09.11.2012 Views

Propulsion of VLCC - MAN Diesel & Turbo

Propulsion of VLCC - MAN Diesel & Turbo

Propulsion of VLCC - MAN Diesel & Turbo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Propulsion</strong> <strong>of</strong> <strong>VLCC</strong>


Contents<br />

Introduction..................................................................................................5<br />

EEDI.and.Major.Ship.and.Main.Engine.Parameters........................................6<br />

Energy.Efficiency.Design.Index.(EEDI)......................................................6<br />

Major.propeller.and.engine.parameters....................................................7<br />

320,000.dwt.<strong>VLCC</strong>..................................................................................8<br />

Main.Engine.Operating.Costs.–.16.3.knots....................................................9<br />

Fuel.consumption.and.EEDI.....................................................................9<br />

Operating.costs..................................................................................... 12<br />

Main.Engine.Operating.Costs.–.15.5.knots.................................................. 13<br />

Fuel.consumption.and.EEDI................................................................... 13<br />

Operating.costs..................................................................................... 16<br />

Summary.................................................................................................... 17


<strong>Propulsion</strong> <strong>of</strong> <strong>VLCC</strong><br />

Introduction<br />

The.size.<strong>of</strong>.Very.Large.Crude.Carriers,.<br />

<strong>VLCC</strong>s,. see. Fig.. 1,. is. normally. within.<br />

the. deadweight. range. <strong>of</strong>. 250,000-<br />

320,000. dwt. and. the. ship’s. overall.<br />

length.is.about.330-335.m.<br />

Recent.development.steps.have.made.<br />

it.possible.to.<strong>of</strong>fer.solutions.which.will.<br />

enable. significantly. lower. transporta-<br />

tion.costs.for.<strong>VLCC</strong>s.as.outlined.in.the.<br />

following.<br />

One.<strong>of</strong>.the.goals.in.the.marine.industry.<br />

today. is. to. reduce. the. impact. <strong>of</strong>. CO2.<br />

emissions. from. ships. and,. therefore,.<br />

to.reduce.the.fuel.consumption.for.the.<br />

Fig. 1: A <strong>VLCC</strong><br />

propulsion.<strong>of</strong>.ships.to.the.widest.pos-<br />

sible.extent.at.any.load.<br />

This. also. means. that. the. inherent. de-<br />

sign.CO2.index.<strong>of</strong>.a.new.ship,.the.so-<br />

called. Energy. Efficiency. Design. Index.<br />

(EEDI),. will. be. reduced.. Based. on. an.<br />

average. reference. CO2. emission. from.<br />

existing.tankers,.the.CO2.emission.from.<br />

new.tankers.in.gram.per.dwt.per.nauti-<br />

cal.mile.must.be.equal.to.or.lower.than.<br />

the.reference.emission.figures.valid.for.<br />

the.specific.tanker.<br />

This. drive. may. <strong>of</strong>ten. result. in. opera-<br />

tion. at. lower. than. normal. service. ship.<br />

speeds. compared. to. earlier,. resulting.<br />

in. reduced. propulsion. power. utilisa-<br />

tion..The.design.ship.speed.at.Normal.<br />

Continuous. Rating. (NCR),. including.<br />

15%.sea.margin,.used.to.be.as.high.as.<br />

16.0-16.5.knots..Today,.the.ship.speed.<br />

may.be.expected.to.be.lower,.possibly.<br />

15.5.knots,.or.even.lower..However,.so.<br />

far.only.few,.if.any,.have.specified.lower.<br />

installed.power.for.new.<strong>VLCC</strong>s.<br />

A.more.technically.advanced.develop-<br />

ment. drive. is. to. optimise. the. aftbody.<br />

and. hull. lines. <strong>of</strong>. the. ship. –. including.<br />

bulbous. bow,. also. considering. opera-<br />

tion.in.ballast.condition.–.making.it.pos-<br />

sible. to. install. propellers. with. a. larger.<br />

propeller. diameter. and,. thereby,. ob-<br />

<strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

5


taining. higher. propeller. efficiency,. but.<br />

at.a.reduced.optimum.propeller.speed.<br />

As.the.two-stroke.main.engine.is.direct-<br />

ly.coupled.with.the.propeller,.the.intro-<br />

duction.<strong>of</strong>.the.‘Green’.ultra.long.stroke.<br />

G80ME-C.engine.with.even.lower.than.<br />

usual. shaft. speed. will. meet. this. drive.<br />

and. target. goal.. The. main. dimensions.<br />

for.this.engine.type,.and.for.other.exist-<br />

ing.<strong>VLCC</strong>.engines,.are.shown.in.Fig..2.<br />

Based. on. a. case. study. <strong>of</strong>. a. 320,000.<br />

dwt. <strong>VLCC</strong>,. this. paper. shows. the. in-<br />

fluence. on. fuel. consumption. when.<br />

choosing. the. new. G80ME-C. engine.<br />

compared.with.existing.<strong>VLCC</strong>.engines..<br />

The. layout. ranges. <strong>of</strong>. 6. and. 7G80ME-<br />

C9.2. engines. compared. with. existing.<br />

engines.are.shown.in.Fig..3.<br />

13,586<br />

2,656<br />

1,736<br />

5,020<br />

S80ME-C8.2<br />

14,071<br />

2,840<br />

1,890<br />

EEDI and Major Ship and Main Engine<br />

Parameters<br />

Energy Efficiency Design Index (EEDI)<br />

The. Energy. Efficiency. Design. Index.<br />

(EEDI).is.conceived.as.a.future.mandatory.<br />

instrument. to. be. calculated. and.<br />

made. as. available. information. for. new.<br />

ships.. EEDI. represents. the. amount. <strong>of</strong>.<br />

CO2.in.gram.emitted.when.transporting.<br />

one.deadweight.tonnage.<strong>of</strong>.cargo.one.<br />

nautical.mile.<br />

For. tankers,. the. EEDI. value. is. essentially.<br />

calculated. on. the. basis. <strong>of</strong>. maximum.cargo.capacity,.propulsion.power,.ship.speed,.SFOC.and.fuel.type..However,.certain.correction.factors.are.applicable,.<br />

