30.12.2014 Views

Closed-Loop Control System - IES Academy

Closed-Loop Control System - IES Academy

Closed-Loop Control System - IES Academy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Control</strong> <strong>System</strong><br />

Contents<br />

Chapter Topic Page<br />

Chapter-1<br />

Chapter-2<br />

Chapter-3<br />

Chapter-4<br />

Introduction<br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

Transfer Function, Block Diagrams<br />

and Signal Flow Graphs<br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

Mathematical Modeling <strong>Control</strong><br />

<strong>System</strong><br />

Theory at a glance<br />

Previous Years <strong>IES</strong> Questions<br />

35Previous Years <strong>IES</strong> Answer<br />

Time Response Analysis of<br />

<strong>Control</strong> <strong>System</strong><br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

No<br />

2<br />

2<br />

8<br />

8<br />

10<br />

10<br />

12<br />

12<br />

19<br />

21<br />

24<br />

25<br />

28<br />

28<br />

33<br />

35<br />

37<br />

37<br />

49<br />

52<br />

59<br />

62


India’s No 1<br />

<strong>IES</strong> <strong>Academy</strong><br />

<strong>Control</strong> <strong>System</strong><br />

Contents<br />

Chapter-5<br />

Chapter-6<br />

Chapter-7<br />

Chapter-8<br />

Chapter-9<br />

Frequency Analysis<br />

Theory at a glance<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years <strong>IES</strong> Answer<br />

Stability Analysis of <strong>Control</strong><br />

<strong>System</strong><br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

Root — Locus Technique<br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

Compensators<br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

Industrial <strong>Control</strong>lers<br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

Chapter-10 Introduction to State Space<br />

Variable<br />

Theory at a glance<br />

Previous Years GATE Questions<br />

Previous Years <strong>IES</strong> Questions<br />

Previous Years GATE Answer<br />

Previous Years <strong>IES</strong> Answer<br />

69<br />

69<br />

74<br />

76<br />

77<br />

77<br />

92<br />

98<br />

110<br />

118<br />

132<br />

132<br />

136<br />

138<br />

143<br />

146<br />

150<br />

150<br />

155<br />

156<br />

160<br />

161<br />

165<br />

165<br />

171<br />

172<br />

176<br />

177<br />

180<br />

180<br />

188<br />

190<br />

192<br />

195<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-1<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

Contents for this chapter<br />

Introduction<br />

1. Introduction<br />

2. Open–<strong>Loop</strong> <strong>System</strong><br />

3. Mathematical Model for Open-loop <strong>Control</strong> <strong>System</strong><br />

4. <strong>Closed</strong>-<strong>Loop</strong> <strong>Control</strong> <strong>System</strong><br />

5. Mathematical Model for <strong>Closed</strong>-<strong>Loop</strong> <strong>System</strong><br />

6. Comparison of Open <strong>Loop</strong> and <strong>Closed</strong> <strong>Loop</strong><br />

7. Laplace Transform<br />

8. Basic Laplace Transform Theorem<br />

9. Summary<br />

1. Introduction<br />

Theory at a Glance<br />

(For <strong>IES</strong>, GATE, PSU & JTO)<br />

<strong>Control</strong> system is a combination of elements arranged in a planned manner. Where each<br />

element causes an effect to produce a desire output.<br />

Example of control systems<br />

1. <strong>System</strong> for the control of position.<br />

2. <strong>System</strong> for the control of velocity.<br />

2. Open–<strong>Loop</strong> <strong>System</strong><br />

1. No feedback in open loop system is used.<br />

2. <strong>Control</strong> system (open-loop) depends only on the accuracy of input calibration.<br />

Example of open-loop control system<br />

1. Traffic signal light<br />

2. Electric lift<br />

3. Automatic washing machine<br />

3. Mathematical Model for Open-loop <strong>Control</strong> <strong>System</strong><br />

C =G<br />

R<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-2<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

Where,<br />

G = gain of system<br />

C = o/p of system<br />

R = input<br />

Points:<br />

1. Feedback system is not used for improving stability.<br />

2. An open-loop system may become unstable when we used negative feedback.<br />

4. <strong>Closed</strong>-<strong>Loop</strong> <strong>Control</strong> <strong>System</strong><br />

In a closed loop control system the output has an effect on control action through a feedback.<br />

