30.12.2014 Views

Hydro-Mechanical Modeling of a Shaft Seal in a ... - COMSOL.com

Hydro-Mechanical Modeling of a Shaft Seal in a ... - COMSOL.com

Hydro-Mechanical Modeling of a Shaft Seal in a ... - COMSOL.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Presented at the <strong>COMSOL</strong> Conference 2010 Boston<br />

<strong>Hydro</strong>-<strong>Mechanical</strong> <strong>Model<strong>in</strong>g</strong> <strong>of</strong><br />

a <strong>Shaft</strong> <strong>Seal</strong> <strong>in</strong><br />

a Deep Geological Repository<br />

D. G. Priyanto<br />

Presented at<br />

<strong>COMSOL</strong> Conference 2010<br />

Boston, 2010 October 7-9<br />

UNRESTRICTED / ILLIMITÉ


Background<br />

• The Nuclear Waste Management Organization’s (NWMO) Adaptive<br />

Phased Management (APM) approach to nuclear fuel waste<br />

management <strong>in</strong>cludes the isolation and conta<strong>in</strong>ment <strong>of</strong> used nuclear<br />

fuel <strong>in</strong> a Deep Geological Repository (DGR).<br />

• A shaft seal is one <strong>of</strong> the eng<strong>in</strong>eered barriers considered <strong>in</strong> isolat<strong>in</strong>g<br />

and conta<strong>in</strong><strong>in</strong>g used nuclear fuel <strong>in</strong> a Deep Geological Repository<br />

(DGR).<br />

UNRESTRICTED / ILLIMITÉ<br />

2


<strong>Shaft</strong> <strong>Seal</strong><strong>in</strong>g Concept<br />

<strong>Shaft</strong> <strong>Seal</strong><strong>in</strong>g Concept<br />

AECL @1993<br />

<strong>Shaft</strong> <strong>Seal</strong><br />

A shaft seal<br />

•would be <strong>in</strong>stalled at strategic<br />

locations, such as significant<br />

fracture zone.<br />

Deep Geological Repository (DGR)<br />

•to limit the potential for fast<br />

movement <strong>of</strong> groundwater from<br />

repository level to the surface<br />

via the shaft.<br />

<strong>Shaft</strong> <strong>Seal</strong><strong>in</strong>g Concept<br />

AECL @ 1993<br />

UNRESTRICTED / ILLIMITÉ<br />

3


Full-Scale <strong>Shaft</strong> <strong>Seal</strong> at AECL’s URL<br />

(Dixon, Mart<strong>in</strong>o & Onagi 2009)<br />

The objective <strong>of</strong> the seals at URL is to<br />

limit the mix<strong>in</strong>g <strong>of</strong> groundwater with<br />

higher sal<strong>in</strong>ity below the FZ with<br />

lower sal<strong>in</strong>ity above the FZ.<br />

•The seal construction is funded by<br />

Natural Resources Canada (NRCan)<br />

under the Nuclear Legacies Liability<br />

Program (NLLP).<br />

•Monitor<strong>in</strong>g is funded by Enhanced<br />

<strong>Seal</strong><strong>in</strong>g Project (ESP) (NWMO,<br />

Posiva Oy, SKB and ANDRA).<br />

<strong>Seal</strong>s at the AECL’s Underground Research<br />

Laboratory (Mart<strong>in</strong>o et al. 2010)<br />

• THM responses be<strong>in</strong>g monitored<br />

<strong>in</strong>clude: temperatures, displacements,<br />

stra<strong>in</strong>s, pore pressures, & total<br />

pressures at selected location.<br />

UNRESTRICTED / ILLIMITÉ<br />

4


Objective<br />

The objective <strong>of</strong> this presentation is:<br />

• to evaluate the capability <strong>of</strong> <strong>COMSOL</strong> to simulate the hydraulic<br />

& mechanical (H-M) processes <strong>of</strong> a shaft seal <strong>in</strong>stalled at a<br />

fracture zone <strong>in</strong> a hypothetical geosphere.<br />

The f<strong>in</strong>al objective:<br />

• to simulate all required processes <strong>of</strong> an actual shaft seal.<br />

