11.07.2015 Views

Two Dimensional FEM Simulation of Ultrasonic ... - COMSOL.com

Two Dimensional FEM Simulation of Ultrasonic ... - COMSOL.com

Two Dimensional FEM Simulation of Ultrasonic ... - COMSOL.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Presented at the <strong>COMSOL</strong> Conference 2010 India<strong>Two</strong> <strong>Dimensional</strong> <strong>FEM</strong><strong>Simulation</strong> <strong>of</strong> <strong>Ultrasonic</strong> WavePropagation in Isotropic SolidMedia Using <strong>COMSOL</strong> ®Bikash Ghose 1 * , Krishnan Balasubramaniam 2 #C V Krishnamurthy 3 , A Subhananda Rao 11 High Energy Materials Research Laboratory, Sutarwadi, Pune - 212 Center for Non Destructive Evaluation, IIT Madras, Chennai - 363 Department <strong>of</strong> Physics, IIT Madras, Chennai -36E-mail: * ghose.bikash@hemrl.drdo.in , # balas@iitm.ac.in


Motivation Application <strong>of</strong> <strong>Ultrasonic</strong> wave propagation• Under Water Acoustics• Medical Diagnostic• Structural Health Monitoring (SHM)• Non-Destructive Evaluation (NDE)• Material Characterization Non-Destructive Evaluation• Bulk wave Longitudinal wave (Pulse echo technique, Throughtransmission etc) Transverse Wave• Surface Wave• Guided Wave / Lamb Wave etc. Guided Wave• Many different modes <strong>of</strong> ultrasonic vibration(Symmetric, Anti symmetric) Numerical <strong>Simulation</strong> <strong>of</strong> Wave propagation• Fluid (Only Longitudinal wave)• Solid (Longitudinal, Transverse, Surface, Lambetc) Use <strong>of</strong> <strong>COMSOL</strong> for simulation <strong>of</strong> wavepropagation in solids


Transient Analysis for WavePropagation Transient Analysis always pose difficult problems Length <strong>of</strong> element (∆x)( Time steps (∆t)( Type <strong>of</strong> Elements (Triangular, Quad) Integration scheme for integration over time Issues• Instability• Numerical Dispersion• Convergence


Numerical <strong>Simulation</strong> <strong>of</strong> <strong>Ultrasonic</strong>Wave Propagation using <strong>COMSOL</strong> ®Thumb Rule ?•Length <strong>of</strong>Element (∆x) = λ/12•Time Step = ∆x/C phInitial DisplacementDisplacement at diff positions with timeSolution at 7.0×10 -5 sSolution at 1.7×10 -4 s


Materials & <strong>Ultrasonic</strong> WaveProperties Young’s s Modulus (E) = 2 × 10 11 Pa Poisson’s s ratio (ν)() = 0.33 Density (ρ)() = 7850 kg/m3 <strong>Ultrasonic</strong> velocity (C L) (longitudinalwave) = 5850 m/s Frequency <strong>of</strong> incident ultrasonic wave (f)(= 20 kHz = 20×103 s -1 Wavelength <strong>of</strong> the longitudinal ultrasonicwave (λ(L) = C L/f = 0.2925 m Source Length : 0.04 m (40 mm)(located at the middle) Source Excitation : On a line and pointson line <strong>Simulation</strong> Domain : 5.0 m (L) x 2.5 m(H)D isplac em ent (m )6420-2-4-6-8-100 0.5 1 1.58 x Time (s)x 10 -4|Y(f)|54.543.532.521.510.5x 10 -7Single-Sided Amplitude Spectrum <strong>of</strong> y(t)(Hanning windowed signal)0 2 4 6 8 10 12 14 16 18 20Frequency (Hz)x 10 4


Meshing and Application Modes Triangular Elements Elements AutomaticallyGenerated Approximation : Plane Stain Element Type : LagrangeQuadratic Analysis : Transient Solver : Time Dependent


