br />

a R<br />

a R<br />

b<br />

+<br />

+<br />

-<br />

-<br />

C<br />

V<br />

b<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

q<br />

C<br />

Start charging capacitor. . . loop rule gives:<br />

<br />

E<br />

q<br />

iR;<br />

V iR<br />

C


V<br />

<strong>RC</strong> Circuit: Charging Capacitor<br />

a<br />

b<br />

R<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

q<br />

C<br />

Rearrange terms to place in differential form:<br />

Multiply by C dt :<br />

R<br />

V<br />

<br />

dq<br />

dt<br />

q<br />

C<br />

<br />

V<br />

<br />

<br />

iR<br />

q<br />

C<br />

<strong>RC</strong>dq ( CV q)<br />

dt<br />

dq dt q dq<br />

t dt<br />

<br />

( CV q)<br />

<strong>RC</strong> 0 ( CV q)<br />

o <strong>RC</strong>


V<br />

<strong>RC</strong> Circuit: Charging Capacitor<br />

a<br />

b<br />

R<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

ln( CV q) ln( CV ) <br />

q<br />

q dq<br />

t dt<br />

<br />

C 0 ( CV q)<br />

o <strong>RC</strong><br />

ln( CV q) q <br />

t<br />

0<br />

<strong>RC</strong><br />

t<br />

<strong>RC</strong><br />

( )<br />

ln CV q <br />

<br />

t<br />

CV <strong>RC</strong><br />

CV q CVe (1/ <strong>RC</strong>)<br />

t<br />

<br />

qCV 1e<br />

t/<br />

<strong>RC</strong>


<strong>RC</strong> Circuit: Charging Capacitor<br />

V<br />

a<br />

b<br />

R<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

q<br />

C<br />

Instantaneous charge q<br />

on a charging capacitor:<br />

<br />

q CV 1e t/<br />

<strong>RC</strong><br />

<br />

At time t = 0: q = CV(1 - 1); q = 0<br />

At time t = : q = CV(1 - 0); q max = CV<br />

The charge q rises from zero initially to to<br />

its maximum value q max max<br />

= CV CV


Example 1. What is the charge on a 4-F<br />

capacitor charged by 12-V for a time t = <strong>RC</strong><br />

Q max<br />

0.63 Q<br />

q<br />

Capacitor<br />

Rise in<br />

Charge<br />

V<br />

a<br />

R = 1400 <br />

b<br />

i<br />

+<br />

+<br />

- -<br />

4 F<br />

<br />

Time, t<br />

The time = <strong>RC</strong> is known<br />

as the time constant<br />

time constant.<br />

<br />

t/<br />

<strong>RC</strong><br />

qCV 1 e<br />

e = 2.718; ; e -1 = 0.63<br />

q<br />

<br />

CV<br />

<br />

10.37<br />

<br />

qCV 1e <br />

1<br />

<br />

q<br />

<br />

0.63CV


Example 1 (Cont.) What is the time constant <br />

Q max<br />

0.63 Q<br />

q<br />

Capacitor<br />

Rise in<br />

Charge<br />

V<br />

a<br />

R = 1400 <br />

b<br />

i<br />

+<br />

+<br />

- -<br />

4 F<br />

<br />

Time, t<br />

The time = <strong>RC</strong> is known<br />

as the time constant.<br />

= (1400 )(4<br />

F)<br />

= 5.60 ms<br />

In one time constant<br />

(5.60 ms in this<br />

example), the charge<br />

rises to 63% of its<br />

maximum value (CV).


<strong>RC</strong> Circuit: Decay of Current<br />

V<br />

a<br />

b<br />

R<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

q<br />

C<br />

As charge q rises, the<br />

current i will decay.<br />

<br />

q CV 1e t/<br />

<strong>RC</strong><br />

<br />

dq d<br />

<br />

<br />

CV<br />

i CV CVe e<br />

dt dt <strong>RC</strong><br />

t/ <strong>RC</strong><br />

t/<br />

<strong>RC</strong><br />

Current decay as a<br />

capacitor is charged:<br />

i<br />

<br />

V<br />

R<br />

e<br />

t/<br />

<strong>RC</strong>


Current Decay<br />

V<br />

a<br />

b<br />

R<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

q<br />

C<br />

0.37 I<br />

I i<br />

Capacitor<br />

Current<br />

Decay<br />

<br />

Time, t<br />

Consider i when<br />

t = 0 and t = .<br />

V<br />

i <br />

R<br />

e<br />

t/<br />

<strong>RC</strong><br />

The current is a maximum<br />

of I = V/R when t = 0.<br />

The current is zero when<br />

t = (because the back<br />

emf from C is equal to V).


Example 2. What is the current i after one time<br />

constant ((<br />

<strong>RC</strong>) Given R and C as before.<br />

I i Capacitor a R = 1400 <br />

0.37 I<br />

<br />

Current<br />

Decay<br />

V<br />

b<br />

i<br />

Time, t<br />

+<br />

+<br />

- -<br />

4 F<br />

The time = <strong>RC</strong> is known<br />

as the time constant.<br />

V V<br />

i e e<br />

R C<br />

t/ <strong>RC</strong> 1<br />

i<br />

e = 2.718; ; e -1 = 0.37<br />

<br />

V<br />

0.37 0.37i<br />

R<br />

max


Charge and Current During the<br />

Charging of a Capacitor.<br />

Q max<br />

q<br />

Capacitor<br />

I i<br />

Capacitor<br />

0.63 I<br />

Rise in<br />

Charge<br />

0.37 I<br />

Current<br />

Decay<br />

<br />

Time, t<br />

<br />

Time, t<br />

In a time of one time constant, the charge q<br />

rises to 63% of its maximum, while the current i<br />

decays to 37% of its maximum value.