e.g.. for. installed. Waste. Heat.<br />

Recovery. systems.. To. evaluate. the.<br />

achieved. EEDI,. a. reference. value. for.<br />

5,374<br />

S80ME-C9.2<br />

Fig. 2: Main dimensions for a G80ME-C9.2 engine and for other existing <strong>VLCC</strong> engines<br />

6 <strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

14,879<br />

3,010<br />

1,960<br />

G80ME-C9.2<br />

the.specific.ship.type.and.the.specified.<br />

cargo.capacity.is.used.for.comparison.<br />

The.main.engine’s.75%.SMCR.(Speci-<br />

fied. Maximum. Continuous. Rating). fig-<br />

ure.is.as.standard.applied.in.the.calcu-<br />

lation.<strong>of</strong>.the.EEDI.figure,.in.which.also.<br />

the.CO2.emission.from.the.auxiliary.en-<br />

gines.<strong>of</strong>.the.ship.is.included.<br />

According. to. the. rules. finally. decided.<br />

on.15.July.2011,.the.EEDI.<strong>of</strong>.a.new.ship.<br />

is.reduced.to.a.certain.factor.compared.<br />

to.a.reference.value..Thus,.a.ship.built.<br />

after. 2025. is. required. to. have. a. 30%.<br />

lower.EEDI.than.the.reference.figure.<br />

13,889<br />

5,680 5,000<br />

2,835<br />

1,800<br />

S90ME-C8.2


<strong>Propulsion</strong><br />

SMCR power<br />

kW<br />

35,000 4-bladed FP-propellers<br />

constant ship speed coefficient ∝ = 0.28<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

SMCR power and speed are inclusive <strong>of</strong>:<br />

� 15% sea margin<br />

� 10% engine margin<br />

� 5% light running<br />

T des = 21.0 m<br />

G80ME-C9.2<br />

Bore = 800 mm<br />

Stroke = 3,720 mm<br />

Vpist = 8.43 m/s (8.93 m/s)<br />

S/B = 4.65<br />

MEP = 21 bar<br />

L1 = 4,450 kW/cyl. at 68 r/min<br />

= 4,710 kW/cyl. at 72 r/min)<br />

(L 1<br />

320,000 dwt <strong>VLCC</strong><br />

Increased propeller diameter<br />

G80ME-C9.2<br />

M4’<br />

7G80ME-C9.2<br />

6G80ME-C9.2<br />

M4<br />

Possible<br />

Dprop = 11.0 m<br />

(=52.4% T des )<br />

M3<br />

M3’<br />

∝<br />

∝<br />

∝<br />

∝<br />

Possible<br />

Dprop = 10.5 m<br />

(=50.0% T des )<br />

7S80ME-C9.2<br />

6S90ME-C8.2<br />

6S90ME-C7.1<br />

72 r/min<br />

∝<br />

∝<br />

M2’<br />

6S80ME-C9.2<br />

M’ = SMCR (15.5 kn)<br />

M1’ = 27,060 kW x 78.0 r/min 6S80ME-C9.2<br />

M2’ = 26,860 kW x 76.0 r/min 6S90ME-C7.1<br />

M3’ = 26,040 kW x 68.0 r/min 6G80ME-C9.2<br />

M4’ = 25,370 kW x 62.0 r/min 7G80ME-C9.2<br />

M1, M2<br />

M1’<br />

78r/min<br />

76r/min<br />

Existing<br />

Dprop = 10.0 m<br />

(=47.6% T des )<br />

14.0 kn<br />

15.0 kn<br />

15.5 kn<br />

Existing<br />

Dprop = 9.5 m<br />

(=45.2% T des )<br />

16.0 kn<br />

16.5 kn<br />

16.3 kn<br />

M = SMCR (16.3 kn)<br />

M1 = 31,570 kW x 78.0 r/min 7S80ME-C9.2<br />

M2 = 31,570 kW x 78.0 r/min 6S90ME-C8.2<br />

M3 = 30,380 kW x 68.0 r/min 7G80ME-C9.2<br />

M4 = 30,090 kW x 65.7 r/min 7G80ME-C9.2<br />

40 50 60 70 80 90 r/min<br />

Engine/propeller speed at SMCR<br />

Fig. 3: Different main engine and propeller layouts and SMCR possibilities (M1, M2, M3, M4 for 16.3 knots and M1’, M2’, M3’, M4’ for 15.5 knots) for a<br />

320,000 dwt <strong>VLCC</strong> operating at 16.3 knots and 15.5 knots, respectively.<br />