(e.g., coupl<strong>in</strong>g H, M, T, Mass transfer)<br />

UNRESTRICTED / ILLIMITÉ<br />

5


Hypothetical <strong>Shaft</strong> <strong>Seal</strong> Geometry<br />

2D-axisymetrical geometry<br />

CL<br />

100 m<br />

Hydraulic Properties <strong>of</strong> the<br />

Geosphere<br />

B<br />

100 m<br />

K FZ-Center = 10 -9 m/s<br />

C<br />

3 m<br />

K FZ-Side = 10 -10 m/s<br />

K rocks<br />

D<br />

E<br />

1 m<br />

A<br />

C<br />

B<br />

6 m<br />

3 m<br />

100 m<br />

4 m 2 m<br />

<strong>Shaft</strong><br />

Elevations<br />

(250 m)<br />

Legend<br />

A : Bentonite-Sand Mixture (BSM)<br />

B : Dense Backfill (DBF)<br />

C : Concrete<br />

D : Fractured Zone (FZ)<br />

E : Crystall<strong>in</strong>e Rocks<br />

7.3 m<br />

A, B, and C are <strong>in</strong><br />

unsaturated conditions at <strong>in</strong>stallation<br />

UNRESTRICTED / ILLIMITÉ<br />

6


Stages <strong>of</strong> Numerical <strong>Model<strong>in</strong>g</strong><br />

1. Stage 1 simulates groundwater flow <strong>in</strong>to open shaft and stress condition<br />

prior to seal <strong>in</strong>stallation.<br />

Duration: time between excavation and shaft seal <strong>in</strong>stallation (100 y)<br />

2. Stage 2 simulates groundwater flow after shaft seal <strong>in</strong>stallation.<br />

Duration: depend<strong>in</strong>g the half life <strong>of</strong> the nuclear waste (0 – 1,000,000 y)<br />

Stage 1 Stage 2<br />

DBF<br />

Open shaft<br />

C<br />

100 y<br />

CS<br />

C<br />

BSM<br />

CS<br />

0-1,000,000 y<br />

DBF<br />

UNRESTRICTED / ILLIMITÉ<br />

7


Challenges<br />

Challenge 1<br />

• <strong>Seal</strong><strong>in</strong>g <strong>com</strong>ponents are <strong>in</strong>itially unsaturated,<br />

• Clay-based seal<strong>in</strong>g <strong>com</strong>ponents have large volume change<br />

coupl<strong>in</strong>g <strong>of</strong> the unsaturated flow with structural mechanics<br />

Challenge 2<br />

• Properties and conditions at the seal location change abruptly<br />

between Stages 1 and 2.<br />

Challenge 3<br />

• The durations <strong>of</strong> Stages 1 and 2 considered <strong>in</strong> this study are<br />

anticipated to be <strong>in</strong> order <strong>of</strong> 100 years to 1,000, 000 years.<br />

