01.01.2015 Views

Linking Terrestrial and Aquatic Ecosystem Models ... - EM-1 Project

Linking Terrestrial and Aquatic Ecosystem Models ... - EM-1 Project

Linking Terrestrial and Aquatic Ecosystem Models ... - EM-1 Project

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Linking</strong> <strong>Terrestrial</strong> <strong>and</strong> <strong>Aquatic</strong><br />

<strong>Ecosystem</strong> <strong>Models</strong>: Issue, Challenge,<br />

<strong>and</strong> Opportunity<br />

Changhui Peng, Nigel Roulet, Tim Moore, Youngil<br />

Kim, Haibin Wu, Dong Hua et <strong>EM</strong>_1 project<br />

members


Estimated global fluxes of organic carbon from terrestrial<br />

to aquatic systems:<br />

25%<br />

50%<br />

(Summarized from Lal, 2003; Schimel et al., 2001)


Great Wall<br />

(Jenerette <strong>and</strong> Lal, 2005)


Remove Great Wall<br />

(Jenerette <strong>and</strong> Lal, 2005)


Uncertainty in <strong>Ecosystem</strong> Carbon Budget


Leaching<br />

leaching of dissolved organic carbon (DOC) <strong>and</strong><br />

dissolved inorganic carbon (DIC) to groundwater <strong>and</strong><br />

stream is an important avenue of carbon loss from some<br />

terrestrial ecosystems.<br />

Abut 20% of CO2 produced in artic soils, for example,<br />

leaches to groundwater <strong>and</strong> is released from lakes <strong>and</strong> streams<br />

(Kling et al. 1991, Science).<br />

Despite their importance. Leaching losses of carbon to groundwater<br />

are seldom measured <strong>and</strong> therefore frequently ignored in ecosystems<br />

carbon budgets


DOC is still missing in current<br />

ecosystem carbon budget<br />

DOC is poorly represented in most<br />

terrestrial carbon models<br />

Within forested ecosystem, DOC leaching from the forest floor<br />

<strong>and</strong> organic soil horizons ranges from 10 to 85 g m-2 yr -1<br />

(Neff <strong>and</strong> Asner, 2000)


Disturbance<br />

Disturbance is an episodic cause of carbon loss<br />

from many ecosystems<br />

Fire <strong>and</strong> harvest of plants or peat can be the dominant<br />

Avenues of carbon losses from ecosystems:<br />

Carbon losses during fires in the Canadian boreal forests<br />

= 10 to 30% of average NPP (Harden et al., 2000, GCB)


(fromY. Kim)<br />

Flooded Soil


( From Youngil. Kim)


Modelling objectives:<br />

• To simulate terrestrial <strong>and</strong> aquatic ecosystem CO2 <strong>and</strong><br />

CH4 dynamics under human activity, fire disturbance <strong>and</strong><br />

climate change<br />

• To assess the impacts of reservoirs on the GHG<br />

emission of <strong>EM</strong>_1 region


How Challenge<br />

From empirical model<br />

To process-based model


Model Framework<br />

Empirical model + Process-based model<br />

Coupled model<br />

TRIPLEX Model<br />

<strong>Terrestrial</strong><br />

carbon<br />

simulation<br />

TRIPLE-DOC Model<br />

River<br />

River Model<br />

Hanson Lake Model<br />

Lake<br />

carbon<br />

simulation<br />

Flooded soil Model


TRIPLEX1.0 Framework<br />

Pool:<br />

Process:<br />

Precipitation<br />

Atmospheric CO2<br />

Solar radiation<br />

Moisture<br />

N limitation<br />

GPP<br />

N<br />

Store<br />

C Allocation<br />

Increment<br />

Leafs<br />

C N<br />

Roots Wood<br />

C N C N<br />

Height<br />

Diameter<br />

Soil<br />

water<br />

Temperature<br />

Litter fall<br />

C N<br />

Volume<br />

Basal Area<br />

Structure<br />

Metabolic<br />

Disturbance<br />

N mineralization<br />

C N C N<br />

Mortality<br />

Active (C, N)<br />

Thinning<br />

Runoff<br />

Decomposition<br />

(C, N)<br />

Slow (C, N)<br />

Harvesting<br />

Tree number<br />

Leaching<br />

Passive (C, N)<br />

Wood<br />

production<br />

(Peng et al. 2002)