Major propeller and engine parameters<br />

In.general,.the.larger.the.propeller.diameter,.the.higher.the.propeller.efficiency.and.<br />

the. lower. the. optimum. propeller. speed.<br />

referring.to.an.optimum.ratio.<strong>of</strong>.the.propeller.pitch.and.propeller.diameter.<br />

When.increasing.the.propeller.pitch.for.<br />

a.given.propeller.diameter.with.optimum.<br />

pitch/diameter. ratio,. the. correspond-<br />

ing. propeller. speed. may. be. reduced.<br />

and. the. efficiency. will. also. be. slightly.<br />

reduced,. <strong>of</strong>. course. depending. on. the.<br />

degree.<strong>of</strong>.the.changed.pitch..The.same.<br />

is.valid.for.a.reduced.pitch,.but.here.the.<br />

propeller.speed.may.increase.<br />

The.efficiency.<strong>of</strong>.a.two-stroke.main.en-<br />

gine.particularly.depends.on.the.ratio.<strong>of</strong>.<br />

the. maximum. (firing). pressure. and. the.<br />

mean.effective.pressure..The.higher.the.<br />

ratio,. the. higher. the. engine. efficiency,.<br />

i.e..the.lower.the.Specific.Fuel.Oil.Con-<br />

sumption.(SFOC).<br />

Furthermore,.the.higher.the.stroke/bore.<br />

ratio.<strong>of</strong>.a.two-stroke.engine,.the.high-<br />

er. the. engine. efficiency.. This. means,.<br />

for. example,. that. an. ultra. long. stroke.<br />

engine. type,. as. the. G80ME-C9,. may.<br />

have.a.higher.efficiency.compared.with.<br />

a. shorter. stroke. engine. type,. like. a.<br />

K80ME-C9.<br />

Furthermore,. the. application. <strong>of</strong>. new.<br />

propeller. design. technologies,. NPT.<br />

propellers,. motivates. use. <strong>of</strong>. main. en-<br />

gines. with. lower. rpm.. Thus,. for. the.<br />

same.propeller.diameter,.these.propel-<br />

ler.types.are.claimed.to.have.an.about.<br />

6%. improved. overall. efficiency. gain. at.<br />

about.10%.lower.propeller.speed.<br />

Hence,.the.advantage.<strong>of</strong>.the.new.lower.<br />

speed. engines. can. be. utilised. also. in.<br />

case.a.correspondingly.larger.propeller.<br />

cannot.be.accumulated.<br />

<strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

7


320,000 dwt <strong>VLCC</strong><br />

For. a. 320,000. dwt. <strong>VLCC</strong>. tanker,. the.<br />

following.case.study.illustrates.the.potential.for.reducing.fuel.consumption.by.<br />

increasing. the. propeller. diameter. and.<br />

introducing. the. G80ME-C9.2. as. main.<br />

engine.. The. ship. particulars. assumed.<br />

are.as.follows:<br />

Scantling.draught. m. 22.5<br />

Design.draught. m. 21.0<br />

Length.overall. m. 333.0<br />

Length.between.pp. m. 319.0<br />

Breadth. m. 60.0<br />

Sea.margin. %. 15<br />

Engine.margin. %. 10<br />

Design.ship.speed. kn. 16.3.and.15.5<br />

Type.<strong>of</strong>.propeller. . FPP<br />

No..<strong>of</strong>.propeller.blades. . 4<br />

Propeller.diameter. m. target<br />

Based. on. the. above-stated. average.<br />

ship. particulars. assumed,. we. have.<br />

made. a. power. prediction. calculation.<br />

(Holtrop. &. Mennen’s. Method). for. different.design.ship.speeds.and.propeller.<br />

diameters,. and. the. corresponding.<br />

SMCR. power. and. speed,. point. M,. for.<br />

propulsion. <strong>of</strong>. the. <strong>VLCC</strong>. is. found,. see.<br />

Fig.. 3.. The. propeller. diameter. change.<br />

corresponds.approximately.to.the.constant.ship.speed.factor.α.=.0.28.[PM2.=.<br />

PM1.x.(n2/n1) α ].<br />

Referring. to. the. two. ship. speeds. <strong>of</strong>.<br />

16.3.knots.and.15.5.knots,.respectively,.four.potential.main.engine.types.and.<br />

pertaining. layout. diagrams. and. SMCR.<br />

points.have.been.drawn-in.in.Fig..3,.and.<br />

the. main. engine. operating. costs. have.<br />

been. calculated. and. described. below.<br />

individually. for. each. ship. speed. case..<br />

The.layout.diagram.<strong>of</strong>.the.G80ME-C9.2.<br />

below.or.equal.to.68.r/min.is.especially.<br />

suitable.for.<strong>VLCC</strong>s.whereas.the.speed.<br />

8 <strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

range.from.68.to.72.r/min.is.particularly.<br />

suitable.for.e.g..container.vessels.<br />

It.should.be.noted.that.the.ship.speed.<br />

stated.refers.to.NCR.=.90%.SMCR.including.<br />

15%. sea. margin.. If. based. on.<br />

calm. weather,. i.e.. without. sea. margin,.<br />

the. obtainable. ship. speed. at. NCR. =.<br />

90%. SMCR. will. be. about. 0.7. knots.<br />

higher.<br />

If.based.on.75%.SMCR,.as.applied.for.<br />

calculation.<strong>of</strong>.the.EEDI,.the.ship.speed.<br />

will.be.about.0.1.knot.lower,.still.based.<br />

on. calm. weather. conditions,. i.e.. with-<br />

out.any.sea.margin.