Example of closed-loop system:<br />

1. D.C. Motor speed control<br />

2. Radar tracking system<br />

3. Auto pilot system<br />

5. Mathematical Model for <strong>Closed</strong>-<strong>Loop</strong> <strong>System</strong><br />

C<br />

R<br />

G<br />

=<br />

1+GH<br />

1* Here feedback is negative<br />

2. This form is also called control canonical form<br />

From figure<br />

C(S) = G(S) =<br />

E(S)<br />

As a Forward path transfer function<br />

B(S) =H(S)=<br />

C(S)<br />

As a feedback transfer function<br />

The o/p of summing point<br />

E(S)<br />

[ R(S) – B(S) ]<br />

= ;<br />

C(S) =R(S)–B(S) ;<br />

G(S)<br />

C(S) =R(S)–C(S) H(S) ;<br />

G(S)<br />

C(S) = R(S) G(S) – G(S) C(S) H(S) ;<br />

C(S) [ 1+G(S) H(S) ] = R(S) G(S)<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-3<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

C(S) G(S)<br />

=<br />

R(S) 1+G(S) H(S)<br />

6. Comparison of Open <strong>Loop</strong> and <strong>Closed</strong> <strong>Loop</strong><br />

Open <strong>Loop</strong> <strong>System</strong><br />

1. The accuracy of an open loop system<br />

depends on the calibration of the i/p.<br />

<strong>Closed</strong> <strong>Loop</strong> <strong>System</strong><br />

1. As the error between the reference input<br />

and the output is continuously measuredthrough<br />

feedback.<br />

2. The open loop system is more stable. 2. The closed loop system is less stable.<br />

3. It is less accurate. 3. It is more accurate.<br />

4. It is cheap and less complex. 4. It is expensive and more complex circuit.<br />

5. Effect of Noise and disturbance is more<br />

in open loop control system.<br />

7. Laplace Transform<br />

Laplace transformation is very great tool in control system.<br />

The mathematical expression for laplace transforms<br />

LF(t)<br />

=<br />

∞<br />

–st<br />

F(S) = ∫ F(t) e dt<br />

0<br />

5. Effect of Noise and disturbance is less in<br />

closed loop control system.<br />

F(S)<br />

The term “laplace transform of F(t)” is used for the letter LF(t).<br />

8. Basic Laplace Transform Theorem<br />

Basic theorems of laplace transform are given below —<br />

Theorem 1: Multiplication by a constant<br />

Let k be a constant and F(S) be the laplace transform of F(t), then<br />

[ Kf(t) ]<br />

Theorem 2: Sum and difference<br />

=<br />

KF(S)<br />

Let F1(S) and F2(S) be the laplace transform of f ( t ) f ( t)<br />

( ) ( )<br />

1 2<br />

± , then<br />

⎡⎣f1 t ± f2 t ⎤⎦<br />

= F(S)±<br />

1<br />

F<br />

2(S)<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-4<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

Theorem 3: Differentiation<br />

dF(t)<br />

i. L = SF(S)-F(0)<br />

dt<br />

[ ]<br />

2<br />

dF(t) 2 1<br />

ii. L = ⎡S F(S)-F(0)-f (0)<br />

2<br />

dt<br />

1 dF(0)<br />

where, F (0) = dt<br />

In general, for higher order derivatives or F(t)<br />

n<br />

⎡d F()<br />

t ⎤<br />

L ⎢ ⎥ = sFS<br />

n<br />

− s f O − s f − f<br />

⎣ dt ⎦<br />

⎣<br />

n n−1 n−2 (1) ( n−1)<br />

( ) ( ) (0) (0)<br />

Where, F 1 (0) denotes the i th order derivative of f(t) with respect to t1,<br />

Theorem 4: Integration<br />

⎡<br />

i. L∫<br />

F(t) = ⎢ +<br />

⎣ S<br />

1<br />

F(S) F (0)<br />

⎡<br />

ii. L∫∫<br />

F(t) = ⎢ + +<br />

⎣ S S S<br />

S<br />

⎤<br />

⎥<br />

⎦<br />

F(S)<br />

1<br />

F (0)<br />

2<br />

F (0)<br />

2 2<br />

Theorem 5: Shift in time<br />

The laplace transform of F(t) delayed by time T is equal to the laplace transform F(t)<br />

multiplied by e –ST that is<br />

-ST<br />

L [ F(t – T)u<br />

s(t – T) ] = e F(S)<br />

Where US(t–T) denotes the unit step function that is shifted in time to the right by T.<br />