TRIPLEX Model<br />

C dynamics (monthly)<br />

TRIPLEX-Flux<br />

CO2 Flux (daily)<br />

CO2<br />

Sunlit leaf<br />

Stoma Cell<br />

O2<br />

CO2<br />

Energy<br />

Light<br />

reactions<br />

Calvin<br />

cycle<br />

H2O<br />

Sugar<br />

C<br />

N<br />

Shaded leaf<br />

Water


(Peng, Moore, Hua et al.)


Respiration<br />

Hanson’s s Lake Model<br />

Atmospheric CO 2<br />

Exchange<br />

Respiration<br />

DIC<br />

Photosynthesis<br />

GPP<br />

DOC<br />

Exudation<br />

POC L<br />

Death<br />

POC D<br />

Sedimentation<br />

C S<br />

(Hanson et al., 2004, Global Change Biology)


Lake sub-Model Functions<br />

Primary production:<br />

ln GPP = 0.883 ln TP<br />

Problem: Empirical <br />

(Hanson et al., 2004, Global Change Biology)


Phytoplankton Kinetics<br />

Si Si<br />

NO3<br />

Light<br />

NH3<br />

Phyt<br />

O C:N:P<br />

∂C<br />

∂t<br />

P<br />

= R −R −R C<br />

( )<br />

Where:<br />

G D S P<br />

C p<br />

R G<br />

R D<br />

R S<br />

= growth rate constant (per day)<br />

= death rate constant (per day)<br />

= settling rate constant (per day)<br />

PO 4 PO 4<br />

= phytoplankton carbon concentration (mg/L)<br />

W2 model<br />

(Cole &Wells, 2000)


Phytoplankton<br />

• The growth rate of a population of phytoplankton in a<br />

natural environment:<br />

– is a complicated function of the species of<br />

phytoplankton present<br />

– involves differing reactions to solar radiation,<br />

temperature, <strong>and</strong> the balance between nutrient<br />

availability <strong>and</strong> phytoplankton requirements<br />

• Due to the lack of information to specify the growth<br />

kinetics for individual algal species in a natural<br />

environment,<br />

– this model characterizes the population as a whole by<br />

the total biomass of the phytoplankton present


River sub-Model<br />

STRUCTURE OF LAND-FLUVIAL SYST<strong>EM</strong>S<br />

L<strong>and</strong> Surface Processes (Grid)<br />

River Routing <strong>and</strong> Sediment<br />

Transport Network<br />

Gas Exchange<br />

Upl<strong>and</strong><br />

Surface Water<br />

Riparian/Floodplain<br />

Deposition<br />

Erosion<br />

Floodplain<br />

mineral soil<br />

Water <strong>and</strong> dissolved<br />

Fresh OM<br />

Particulate<br />

River Routing<br />

Reservoirs<br />

Free-Flowing<br />

Estuary/Delta


Respiration<br />

Lake/Reservoir Model<br />

Atmospheric CO 2<br />

Exchange<br />

Watershed<br />

DOC, POC,<br />

DIC<br />

Inflow<br />

Reservoir<br />

Respiration<br />

Lake<br />

DOC<br />

<strong>Terrestrial</strong><br />

DIC<br />

Exudation<br />

Flooded soil<br />

DIC<br />

Photosynthesis<br />

Lake<br />

DIC<br />

GPP<br />

<strong>Terrestrial</strong><br />

DOC<br />

<strong>Terrestrial</strong><br />

POC<br />

Lake<br />

POC L<br />

Outflow<br />

Degradation<br />

Flooded soil<br />

DOC<br />

Flooded soil<br />

POC<br />

Erosion<br />

Death<br />

Lake<br />

POC D<br />

Sedimentation<br />

DOC, POC,<br />

DIC<br />

Flooded<br />

soil<br />

Passive<br />

C pool<br />

Active<br />

C pool<br />

Slow<br />

C pool<br />

Sediment<br />

C pool<br />

(from Haibin Wu, Peng et al)