Main Engine Operating Costs –<br />

16.3 knots<br />

The. calculated. main. engine. examples.<br />

are.as.follows:<br />

16.3.knots<br />

1.. 7S80ME-C9.2..<br />

. M1.=.31,570.kW.x.78.0.r/min<br />

2.. 6S90ME-C8.2.<br />

. M2.=.31,570.kW.x.78.0.r/min.<br />

3.. 7G80ME-C9.2.<br />

. M3.=.30,380.kW.x.68.0.r/min.<br />

4.. 7G80ME-C9.2.<br />

. M4.=.30,090.kW.x.65.7.r/min.<br />

The.main.engine.fuel.consumption.and.<br />

operating. costs. at. N. =. NCR. =. 90%.<br />

SMCR. have. been. calculated. for. the.<br />

above.four.main.engine/propeller.cases.<br />

operating. on. the. relatively. high. ship.<br />

speed. <strong>of</strong>. 16.3. knots,. as. <strong>of</strong>ten. used.<br />

earlier..Furthermore,.the.corresponding.<br />

EEDI.has.been.calculated.on.the.basis.<br />

<strong>of</strong>.the.75%.SMCR-related.figures.(with-<br />

out.sea.margin).<br />

Fuel consumption and EEDI<br />

Fig.. 4. shows. the. influence. <strong>of</strong>. the. propeller.diameter.when.going.from.about.<br />

10.0. to. 11.0. m.. Thus,. N4. for. the.<br />

7G80ME-C9.2.with.an.11.0.m.propeller.<br />

diameter. has. a. propulsion. power.<br />

demand. that. is. about. 4.7%. lower.<br />

compared. with. N1. and. N2. valid. for.<br />

the. 7S80ME-C9.2. and. 6S90ME-C8.2,.<br />

both.with.a.propeller.diameter.<strong>of</strong>.about.<br />

10.0.m.<br />

<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 16.3 knots<br />

Expected propulsion power demand at N = NCR = 90% SMCR<br />

<strong>Propulsion</strong> power<br />

Relative power<br />

demand at N = NCR<br />

reduction<br />

kW<br />

30,000<br />

Inclusive <strong>of</strong> sea margin = 15%<br />

28,410 kW 28,410 kW<br />

%<br />

12<br />

27,340 kW 27,080 kW 11<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Dprop:<br />

0%<br />

7S80ME-C9.2<br />

N1<br />

10.0 m<br />

0%<br />

6S90ME-C8.2<br />

N2<br />

10.0 m<br />

3.8%<br />

7G80ME-C9.2<br />

N3<br />

10.8 m<br />

Fig. 4: Expected propulsion power demand at NCR for 16.3 knots<br />

4.7%<br />

7G80ME-C9.2<br />

N4<br />

11.0 m<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

<strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

9


<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 16.3 knots<br />

Expected SFOC<br />

SFOC<br />

g/kWh<br />

174<br />

173<br />

172<br />

171<br />

170<br />

169<br />

168<br />

167<br />

166<br />

165<br />

164<br />

163<br />

162<br />

161<br />

160<br />

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % SMCR<br />

Engine shaft power<br />

N = NCR M = SMCR<br />

Fig. 5: Expected SFOC for 16.3 knots<br />

10 <strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

IMO Tier ll<br />

ISO ambient conditions<br />

LCV = 42,700 kJ/kg<br />

Standard high-load<br />

optimised engines<br />

N1<br />

N2<br />

N4<br />

N3<br />

M1 7S80ME-C9.2<br />

M2 6S90ME-C8.2<br />

M4 7G80ME-C9.2 11.0 m<br />

M3 7G80ME-C9.2 10.8 m<br />

Savings<br />

in SFOC<br />

0%<br />

0.6%<br />

1.0%<br />

Dprop<br />

10.0 m<br />

10.0 m<br />

Fig..5.shows.the.influence.on.the.main.<br />

engine.efficiency,.indicated.by.the.Spe-<br />

cific. Fuel. Oil. Consumption,. SFOC,. for.<br />

the. four. cases.. N3. =. 90%. M3. for. the.<br />

7G80ME-C9.2. has. an. SFOC. <strong>of</strong>. 164.1.<br />

g/kWh,. whereas. the. N4. =. 90%. M4,.<br />

also.for.the.7G80ME-C9.2,.has.a.high-<br />

er. SFOC. <strong>of</strong>. 164.8. g/kWh. because. <strong>of</strong>.<br />

the.higher.mean.effective.pressure.<br />

The. 164.8. g/kWh. SFOC. <strong>of</strong>. the. N4. for.<br />

the.7G80ME-C9.2.is.0.6%.lower.com-<br />

pared. with. N1. for. the. nominally. rated.<br />

7S80ME-C9.2.with.an.SFOC.<strong>of</strong>.165.8.<br />

g/kWh.. This. is. because. <strong>of</strong>. the. higher.<br />

stroke/bore.ratio.<strong>of</strong>.this.G-engine.type.