Theorem 6: Complex shifting<br />

The laplace transform of F(t) multiplied by<br />

transform F(S), with S replaced by ( S ± α )<br />

L ⎡<br />

⎣e<br />

∓αt<br />

Theorem 7: Initial-value theorem<br />

If the laplace transform of F(t) is F(S), then<br />

t→0<br />

αt<br />

e ∓<br />

⎤<br />

⎦<br />

⎤<br />

⎥<br />

⎦<br />

, where α is a constant is equal to the laplace<br />

that is<br />

F(t) ⎤<br />

⎦=F(S±α)<br />

lim F( t) = lim SF( S )<br />

S→∞<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-5<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

Theorem 8: Final value theorem<br />

lim F( t) = lim SLF( t)<br />

t→∞<br />

S→0<br />

lim F( t) = lim SF( S)<br />

t→∞<br />

S→0<br />

Point to be Remember<br />

If the denominator of SF(S) has any root having real part as zero or positive, then final value<br />

theorem is not valid. [GATE 2007]<br />

USEFUL TRANSFORM (LAPLACE) PAIR<br />

1 F(t) F(S) = LF(t)<br />

2 δ(t) unit impulse 1<br />

3 U(t)<br />

1<br />

S<br />

4 U(t–T)<br />

1 −st<br />

e<br />

S<br />

1<br />

5 t<br />

2<br />

S<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

2<br />

t<br />

2<br />

1<br />

S<br />

n<br />

t n 1<br />

s +<br />

1<br />

at<br />

e −<br />

at<br />

e<br />

−at<br />

te<br />

at<br />

te<br />

3<br />

n<br />

s+<br />

a<br />

1<br />

s−<br />

a<br />

1<br />

( s+<br />

a) 2<br />

1<br />

( s−<br />

a) 2<br />

13<br />

h –αt<br />

n+<br />

te ∠ n/<br />

( s+<br />

a ) 1<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-6<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

ω<br />

14 sinωt<br />

2 2<br />

s +ω<br />

−αt<br />

15 e cosωt<br />

−αt<br />

16 e sinωt<br />

17 sin hα<br />

t<br />

18 cos hα<br />

t<br />

s + α<br />

( ) 2 2<br />

s + α + ω<br />

ω<br />

( ) 2 2<br />

s + α + ω<br />

α<br />

2 2<br />

s −α<br />

s<br />

2 2<br />

s −α<br />

9. Summary<br />

1. Open loop control system no feedback used.<br />

2. In closed loop control system we used feedback.<br />

3. Open loop system is more stable.<br />

4. <strong>Closed</strong> loop system is more accurate.<br />

5. Final value theorem can not used if denominators of SF(S) have real part as a zero or<br />

positive.<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-7<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

ASKED OBJECTIVE QUESTIONS (GATE, <strong>IES</strong>)<br />

Previous Years GATE Questions<br />

Basic Laplace Transform Theorem<br />

GATE-1.<br />

If the Laplace Transform of a signal y(t) is<br />

1<br />

Y() s = ,<br />

ss ( −1)<br />

then its final<br />

value is:<br />

[GATE-2007]<br />

(a) -1 (b) 0 (c) 0 (d) Unbounded<br />

−t<br />

GATE-2. The unit impulse response of a system is f () t = e , t ≥ 0 [GATE-2006]<br />

For this system, the steady-state value of the output for unit step input<br />

is equal to<br />

(a) -1 (b) 0 (c) 1 (d) ∞<br />

Previous Years <strong>IES</strong> Questions<br />

<strong>Closed</strong>-<strong>Loop</strong> <strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong>-1.<br />

When a human being tries to approach an object, his brain acts as<br />

(a) An error measuring device (b) A controller [<strong>IES</strong>-1999]<br />

(c) An actuator<br />

(d) An amplifier<br />

<strong>IES</strong>-2.<br />

Assertion (A): Feedback control systems offer more accurate control<br />

over open-loop systems.<br />

[<strong>IES</strong>-2000]<br />

Reason (R): The feedback path establishes a link for input and output<br />

comparison and subsequent error correction.<br />

(a) Both A and R are true and R is the correct explanation of A<br />

(b) Both A and R are true but R is NOT the correct explanation of A<br />

(c) A is true but R is false<br />

(d) A is false but R is true<br />

<strong>IES</strong>-3. Consider the following statements: [<strong>IES</strong>-2000]<br />

1. The effect of feedback is to reduce the system error<br />

2. Feedback increases the gain of the system in one frequency range<br />

but decreases in another<br />

3. Feedback can cause a system that is originally stable to become<br />

unstable<br />

Which of these statements are correct<br />

(a) 1, 2 and 3 (b) 1 and 2 (c) 2 and 3 (d) 1 and 3<br />

<strong>IES</strong>-4. Consider the following statements which respect to feedback control<br />

systems:<br />

[<strong>IES</strong>-2006]<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-8<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