reasonable solution time<br />

UNRESTRICTED / ILLIMITÉ<br />

8


Coupl<strong>in</strong>g <strong>of</strong> HM Formulation for<br />

Unsaturated Soil<br />

Detailed formulations are provided <strong>in</strong><br />

(Priyanto 2010)<br />

H<br />

p<br />

C<br />

SeS <br />

KH<br />

p<br />

D Qs<br />

S<br />

t<br />

S = f g ( p + f )<br />

k<br />

e<br />

sat<br />

w<br />

k<br />

0<br />

<br />

<br />

3<br />

1 <br />

1<br />

<br />

<br />

1<br />

H<br />

<br />

<br />

<br />

<br />

1<br />

m<br />

<br />

C 1<br />

m<br />

<br />

<br />

0<br />

<br />

<br />

s<br />

<br />

p<br />

<br />

2<br />

n<br />

<br />

<br />

1 <br />

<br />

<br />

<br />

m<br />

K <br />

<br />

2<br />

0<br />

3<br />

0<br />

for<br />

for<br />

<br />

1<br />

S<br />

<br />

UNRESTRICTED / ILLIMITÉ<br />

r<br />

S<br />

e<br />

1<br />

m<br />

k sat<br />

k<br />

w r<br />

H<br />

e<br />

H<br />

1<br />

m<br />

p<br />

p<br />

<br />

<br />

<br />

0<br />

0<br />

m<br />

for<br />

for<br />

H<br />

H<br />

p<br />

p<br />

0<br />

0<br />

100 mm<br />

•Unsaturated flow = Richard’s equation<br />

with vanGenuchten’s SWCC and<br />

permeability models.<br />

•<strong>Mechanical</strong> = L<strong>in</strong>ear elastic model<br />

•Compare with laboratory triaxial test <strong>of</strong><br />

CL<br />

the Bentonite-Sand CL<br />

Impermeable Mixture (BSM)<br />

CL<br />

50 mm<br />

y<br />

Triaxial Specimen<br />

(a)<br />

50 mm<br />

x<br />

Symmetry<br />

Symmetry<br />

l<strong>in</strong>e<br />

CL<br />

y<br />

Impermeable<br />

Symmetry<br />

u w = 0.2 MPa<br />

x<br />

Symmetry<br />

No flow<br />

at symmetry Impermeable l<strong>in</strong>e<br />

Initial<br />

u w = 0.2 MPa<br />

u a = 0.101 MPa<br />

w c = 18.75%<br />

(b)<br />

Hydraulic<br />

Impermeable<br />

Initial<br />

u a = 0.101 MPa<br />

w c = 18.75%<br />

CL<br />

y<br />

Initial<br />

p = 0.5 MPa<br />

Symmetry<br />

No y-displacement<br />

at symmetry l<strong>in</strong>e<br />

Initial<br />

p = 0.5 MPa<br />

Symmetry<br />

x<br />

(c)<br />

<strong>Mechanical</strong><br />

9


Results <strong>of</strong> HM Numerical <strong>Model<strong>in</strong>g</strong><br />

<strong>of</strong> Unsaturated BSM Specimen<br />

Dry density<br />

CL<br />

Impermeable<br />

CL<br />

X = 0 cm<br />

100 mm<br />

CL<br />

50 mm<br />

y<br />

Triaxial Specimen<br />

(a)<br />

50 mm<br />

x<br />

Symmetry<br />

Symmetry<br />

l<strong>in</strong>e<br />

CL<br />

y<br />

Impermeable<br />

Symmetry<br />

u w = 0.2 MPa<br />

No flow<br />

at symmetry Impermeable l<strong>in</strong>e<br />

Initial<br />

u w = 0.2 MPa<br />

u a = 0.101 MPa<br />

w c = 18.75%<br />

(b)<br />

x<br />

Impermeable<br />

Initial<br />

u a = 0.101 MPa<br />

w c = 18.75%<br />

CL<br />

y<br />

Initial<br />

p = 0.5 MPa<br />

X = 0.5 cm<br />

X = 1.0 cm<br />

X = 1.5 cm<br />

X = 2.0 cm<br />

X = 2.5 cm<br />

Symmetry<br />

Symmetry<br />

Degree <strong>of</strong> saturation<br />

Symmetry<br />

No y-displacement<br />

at symmetry l<strong>in</strong>e<br />

Initial<br />

p = 0.5 MPa<br />

(c)<br />

x<br />

X = 0 cm<br />

X = 0.5 cm<br />

X = 1.0 cm<br />

X = 1.5 cm<br />

X = 2.0 cm<br />

Volume <strong>of</strong> Water Added (mL)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Volume <strong>of</strong> water added<br />

to the specimen<br />

Laboratory Test<br />

<strong>COMSOL</strong><br />

0 2 4 6 8 10<br />

Time (days)<br />

X = 2.5 cm<br />

UNRESTRICTED / ILLIMITÉ<br />

10


H-M <strong>Model<strong>in</strong>g</strong> <strong>of</strong> <strong>Shaft</strong> <strong>Seal</strong><br />