When.multiplying.the.propulsion.power.<br />

demand. at. N. (Fig.. 4). with. the. SFOC.<br />

(Fig.. 5),. the. daily. fuel. consumption. is.<br />

found. and. is. shown. in. Fig.. 6.. Compared.<br />

with. N1. for. the. 7S80ME-C9.2,.<br />

the.total.reduction.<strong>of</strong>.fuel.consumption.<br />

<strong>of</strong>.the.7G80ME-C9.2.at.N4.is.about.5.3.%.<br />

(see. also. the. above-mentioned. 4.7%.<br />

and.0.6%).<br />

The. reference. and. the. actual. EEDI.<br />

figures. have. been. calculated. and. are.<br />

shown. in. Fig.. 7. (EEDIRef. =. 1,218.8. x.<br />

DWT. -0.488 ,. 15. July. 2011).. As. can. be.<br />

seen.for.all.four.cases,.the.actual.EEDI.<br />

figures.are.higher.than.or.equal.to.the.<br />

reference.figure..However,.this.is.to.be.<br />

expected.for.<strong>VLCC</strong>.operation.on.a.ship.<br />

speed.as.high.as.16.3.knots.<br />

<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 16.3 knots<br />

Expected fuel consumption at N = NCR = 90% SMCR<br />

Fuel consumption<br />

IMO Tier ll<br />

<strong>of</strong> main engine<br />

ISO ambient conditions<br />

t/24h<br />

LCV = 42,700 kJ/kg<br />

<strong>Propulsion</strong> <strong>of</strong> 320,000 DWT <strong>VLCC</strong> – 16.3 knots<br />

Energy Efficiency Design Index (EEDI) 75% SMCR; 16.2 kn without sea margin<br />

Reference and actual EEDI<br />

CO 2 emissions gram per dwt/n mile Actual/Reference EEDI %<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Dprop:<br />

2.65<br />

2.51 106%<br />

0<br />

7S80ME-C9.2<br />

1<br />

Dprop: 10.0 m<br />

113.1<br />

t/24h<br />

0%<br />

7S80ME-C9.2<br />

N1<br />

10.0 m<br />

113.0<br />

t/24h<br />

6S90ME-C8.2<br />

N2<br />

10.0 m<br />

Fig. 6: Expected fuel consumption at NCR for 16.3 knots<br />

EEDI reference EEDI actual<br />

2.65<br />

2.51 106% 2.51 2.54<br />

101%<br />

6S90ME-C8.2<br />

2<br />

10.0 m<br />

7G80ME-C9.2<br />

3<br />

10.8 m<br />

Fig. 7: Reference and actual Energy Efficiency Design Index (EEDI) for 16.3 knots<br />

0%<br />

107.7<br />

t/24h<br />

4.8%<br />

7G80ME-C9.2<br />

N3<br />

10.8 m<br />

107.1<br />

t/24h<br />

5.3%<br />

7G80ME-C9.2<br />

N4<br />

11.0 m<br />

Relative saving <strong>of</strong><br />

fuel consumption<br />

%<br />

2.51<br />

2.50<br />

100%<br />

12<br />

11<br />

10<br />

7G80ME-C9.2<br />

4<br />

11.0 m<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

<strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

11


<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 16.3 knots<br />

Total annual main engine operating costs<br />

IMO Tier ll<br />

Annual operating costs<br />

Million USD/Year<br />

ISO ambient conditions<br />

250 days/year<br />

NCR = 90% SMCR<br />

Fuel price: 700 USD/t<br />

Relative saving<br />

in operating costs<br />

%<br />

22 11<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0%<br />

0<br />

7S80ME-C9.2<br />

N1<br />

Dprop: 10.0 m<br />

0.1%<br />

6S90ME-C8.2<br />

N2<br />

10.0 m<br />

7G80ME-C9.2<br />

N3<br />

10.8 m<br />

Fig. 8: Total annual main engine operating costs for 16.3 knots<br />

<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 16.3 knots<br />

Relative saving in main engine operating costs (NPV)<br />

Saving in operating costs<br />

(Net Present Value)<br />

Million USD<br />

25<br />

IMO Tier ll<br />

ISO ambient conditions<br />

20<br />

N = NCR = 90% SMCR<br />

250 days/year<br />

Fuel price: 700 USD/t<br />

Rate <strong>of</strong> interest and discount: 6% p.a.<br />

15 Rate <strong>of</strong> inflation: 3% p.a.<br />

10<br />

5<br />

0<br />

4.7%<br />

5.2%<br />

Maintenance<br />

Lub. oil<br />

Fuel oil<br />

7G80ME-C9.2<br />

N4<br />

11.0 m<br />

–5<br />

Lifetime<br />

0 5 10 15 20 25 30 Years<br />

Fig. 9: Relative saving in main engine operating costs (NPV) for 16.3 knots<br />

12 <strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

N4 11.0 m<br />

7G80ME-C9.2<br />

N3 10.8 m<br />

7G80ME-C9.2<br />

N2 10.0 m<br />

6S90ME-C8.2<br />

N1 10.0 m<br />

7S80ME-C9.2<br />

Operating costs<br />

The. total. main. engine. operating. costs.<br />

per.year,.250.days/year,.and.fuel.price.<br />

<strong>of</strong>.700.USD/t,.are.shown.in.Fig..8..The.<br />

lube. oil. and. maintenance. costs. are.<br />

shown.too..As.can.be.seen,.the.major.<br />

operating.costs.originate.from.the.fuel.<br />

costs.–.about.96%.<br />

The.relative.savings.in.operating.costs.<br />

in.Net.Present.Value.(NPV),.see.Fig..9,.<br />

with. the. 7S80ME-C9.2. or. 6S90ME-<br />

C8.2. used. as. basis. with. the. propeller.<br />

diameter.<strong>of</strong>.about.10.0.m,.indicates.an.<br />

NPV. saving. for. the. 7G80ME-C9.2. engines.after.some.years.in.service..After.<br />