1. Accuracy cannot be obtained by adjusting loop gain.<br />

2. Feedback decreases overall gain.<br />

3. Introduction of noise due to sensor reduces overall accuracy.<br />

4. Introduction of feedback may lead to the possibility of instability of<br />

closed loop system.<br />

Which of the statements given above are correct<br />

(a) 1, 2, 3 and 4 (b) Only 1, 2 and 4<br />

(c) Only 1 and 3 (d) Only 2, 3 and 4<br />

<strong>IES</strong>-5. A negative-feedback closed-loop system is supplied to an input of 5V.<br />

The system has a forward gain of 1 and a feedback gain of a 1. What is<br />

the output voltage<br />

[<strong>IES</strong>-2009]<br />

(a) 1.0 V (b) 1.5 V (c) 2.0 V (d) 2.5 V<br />

Basic Laplace Transform Theorem<br />

ω<br />

<strong>IES</strong>-6. Consider the function F(s) = where F(s) is the Laplace transform<br />

2 2<br />

s + ω<br />

of f(t). What is the steady-state value of f(t) <br />

[<strong>IES</strong>-2009]<br />

(a) Zero (b) One (c) Two (d) A value between -1 and +1<br />

<strong>IES</strong>-7.<br />

The transfer function of a linear-time-invariant system is given as<br />

1<br />

. What is the steady-state value of the unit-impulse response<br />

( s + 1)<br />

[<strong>IES</strong>-2009]<br />

(a) Zero (b) One (c) Two (d) Infinite<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-9<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

Answers with Explanation<br />

(Objective)<br />

Previous Years GATE Answer<br />

GATE-1. Ans. (d)<br />

1<br />

Y()<br />

s =<br />

SS ( + 1)<br />

Final value of Y(s)<br />

-1 -1 ⎡ 1 ⎤ -1 ⎡ 1 1 ⎤<br />

LT ( Y( s)) = LT ⎢ = LT − +<br />

( + 1)<br />

⎥ ⎢<br />

⎣ −1⎥<br />

⎣SS ⎦ S S ⎦<br />

Yt () = e<br />

t<br />

−ut<br />

()<br />

final value = ∞<br />

t →∞<br />

GATE-2. Ans. (c) Unit impulse response of a system is<br />

f() t = e<br />

−t<br />

t≥0<br />

1<br />

f()<br />

s = S +1<br />

O/P for unit step I/P<br />

= 1 1<br />

S + 1<br />

× S<br />

1<br />

=<br />

SS ( + 1)<br />

1<br />

( Cs ( )) lim S = 1<br />

t =∞ = × s→0<br />

SS ( + 1)<br />

Previous Years <strong>IES</strong> Answer<br />

<strong>IES</strong>-1. Ans. (b)<br />

<strong>IES</strong>-2. Ans. (a)<br />

<strong>IES</strong>-3. Ans. (d) Feedback is applied to reduce<br />

the system error. Consider the<br />

example.<br />

Cs ( ) Gs ( )<br />

=<br />

Rs 1 − GsHs<br />

( )<br />

( ) ( )<br />

1<br />

s 1 1<br />

=<br />

+<br />

=<br />

1 s − 1<br />

1 − s+<br />

1<br />

Thus, we see that the closed loop system is unstable while the open loop system is<br />

stable.<br />

<strong>IES</strong>-4. Ans. (d)<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-10<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290


India’s No 1<br />

<strong>Control</strong> <strong>System</strong><br />

<strong>IES</strong> <strong>Academy</strong> Chapter 1<br />

<strong>IES</strong>-5. Ans. (d) Output voltage =<br />

Vin<br />

1<br />

A<br />

AB<br />

1<br />

= 5x = 2.5V<br />

+ 1+<br />

( 1x1x )<br />

<strong>IES</strong>-6. Ans. (d) This is the Laplace transform of sin t.<br />

So, f(t) = sin t<br />

Steady-state value of f(t) is undetermined because poles of F(s) are not in LHS of<br />

s-plane. Therefore, steady-state value will vary between - 1 and + 1.<br />

1<br />

<strong>IES</strong>-7. Ans. (a) Steady state value = lims 1 = 0<br />

s→ 0 s+<br />

1<br />

( )<br />

www.iesacademy.com Email: iesacademy@yahoo.com Page-11<br />

________________________________________________________________________<br />

25, 1 st Floor, Jia Sarai, Near IIT. New Delhi-16 Ph: 011-26537570, 9810958290

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!