CL<br />

100 m<br />

Hydraulic Properties <strong>of</strong> the<br />

Geosphere<br />

B<br />

100 m<br />

K FZ-Center = 10 -9 m/s<br />

C<br />

3 m<br />

K FZ-Side = 10 -10 m/s<br />

K rocks<br />

D<br />

E<br />

1 m<br />

A<br />

C<br />

B<br />

6 m<br />

3 m<br />

100 m<br />

4 m 2 m<br />

<strong>Shaft</strong><br />

Elevations<br />

(250 m)<br />

Legend<br />

A : Bentonite-Sand Mixture (BSM)<br />

B : Dense Backfill (DBF)<br />

C : Concrete<br />

D : Fractured Zone (FZ)<br />

E : Crystall<strong>in</strong>e Rocks<br />

7.3 m<br />

UNRESTRICTED / ILLIMITÉ<br />

11


Porewater Pressure, Stage 1<br />

Stage 1, groundwater flow <strong>in</strong>to open shaft<br />

0 1 10 100<br />

[Years]<br />

Note that this results is only valid for the hypothetical assumptions<br />

and properties used <strong>in</strong> this study.<br />

UNRESTRICTED / ILLIMITÉ<br />

12


Porewater Pressure, Stage 2<br />

(0-100 years)<br />

Stage 2, groundwater flow <strong>in</strong>to shaft seal<br />

0 1 10 80 100<br />

[Years]<br />

Note that this results is only valid for the hypothetical assumptions<br />

and properties used <strong>in</strong> this study.<br />

UNRESTRICTED / ILLIMITÉ<br />

13


Porewater Pressure, Stage 2<br />

(1e3-1e6 years)<br />

Stage 2, groundwater flow <strong>in</strong>to shaft seal<br />

1,000 10,000 100,000 1,000,000<br />

[Years]<br />

Note that this results is only valid for the hypothetical assumptions<br />

and properties used <strong>in</strong> this study.<br />

UNRESTRICTED / ILLIMITÉ<br />

14


Porewater Pressure, Stage 2<br />

Stage 2, groundwater flow <strong>in</strong>to shaft seal<br />

0 1 10 20 40<br />

Note that this results is only valid for the hypothetical<br />

assumptions and properties used <strong>in</strong> this study.<br />

60 80 90 100 1,000<br />

[Years]<br />

UNRESTRICTED / ILLIMITÉ<br />

15


Saturation Degree and Dry Density<br />

<strong>of</strong> the BSM<br />

DBF<br />

CS<br />

C<br />

BSM<br />

r<br />

CS<br />

DBF<br />

Time (Years)<br />

1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03<br />

2.2<br />

2.1<br />

2.0<br />

1.9<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

Dry Density [Mg/m 3 ]<br />

Case 5:<br />

MFR<br />

r = 0<br />

r = 1 m<br />

r = 2 m<br />

r = 3 m<br />

r = 3.65 m<br />

Note that this results is only valid for the hypothetical assumptions<br />

and properties used <strong>in</strong> this study.<br />

Time (Years)<br />

1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

Degree <strong>of</strong> Saturation [%]<br />

Case 5:<br />

MFR<br />

r = 0<br />

r = 1 m<br />

r = 2 m<br />

r = 3 m<br />

r = 3.65 m<br />

UNRESTRICTED / ILLIMITÉ<br />

16


Conclusions<br />

• This study has developed custom-additions <strong>in</strong> <strong>COMSOL</strong><br />

– to couple Richard’s equation and l<strong>in</strong>ear elastic model<br />

– to implement a custom SWCC and permeability model observed from<br />

the results <strong>of</strong> laboratory test<strong>in</strong>g <strong>of</strong> the bentonite-sand mixture<br />

specimens.<br />

• The results <strong>of</strong> the numerical model<strong>in</strong>g <strong>of</strong> a shaft seal us<strong>in</strong>g <strong>COMSOL</strong> shows<br />

a logical hydraulic and mechanical processes, which <strong>in</strong>dicated that<br />

<strong>COMSOL</strong> can be used as a tool for further study <strong>of</strong> a shaft seal <strong>in</strong> a deep<br />

geological repository.<br />

• Us<strong>in</strong>g current <strong>com</strong>puter capability, the solution time required to <strong>com</strong>plete the<br />

analysis to simulate 1000000 years HM behavior <strong>of</strong> a shaft seal described <strong>in</strong><br />

this study was less than 1 hour, which is beneficial <strong>in</strong> build<strong>in</strong>g more <strong>com</strong>plex<br />

model and formulations to simulate an actual shaft seal <strong>in</strong> actual geosphere<br />

conditions.<br />

UNRESTRICTED / ILLIMITÉ<br />

17


Re<strong>com</strong>mendations<br />

• Future studies re<strong>com</strong>mended to improve simulation <strong>of</strong> a shaft seal<br />

<strong>in</strong>cludes:<br />

– Development <strong>of</strong> coupl<strong>in</strong>g formulation <strong>of</strong> multi-phase flow with<br />

mechanical constitutive model to improve HM simulation.<br />

– Coupl<strong>in</strong>g between HM processes with other processes such as<br />

thermal and mass transport.<br />

– Implementation <strong>of</strong> elasto-plastic model.<br />

UNRESTRICTED / ILLIMITÉ<br />

18


Thank you !<br />

Acknowledgements<br />

<strong>Hydro</strong>-<strong>Mechanical</strong> <strong>Model<strong>in</strong>g</strong> <strong>of</strong> a <strong>Shaft</strong> <strong>Seal</strong> <strong>in</strong> a Deep Geological Repository<br />

Atomic Energy <strong>of</strong> Canada Limited (AECL)<br />

D. G. Priyanto<br />

Nuclear Waste Management Organization (NWMO)<br />

<strong>COMSOL</strong> Conference 2010<br />

Boston, 2010 October 7-9<br />

AECL personnel, especially:<br />

David Dixon, Paul Thompson, Peter Sargent,<br />

Chang-Seok Kim, Blake Holowick,<br />

Maureen MacDonald & Marlene Hall.<br />

UNRESTRICTED<br />

AECL - OFFICIAL<br />

/ ILLIMITÉ<br />

USE ONLY / À USAGE EXCLUSIF - EACL 19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!