25.year.in.operation,.the.saving.is.about.<br />

16.7.million.USD.for.N3.with.7G80ME-<br />

C9.2.with.the.SMCR.speed.<strong>of</strong>.68.0.r/<br />

min. and. propeller. diameter. <strong>of</strong>. about.<br />

10.8.m,.and.about.18.4.million.USD.for.<br />

N4. also. with. 7G80ME-C9.2,. but. with.<br />

the.SMCR.speed.<strong>of</strong>.65.7.r/min.and.a.<br />

propeller.diameter.<strong>of</strong>.about.11.0.m.


Main Engine Operating Costs –<br />

15.5 knots<br />

The. calculated. main. engine. examples.<br />

are.as.follows:<br />

15.5.knots<br />

1’.. 6S80ME-C9.2.<br />

. . M1’.=.27,060.kW.x.78.0.r/min<br />

2’.. 6S90ME-C7.1.<br />

. . M2’.=.26,860.kW.x.76.0.r/min.<br />

3’.. 6G80ME-C9.2.<br />

. . M3’.=.26,040.kW.x.68.0.r/min.<br />

4’.. 7G80ME-C9.2.<br />

. . M4’.=.25,370.kW.x.62.0.r/min.<br />

The.6S90ME-C7.1.has.been.chosen.as.<br />

case.2’.as.<strong>of</strong>ten.used.in.the.past.<br />

The.main.engine.fuel.consumption.and.<br />

operating. costs. at. N’. =. NCR. =. 90%.<br />

SMCR. have. been. calculated. for. the.<br />

above.four.main.engine/propeller.cases.<br />

operating. on. the. relatively. lower. ship.<br />

speed.<strong>of</strong>.15.5.knots,.which.is.probably.<br />

going. to. be. a. more. normal. choice. in.<br />

the. future.. Furthermore,. the. EEDI. has.<br />

been. calculated. on. the. basis. <strong>of</strong>. the.<br />

75%. SMCR-related. figures. (without.<br />

sea.margin).<br />

Fuel consumption and EEDI<br />

Fig.. 10. shows. the. influence. <strong>of</strong>. the.<br />

propeller. diameter. when. going. from.<br />

about.9.7.to.11.0.m..Thus,.N4’.for.the.<br />

7G80ME-C9.2.with.an.11.0.m.propeller.<br />

diameter. has. a. propulsion. power.<br />

demand.that.is.about.6.2%.lower.compared.<br />

with. the. N1’. for. the. 6S80ME-<br />

C9.2. with. an. about. 9.7. m. propeller.<br />

diameter.. The. choice. <strong>of</strong>. the. one. extra.<br />

cylinder. for. the. 7G80ME-C9.2. has.<br />

made. it. possible. to. choose. the. large.<br />

11.0.m..propeller.<br />

<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 15.5 knots<br />

Expected propulsion power demand at N’ = NCR = 90% SMCR<br />

<strong>Propulsion</strong> power<br />

demand at N’ = NCR<br />

kW<br />

30,000<br />

25,000<br />

20,000<br />

15,000<br />

10,000<br />

5,000<br />

0<br />

Dprop:<br />

24,350 kW<br />

0%<br />

6S80ME-C9.2<br />

N1’<br />

9.7 m<br />

Inclusive <strong>of</strong> sea margin = 15%<br />

24,170 kW<br />

0.7%<br />

6S90ME-C7.1<br />

N2’<br />

9.8 m<br />

23,440 kW<br />

3.8%<br />

6G80ME-C9.2<br />

N3’<br />

10.4 m<br />

Fig. 10: Expected propulsion power demand at NCR for 15.5 knots<br />

22,830 kW<br />

6.2%<br />

7G80ME-C9.2<br />

N4’<br />

11.0 m<br />

Relative power<br />

reduction<br />

%<br />

12<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

<strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

13


<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 15.5 knots<br />

Expected SFOC<br />

SFOC<br />

g/kWh<br />

176<br />

175<br />

174<br />

173<br />

172<br />

171<br />

170<br />

169<br />

168<br />

167<br />

166<br />

165<br />

164<br />

163<br />

162<br />

161<br />

IMO Tier ll<br />

ISO ambient conditions<br />

LCV = 42,700 kJ/kg<br />

Standard high-load<br />

optimised engines<br />

Dprop<br />

9.7 m<br />

9.8 m<br />

M3’ 6G80ME-C9.2 10.4 m<br />

160<br />

2.5%<br />

159<br />

7G80ME-C9.2 11.0 m<br />

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 % SMCR<br />

Engine shaft power<br />

Fig. 11: Expected SFOC for 15.5 knots<br />

14 <strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

N1’<br />

N3’<br />

N4’<br />

N2’<br />

N1’ = NCR<br />

M1’ 6S80ME-C9.2<br />

M2’ 6S90ME-C7.1<br />

M4’<br />

M1’ = SMCR<br />

Savings<br />

in SFOC<br />

0%<br />

0.3%<br />

1.0%<br />

Fig..11.shows.the.influence.on.the.main.<br />

engine.efficiency,.indicated.by.the.Spe-<br />

cific. Fuel. Oil. Consumption,. SFOC,. for.<br />

the. four. cases.. N4’. =. 90%. M4’. with.<br />

the. 7G80ME-C9.2. has. a. relatively. low.<br />

SFOC. <strong>of</strong>. 161.6. g/kWh. compared. with.<br />

the.165.8.g/kWh.for.N1’.=.90%.M1’.for.<br />

the.6S80ME-C9.2,.i.e..an.SFOC.reduc-<br />

tion. <strong>of</strong>. about. 2.5%,. mainly. caused. by.<br />

the.derating.potential.used.for.the.one.<br />

cylinder.bigger.7G80ME-C9.2.engine.


