31.12.2014 Views

Semidefinite programming Feasibility and duality - Imre Polik

Semidefinite programming Feasibility and duality - Imre Polik

Semidefinite programming Feasibility and duality - Imre Polik

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

IE496/4<br />

<strong>Imre</strong> Pólik<br />

Outline<br />

<strong>Feasibility</strong><br />

Duality<br />

<strong>Semidefinite</strong> <strong>programming</strong><br />

<strong>Feasibility</strong> <strong>and</strong> <strong>duality</strong><br />

<strong>Imre</strong> Pólik, PhD<br />

Lehigh University<br />

Department of Industrial <strong>and</strong> Systems Engineering<br />

January 22, 2009


IE496/4<br />

<strong>Imre</strong> Pólik<br />

Outline<br />

Outline<br />

<strong>Feasibility</strong><br />

Duality<br />

1 <strong>Feasibility</strong><br />

Review of LP<br />

Weak <strong>and</strong> strong infeasibility<br />

Farkas lemma for SDP<br />

2 Duality<br />

Review of LP <strong>duality</strong><br />

SDP <strong>duality</strong>


IE496/4<br />

<strong>Imre</strong> Pólik<br />

Farkas lemma<br />

Outline<br />

<strong>Feasibility</strong><br />

Review of LP<br />

Weak <strong>and</strong> strong<br />

infeasibility<br />

Farkas lemma for SDP<br />

Duality<br />

min c T x<br />

max b T y<br />

Ax = b<br />

A T y + s = c<br />

x ≥ 0 s ≥ 0<br />

Theorem (Farkas lemma)<br />

The following two statements are equivalent:<br />

1 There is an x ∈ R n such that Ax = b <strong>and</strong> x ≥ 0.<br />

2 There is no y ∈ R m such that A T y ≤ 0 <strong>and</strong> b T y = 1.<br />

In other words, primal (dual) infeasibility is equivalent to the<br />

existence of a dual (primal) improving direction.


Outline<br />

IE496/4<br />

<strong>Imre</strong> Pólik<br />

<strong>Feasibility</strong><br />

Review of LP<br />

Weak <strong>and</strong> strong<br />

infeasibility<br />

Farkas lemma for SDP<br />

Duality<br />

Weak infeasibility for SDP<br />

Consider<br />

(<br />

0 1<br />

min<br />

1 0<br />

(<br />

1 0<br />

0 0<br />

) ( )<br />

x11 x<br />

•<br />

12<br />

x 21 x 22<br />

)<br />

•<br />

( )<br />

x11 x 12<br />

= 1<br />

x 21 x 22<br />

(<br />

1 0<br />

0 0<br />

max y 1<br />

)<br />

(<br />

0 1<br />

y 1 + S =<br />

1 0<br />

X ≽ 0 S ≽ 0<br />

)<br />

The dual is infeasible.<br />

There is no primal improving direction.<br />

But:<br />

The dual is almost feasible.<br />

There is a primal almost improving direction.


IE496/4<br />

<strong>Imre</strong> Pólik<br />

Weak infeasibility<br />

Outline<br />

<strong>Feasibility</strong><br />

Review of LP<br />

Weak <strong>and</strong> strong<br />

infeasibility<br />

Farkas lemma for SDP<br />

Duality<br />

min C • X<br />

max b T y<br />

AX = b<br />

A ∗ y + S = C<br />

X ≽ 0 S ≽ 0<br />

The following are equivalent if the primal is infeasible:<br />

1 For every ε > 0 there is an X ≽ 0 such that<br />

‖AX − b‖ ≤ ε.<br />

2 For every ε > 0 there is a y ∈ R m <strong>and</strong> S ≽ 0 such that<br />

‖A ∗ y + S‖ ≤ ε <strong>and</strong> b T y = 1.<br />

The following are equivalent if the dual is infeasible:<br />

1 For every ε > 0 there is a y ∈ R m <strong>and</strong> S ≽ 0 such that<br />

‖A ∗ y + S − C‖ ≤ ε.<br />

2 For every ε > 0 there is an X ≽ 0 such that ‖AX‖ ≤ ε<br />

<strong>and</strong> C • X = −1.