<strong>RC</strong> Circuit: Discharge<br />

V<br />

After C is fully charged, we turn switch to<br />

b, allowing it to discharge.<br />

a R<br />

a R<br />

b<br />

+<br />

+<br />

-<br />

-<br />

C<br />

V<br />

b<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

q<br />

C<br />

<br />

Discharging capacitor. . . loop rule gives:<br />

E<br />

<br />

<br />

iR;<br />

q<br />

C<br />

iR<br />

Negative because<br />

of decreasing I.


Discharging From q 0 to q:<br />

V<br />

a<br />

b<br />

R<br />

i<br />

+<br />

+<br />

-<br />

-<br />

q<br />

C<br />

C<br />

Instantaneous charge q<br />

on discharging capacitor:<br />

dq<br />

q <strong>RC</strong>i;<br />

q <strong>RC</strong> dt<br />

dq<br />

q<br />

<br />

dt<br />

<strong>RC</strong><br />

;<br />

q<br />

q<br />

dq<br />

q<br />

<br />

0 0<br />

t<br />

dt<br />

;<br />

<strong>RC</strong><br />

ln<br />

q<br />

0<br />

q<br />

q<br />

<br />

<br />

<br />

t<br />

<strong>RC</strong><br />

<br />

<br />

<br />

t<br />

0<br />

ln<br />

q<br />

<br />

ln<br />

q<br />

0<br />

<br />

t<br />

<strong>RC</strong><br />

ln q<br />

q<br />

0<br />

<br />

t<br />

<strong>RC</strong>


Discharging Capacitor<br />

V<br />

a<br />

b<br />

R<br />

i<br />

+<br />

+<br />

-<br />

-<br />

q<br />

C<br />

C<br />

ln q<br />

q<br />

0<br />

<br />

q q e<br />

0<br />

t<br />

<strong>RC</strong><br />

t/<br />

<strong>RC</strong><br />

Note q o = CV and the instantaneous current is: dq/dt.<br />

dq d<br />

<br />

CV<br />

i CVe e<br />

dt dt <strong>RC</strong><br />

Current i for a<br />

discharging capacitor.<br />

t/ <strong>RC</strong><br />

t/<br />

<strong>RC</strong><br />

i<br />

V<br />

<br />

C<br />

e<br />

t/<br />

<strong>RC</strong>


V<br />

Prob. 45. How many time constants are needed<br />

for a capacitor to reach 99% of final charge<br />

a R q<br />

b<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

<br />

/<br />

<br />

C<br />

q qmax 1 e t <strong>RC</strong><br />

q<br />

q<br />

max<br />

0.99 1e<br />

t/<br />

<strong>RC</strong><br />

Let x = t/<strong>RC</strong>, then: e -x = 1-0.991<br />

or e -x = 0.01<br />

1<br />

x<br />

0.01; e 100<br />

x<br />

e From definition<br />

ln<br />

e(100)<br />

of logarithm:<br />

t<br />

x = 4.61<br />

x<br />

<strong>RC</strong> <br />

4.61 time<br />

constants<br />

<br />

x


Prob. 46. Find time constant, q max , and time to<br />

reach a charge of 16 C if V = 12 V and C = 4 F.<br />

V<br />

a<br />

12 V<br />

b<br />

1.4 M<br />

R<br />

1.8 F<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

<br />

q q /<br />

max 1 e t <strong>RC</strong><br />

= <strong>RC</strong> = (1.4 MW)(1.8 mF)<br />

= 2.52 s<br />

<br />

q max = CV = (1.8 F)(12 V);<br />

q max max<br />

= 21.6 C<br />

q<br />

q<br />

max<br />

16C<br />

21.6C<br />

1<br />

e<br />

t/<br />

<strong>RC</strong><br />

<br />

/<br />

Continued . . .<br />

t <strong>RC</strong><br />

1e 0.741


Prob. 46. Find time constant, q max , and time to<br />

reach a charge of 16 C if V = 12 V and C = 4 F.<br />

V<br />

a<br />

12 V<br />

b<br />

1.4 M<br />

R<br />

1.8 F<br />

i<br />

+<br />

+<br />

-<br />

-<br />

C<br />

t/<br />

<strong>RC</strong><br />

1e 0.741<br />

Let x = t/<strong>RC</strong>, then:<br />

x<br />

e 10.741 0.259<br />

1<br />

x<br />

0.259; e 3.86<br />

From definition<br />

x<br />

e of<br />

ln<br />

e(3.86)<br />

logarithm:<br />

t<br />

x = 1.35 1.35; t (1.35)(2.52s)<br />

<strong>RC</strong> <br />

<br />

x<br />

Time to reach 16 C:<br />

t t = 3.40 s


CONCLUSION: Chapter 32B<br />

<strong>RC</strong> <strong>Circuits</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!