The.daily.fuel.consumption.is.found.by.<br />

multiplying. the. propulsion. power. demand.at.N’.(Fig..10).with.the.SFOC.(Fig..<br />

11),. see. Fig.. 12.. The. total. reduction.<br />

<strong>of</strong>. fuel. consumption. <strong>of</strong>. the. 7G80ME-<br />

C9.2.is.about.8.6%.compared.with.the.<br />

6S80ME-C9.2.<br />

The. reference. and. the. actual. EEDI.<br />

figures. have. been. calculated. and. are.<br />

shown. in. Fig.. 13. (EEDI Ref . =. 1,218.8. x.<br />

DWT. -0.488 ,. 15. July. 2011).. As. can. be.<br />

seen.for.all.four.cases,.the.actual.EEDI.<br />

figures.are.now.lower.than.the.reference.<br />

figure.because.<strong>of</strong>.the.relatively.low.ship.<br />

speed.<strong>of</strong>.15.5.knots..Particularly,.case.<br />

4’.with.7G80ME-C9.2.has.a.low.EEDI.–.<br />

about.87%.<strong>of</strong>.the.reference.figure.<br />

<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 15.5 knots<br />

Expected fuel consumption at N’ = NCR = 90% SMCR<br />

Fuel consumption<br />

<strong>of</strong> main engine<br />

t/24h<br />

110<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

96.9<br />

t/24h<br />

10<br />

0%<br />

0<br />

6S80ME-C9.2<br />

N1’<br />

Dprop: 9.7 m<br />

IMO Tier ll<br />

ISO ambient conditions<br />

LCV = 42,700 kJ/kg<br />

95.9<br />

t/24h<br />

1.0%<br />

6S90ME-C7.1<br />

N2’<br />

9.8 m<br />

Fig. 12: Expected fuel consumption at NCR for 15.5 knots<br />

92.3<br />

t/24h<br />

4.8%<br />

6G80ME-C9.2<br />

N3’<br />

10.4 m<br />

<strong>Propulsion</strong> <strong>of</strong> 320,000 DWT <strong>VLCC</strong> – 15.5 knots<br />

Energy Efficiency Design Index (EEDI)<br />

75% SMCR; 15.4 kn without sea margin<br />

88.6<br />

t/24h<br />

8.6%<br />

7G80ME-C9.2<br />

N4’<br />

11.0 m<br />

2.51 2.51 2.51 2.51<br />

2.40<br />

95%<br />

2.37<br />

95%<br />

2.28<br />

91%<br />

2.19<br />

87%<br />

Relative saving <strong>of</strong><br />

fuel consumption<br />

%<br />

11<br />

Reference and actual EEDI<br />

CO emissions<br />

2<br />

gram per dwt/n mile Actual/Reference EEDI %<br />

3.0<br />

EEDI reference EEDI actual<br />

0 0<br />

6S80ME-C9.2 6S90ME-C7.1 6G80ME-C9.2 7G80ME-C9.2<br />

1’<br />

2’<br />

3’<br />

4’<br />

Dprop: 9.7 m<br />

9.8 m<br />

10.4 m<br />

11.0 m<br />

Fig. 13: Reference and actual Energy Efficiency Design Index (EEDI) for 15.5 knots<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

<strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

15


<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 15.5 knots<br />

Total annual main engine operating costs<br />

Annual operating costs<br />

Million USD/Year<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Dprop:<br />

0%<br />

6S80ME-C9.2<br />

N1’<br />

9.7 m<br />

IMO Tier ll<br />

ISO ambient conditions<br />

N’ = NCR = 90% SMCR<br />

250 days/year<br />

Fuel price: 700 USD/t<br />

0.9%<br />

6S90ME-C7.1<br />

N2’<br />

9.8 m<br />

4.7%<br />

6G80ME-C9.2<br />

N3’<br />

10.4 m<br />

Fig. 14: Total annual main engine operating costs for 15.5 knots<br />

16 <strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

8.2%<br />

7G80ME-C9.2<br />

N4’<br />

11.0 m<br />

Relative saving<br />

in operating costs<br />

%<br />

Maintenance<br />

Lub. oil<br />

Fuel oil<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Operating costs<br />