Effect <strong>of</strong> Length <strong>of</strong> Element (∆x)(As per CFL Criteria∆tcritical=∆xCph∆xCmax max0 −6= = = 3.1×10L.0182m5850m/ ssThe time steps chosen initially for simulation for different ∆x maxis2.5×10 -6 s


Onward Propagating Wave at variousDistances for Different λ L /∆x max at t = 4×104-4 sDisplacements (m)1.00E-078.00E-086.00E-084.00E-082.00E-080.00E+000-2.00E-080.0001 0.0002 0.0003 0.0004 0.0005-4.00E-08-6.00E-08At 0.3 mRatio = 2Ratio = 3Ratio = 4Ratio= 5Ratio = 8Ratio = 9Ratio = 12Ratio = 16Displacement (m)6.00E-084.00E-082.00E-08-2.00E-08-4.00E-08At 0.5 mRatio = 2Ratio = 3Ratio = 4Ratio = 5Ratio = 8Ratio = 9Ratio = 12Ratio = 160.00E+000 0.0001 0.0002 0.0003 0.0004 0.0005Displacement (m)-8.00E-085.00E-084.00E-083.00E-082.00E-081.00E-08Time (s)At 0.8 mRatio = 2Ratio = 3Ratio = 4Ratio = 5Ratio = 8Ratio = 9Ratio = 12Ratio = 160.00E+000 0.0001 0.0002 0.0003 0.0004 0.0005-1.00E-08Displacement-6.00E-084.00E-083.00E-082.00E-081.00E-08Time (t)At 1.0 mRatio = 2Ratio = 3Ratio = 4Ratio = 5Ratio = 8Ratio = 9Ratio = 12Ratio = 160.00E+000 0.00005 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045-1.00E-08-2.00E-08-3.00E-08-4.00E-08-5.00E-08Time (s)• Oscillations remains after passing by <strong>of</strong> signal• Convergence <strong>of</strong> the solution for the ratio (λ L/∆x max) ≥ 8• Time steps are taken from solver or exactly what has beengiven does not make any difference to the propagating signal-2.00E-08-3.00E-08-4.00E-08Time (t)


Onward Propagating Wave for Differentλ L /∆x max at t = 4×104-4 sDisplacement (m)2.50E-082.00E-081.50E-081.00E-085.00E-090.00E+00-5.00E-09-1.00E-08Ratio = 2Ratio = 3ratio = 4ratio = 5Ratio = 8Ratio = 9Ratio = 120 0.5 1 1.5 2 2.5 3-1.50E-08-2.00E-08-2.50E-08Distance from Source center (m)Line pr<strong>of</strong>ile (Displacement Vs Distance from source) at0.0004s for different wavelength to element length ratio


Effect <strong>of</strong> Time Steps (∆t)( As per CFL criteria the time steps should be less than ∆x/Cx/C Lfor example, for the maximum element length <strong>of</strong> λ L /10 thetime steps should be ≤ (λ L /10×C L ) that means if Signal so far obtained is not as expected Major change in the shape <strong>of</strong> signal Time steps further decreased and solution was checked forconvergenceλL∆xmax=10∆x⇒ ∆t≤C⇒ ∆tmaxL1≤10×fλL=10×CL


∆t= 10×10Case: I λ L /∆xmax= = 5−6s∆t= 5×10−6s∆t= 2.0×10−6s∆t= 1.0×10−6s∆t=0.5×10−6s∆t= 0.2×10−6s


∆t= 6.26×10Case: II λ L /∆xmax= = 8−6s∆t= 5×10−6s∆t= 2.0×10−6s∆t= 1.0×10−6s∆t=0.5×10−6s∆t= 0.2×10−6s


Case: III λ L /∆xmax= = 12∆t= 5×10−6s∆t= 2.5×10−6s∆t= 1.0×10−6s∆t=0.5×10−6s


Effect <strong>of</strong> Excitation on Line and Points onLine for λ L /∆x max = 8 and ∆t t = 2.5x10 -6 s(Line source)At 1.0 m(Points on Line source)At 1.0 mAt 0.5 mAt 0.5 m