IE496/4<br />

<strong>Imre</strong> Pólik<br />

Farkas lemma for SDP<br />

Outline<br />

<strong>Feasibility</strong><br />

Review of LP<br />

Weak <strong>and</strong> strong<br />

infeasibility<br />

Farkas lemma for SDP<br />

Duality<br />

min C • X<br />

max b T y<br />

AX = b<br />

A ∗ y + S = C<br />

X ≽ 0 S ≽ 0<br />

Theorem (Farkas lemma for SDP)<br />

The following two statements are NOT equivalent, but<br />

1 ⇒ 2:<br />

1 There is an X ∈ R n×n such that AX = b <strong>and</strong> X ≽ 0.<br />

2 There is no y ∈ R m such that A ∗ y ≼ 0 <strong>and</strong> b T y = 1.<br />

In other words, the existence of a primal (dual) improving<br />

direction implies dual (primal) infeasibility. The converse<br />

fails due to weak infeasibility.


IE496/4<br />

<strong>Imre</strong> Pólik<br />

LP <strong>duality</strong><br />

Outline<br />

<strong>Feasibility</strong><br />

Duality<br />

Review of LP <strong>duality</strong><br />

SDP <strong>duality</strong><br />

min c T x<br />

max b T y<br />

Ax = b<br />

A T y + s = c<br />

x ≥ 0 s ≥ 0<br />

Theorem (Duality of LP)<br />

If the primal (dual) problem is unbounded, then the<br />

dual (primal) is infeasible.<br />

If the primal (dual) problem is infeasible, then the dual<br />

(primal) problem is unbounded or infeasible.<br />

If both problems are feasible, then the optimal values<br />

are the same (there is no <strong>duality</strong> gap), <strong>and</strong> the optimum<br />

is attained for both problems.


IE496/4<br />

<strong>Imre</strong> Pólik<br />

Example 1, <strong>duality</strong> gap<br />

Outline<br />

<strong>Feasibility</strong><br />

Duality<br />

Review of LP <strong>duality</strong><br />

SDP <strong>duality</strong><br />

min<br />

⎛<br />

⎝ 0 0 0<br />

α 0 0<br />

0 0 0<br />

⎛<br />

⎝ 0 1 0<br />

0 0 0<br />

0 0 0<br />

⎛<br />

⎝ 0 0 1<br />

1 0 0<br />

0 1 0<br />

⎞<br />

⎠ • X<br />

⎞<br />

⎠ • X = 0<br />

⎞<br />

⎠ • X = 1<br />

X ≽ 0<br />

Dual optimum is 0, with y = 0<br />

Primal optimum is α, with<br />

x 11 = 1<br />

y 1<br />

⎛<br />

⎝<br />

0 0 0<br />

0 1 0<br />

0 0 0<br />

⎞ ⎛<br />

⎠ + y 2<br />

⎝<br />

1 0 0<br />

0 0 1<br />

0 1 0<br />

max y 2<br />

⎞<br />

⎛<br />

⎠ + S = ⎝<br />

S ≽ 0<br />

α 0 0<br />

0 0 0<br />

0 0 0<br />

What went wrong: dual feasible set is too small (Slater<br />

condition).<br />

⎞<br />


IE496/4<br />

<strong>Imre</strong> Pólik<br />

Example 2, unattained optimum<br />

Outline<br />

<strong>Feasibility</strong><br />

Duality<br />

Review of LP <strong>duality</strong><br />

SDP <strong>duality</strong><br />

(<br />

1 0<br />

min<br />

0 0<br />

(<br />

0 −1<br />

−1 0<br />

) ( )<br />

x11 x<br />

•<br />

12<br />

x 21 x 22<br />

)<br />

•<br />

( )<br />

x11 x 12<br />

= 2<br />

x 21 x 22<br />

(<br />

0 −1<br />

−1 0<br />

max 2y 1<br />

)<br />

(<br />

1 0<br />

y 1 + S =<br />

0 0<br />

X ≽ 0 S ≽ 0<br />

)<br />

Dual optimal value is 0, optimal dual solution is y 1 = 0.<br />

Primal optimal value is 0, but no optimal primal<br />

solution.<br />

What went wrong: dual feasible set is too small (Slater<br />

condition).


IE496/4<br />

<strong>Imre</strong> Pólik<br />

SDP <strong>duality</strong><br />

Outline<br />

<strong>Feasibility</strong><br />

Duality<br />

Review of LP <strong>duality</strong><br />

SDP <strong>duality</strong><br />

min C • X<br />

max b T y<br />

AX = b<br />

A ∗ y + S = C<br />

X ≽ 0 S ≽ 0<br />

Theorem (Duality for SDP)<br />

If the primal (dual) problem is strictly feasible, then the<br />

dual (primal) problem is solvable <strong>and</strong> the optimal values<br />

are equal.<br />

If both problems are strictly feasible, then they are both<br />

solvable <strong>and</strong> the optimal values are equal.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!