The. total. main. engine. operating. costs.<br />

per.year,.250.days/year,.and.fuel.price.<br />

<strong>of</strong>. 700. USD/t,. are. shown. in. Fig.. 14..<br />

Lube. oil. and. maintenance. costs. are.<br />

also.shown.at.the.top.<strong>of</strong>.each.column..<br />

As. can. be. seen,. the. major. operating.<br />

costs. originate. from. the. fuel. costs. –.<br />

about.96%.<br />

The.relative.savings.in.operating.costs.<br />

in.Net.Present.Value,.NPV,.see.Fig..15,.<br />

with.the.6S80ME-C9.2.with.the.propeller.diameter.<strong>of</strong>.about.9.7.m.used.as.basis,.indicates.an.NPV.saving.after.some.<br />

years. in. service. for. the. G80ME-C9.2.<br />

engines..After.25.years.in.operation,.the.<br />

saving.is.about.14.3.million.USD.for.the.<br />

6G80ME-C9.2. with. the. SMCR. speed.<br />

<strong>of</strong>. 68.0. r/min. and. propeller. diameter.<br />

<strong>of</strong>. about. 10.4. m,. and. about. 25.1. million.USD.for.the.derated.7G80ME-C9.2.<br />

with.the.low.SMCR.speed.<strong>of</strong>.62.0.r/min.<br />

and.a.propeller.diameter.<strong>of</strong>.about.11.0.m.


<strong>Propulsion</strong> <strong>of</strong> 320,000 dwt <strong>VLCC</strong> – 15.5 knots<br />

Relative saving in main engine operating costs (NPV)<br />

Saving in operating costs<br />

(Net Present Value)<br />

Million USD<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

IMO Tier ll<br />

ISO ambient conditions<br />

N’ = NCR = 90% SMCR<br />

250 days/year<br />

Fuel price: 700 USD/t<br />

Rate <strong>of</strong> interest and discount: 6% p.a.<br />

Rate <strong>of</strong> inflation: 3% p.a.<br />

–5<br />

0 5 10 15 20 25 30<br />

Fig. 15: Relative saving in main engine operating costs (NPV) for 15.5 knots<br />

N4’ 11.0 m<br />

7G80ME-C9.2<br />

N3’ 10.4 m<br />

6G80ME-C9.2<br />

N2’ 9.8 m<br />

6S90ME-C7.1<br />

N1’ 9.7 m<br />

6S80ME-C7.1<br />

Lifetime<br />

Years<br />

Summary<br />

Traditionally,. super. long. stroke. S-type.<br />

engines,. with. relatively. low. engine.<br />

speeds,. have. been. applied. as. prime.<br />

movers.in.tankers.<br />

Following. the. efficiency. optimisation.<br />

trends. in. the. market,. the. possibility. <strong>of</strong>.<br />

using. even. larger. propellers. has. been.<br />

thoroughly.evaluated.with.a.view.to.using.engines.with.even.lower.speeds.for.<br />

propulsion.<strong>of</strong>.particularly.<strong>VLCC</strong>s.<br />

<strong>VLCC</strong>s. may. be. compatible. with. propellers.<br />

with. larger. propeller. diameters.<br />

than.the.current.designs,.and.thus.high.<br />

efficiencies. following. an. adaptation. <strong>of</strong>.<br />

the.aft.hull.design.to.accommodate.the.<br />

larger.propeller,.together.with.optimised.<br />

hull.lines.and.bulbous.bow,.considering.<br />

operation.in.ballast.conditions.<br />

The.new.ultra.long.stroke.G80ME-C9.2.<br />

engine. type. meets. this. trend. in. the.<br />

<strong>VLCC</strong>. market.. This. paper. indicates,.<br />

depending. on. the. propeller. diameter.<br />

used,. an. overall. efficiency. increase. <strong>of</strong>.<br />

4-9%. when. using. G80ME-C9.2,. compared.<br />

with. existing. main. engines. applied.so.far.<br />

The. Energy. Efficiency. Design. Index.<br />

(EEDI). will. also. be. reduced. when. using.G80ME-C9.2..In.order.to.meet.the.stricter.given.reference.figure.in.the.future,.<br />

the. design. <strong>of</strong>. the. ship. itself. and.<br />

the.design.ship.speed.applied.(reduced.<br />

speed). has. to. be. further. evaluated. by.<br />

the. shipyards. to. further. reduce. the.<br />

EEDI..Among.others,.the.installation.<strong>of</strong>.<br />

WHR.may.reduce.the.EEDI.value.<br />

<strong>Propulsion</strong>.<strong>of</strong>.<strong>VLCC</strong><br />

17


All.data.provided.in.this.document.is.non-binding..This.data.serves.informational.<br />

purposes.only.and.is.especially.not.guaranteed.in.any.way..Depending.on.the.<br />

subsequent.specific.individual.projects,.the.relevant.data.may.be.subject.to.<br />

changes.and.will.be.assessed.and.determined.individually.for.each.project..This.<br />

will.depend.on.the.particular.characteristics.<strong>of</strong>.each.individual.project,.especially..<br />

specific.site.and.operational.conditions..Copyright.©.<strong>MAN</strong>.<strong>Diesel</strong>.&.<strong>Turbo</strong>..<br />

5510-0106-01ppr.Aug.2012.Printed.in.Denmark<br />

<strong>MAN</strong> <strong>Diesel</strong> & <strong>Turbo</strong><br />

Teglholmsgade.41<br />

2450.Copenhagen.SV,.Denmark<br />

Phone. +45.33.85.11.00<br />

Fax. +45.33.85.10.30<br />

info-cph@mandieselturbo.com<br />

www.mandieselturbo.com<br />

<strong>MAN</strong>.<strong>Diesel</strong>.&.<strong>Turbo</strong>.–.a.member.<strong>of</strong>.the.<strong>MAN</strong>.Group

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!