Effect <strong>of</strong> Excitation on Line and Points onLine for λ L /∆x max = 8 and ∆t t = 2.5x10 -6 sLine pr<strong>of</strong>ile at t = 4x10 -4 s(Line source)(Points on Line source)


Time and Frequency Domain Signal forForward Propagating Waveλ L∆xmax= 12λ L∆xmax= 8λ L∆xmax= 58.00E-088.00E-088.00E-084.00E-084.00E-084.00E-08D isplacem ent (m )0.00E+000.00E+00 2.00E-04 4.00E-04 6.00E-04-4.00E-08Displacement (m)0.00E+000.00E+00 2.00E-04 4.00E-04 6.00E-04-4.00E-08Displacement (m)0.00E+000.00E+00 2.00E-04 4.00E-04 6.00E-04-4.00E-08-8.00E-08-8.00E-08-8.00E-08-1.20E-07Time (s)-1.20E-07Time (s)-1.20E-07Time (s)Single-Sided Amplitude Spectrumx 10-910Single-Sided Amplitude Spectrumx 10-914x 10 -9Single-Sided Amplitude Spectrum98121271010|Y (f)|654|Y(f)|86|Y (f)|86321424201 2 3 4 5 6 7 8 9Frequency (Hz)x 10 41 2 3 4 5 6 7 8 9Frequency (Hz)x 10 41 2 3 4 5 6 7 8 9Frequency (Hz)x 10 4All signals are for ∆t t =0.5x10 - 6 s


Time and Frequency Domain Signal forBack Wall Reflected Waveλ L∆xmax= 12λ L∆xmax= 8λ L∆xmax= 54.00E-084.00E-084.00E-082.00E-082.00E-082.00E-08Displacement (m)0.00E+000.00E+00 4.00E-04 8.00E-04 1.20E-03-2.00E-08Displacement (m)0.00E+000.00E+00 4.00E-04 8.00E-04 1.20E-03-2.00E-08D isplacem ent (m )0.00E+000.00E+00 4.00E-04 8.00E-04 1.20E-03-2.00E-08-4.00E-08-4.00E-08-4.00E-08-6.00E-08Time (s)-6.00E-08Time (s)-6.00E-08Time (s)Single-Sided Amplitude Spectrumx 10-97Single-Sided Amplitude Spectrumx 10-98x 10 -98Single-Sided Amplitude Spectrum677566|Y(f)|43|Y(f)|543|Y(f)|5432221110 1 2 3 4 5 6 7 8 9Frequency (Hz)x 10 41 2 3 4 5 6 7 8 9Frequency (Hz)x 10 41 2 3 4 5 6 7 8 9Frequency (Hz)x 10 4All signals are for ∆t t =0.5x10 - 6 s


<strong>Simulation</strong> Results for λ L /∆x max = 8∆t t = 0.5 x 10 -6 s at different timeAt t = 1x10 - 4 s


<strong>Simulation</strong> Results for λ L /∆x max = 8∆t t = 0.5 x 10 -6 s at different timeAt t = 4x10 - 4 s


<strong>Simulation</strong> Results for λ L /∆x max = 8∆t t = 0.5 x 10 -6 s at different timeAt t = 5x10 - 4 s


<strong>Simulation</strong> Results for λ L /∆x max = 8∆t t = 0.5 x 10 -6 s at different timeAt t = 8x10 - 4 s


Conclusions Wave Propagation can well be modeled using<strong>COMSOL</strong> with excitation on line segment and / oron points on line (Difference only in themaximum displacements) λ L /∆x max ≥ 8 irrespective <strong>of</strong> any time steps lessthan calculated by CFL criteria ( For triangularfree meshing) Time step ∆t should be about T/100 even if λ L /∆x≈ 16 No substantial difference in frequency content <strong>of</strong>forward as well as back wall reflected ultrasonicsignal observed


E-mail:ghose.bikash@hemrl.drdo.in , balas@iitm.ac.in

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!