Regional model: spatial <strong>and</strong> temporal<br />

heterogeneity <strong>and</strong> connectivity at<br />

multiple scales<br />

Forest<br />

DOC<br />

Lake


Flooded soil sub-Model structure<br />

(Sebastian et al., Ecological modeling, submitted)


Another GHG: methane emissions from<br />

lakes<br />

Global emission<br />

is 8-48 Tg/yr,<br />

corresponds to 6-<br />

16% of total<br />

natural methane<br />

emissions <strong>and</strong><br />

greater than<br />

oceanic emission.<br />

(Bastviken et al., 2004, Global Biogeochemical Cycles)


DSS for HQ<br />

Regional Assessments of GHG<br />

(Ongoing Efforts)<br />

Visualization<br />

ArcGIS <strong>and</strong> RS<br />

Prediction of Net GHG Emission<br />

<strong>and</strong> Their Responses to L<strong>and</strong> Use,<br />

Fire <strong>and</strong> Climate Change<br />

Sensitivity<br />

Analysis<br />

Analysis<br />

<strong>Project</strong>ed Changes<br />

Over Space <strong>and</strong> Time:<br />

CO2 <strong>and</strong> CH4<br />

Manag.<br />

Options<br />

<strong>Ecosystem</strong> <strong>Models</strong><br />

Driving<br />

( TRIPLEX, McWM, ICC )<br />

Variables<br />

GIS-Based<br />

Database<br />

Transfer<br />

Government<br />

HQ<br />

Monitoring<br />

Results<br />

Validation<br />

Parameterization<br />

GIS/Oracle<br />

Client Group<br />

Flux Tower, Field Measurements<br />

<strong>and</strong> Site Data<br />

Climate <strong>and</strong> Soil Data<br />

His. L<strong>and</strong>-Use Records<br />

Figure 1. Flowchart of a Decision -Support System (DSS) for Assessing the Effect of L<strong>and</strong> Cover<br />

Changes, Fires <strong>and</strong> Creation of Reservoirs on GHG Emission in Eastmain Region


Summary<br />

Issues:<br />

Leaching –DOC, Fire , Creation of Reservoir, Flooded<br />

Soil<br />

Challenges:<br />

- from empirical to process-based models<br />

-Coupling terrestrial with aquatic models<br />

- spatial <strong>and</strong> temporal heterogeneity <strong>and</strong> connectivity<br />

-scaling up <strong>and</strong> data-model fusion<br />

Opportunities:<br />

-Eastmain project<br />

-DSS<br />

-Others


Acknowledgement:<br />

This project has been supported by<br />

CFCAS <strong>and</strong> HydroQuebec


Model Inputs <strong>and</strong> outputs:<br />

•Inputs<br />

(st<strong>and</strong>, soil, <strong>and</strong> climate conditions)<br />

• Monthly temperature<br />

• Monthly precipitation<br />

• Monthly relative humidity<br />

• Forest age structure<br />

•Outputs<br />

(<strong>Terrestrial</strong> ecosystem: biomass, litter, G&Y,<br />

soilC&N, soil water, C release, GPP, NPP;<br />

<strong>Aquatic</strong> ecosystem: DOC, POC, DIC, CO 2 , CH4)


Lake/Reservoir Model input variables:<br />

Climate data: daily temperature, precipitation, <strong>and</strong> cloud.<br />

Diving variables: Total phosphorus (TP, unit: μg L -1 );<br />

Watershed inflow DOC, POC, <strong>and</strong> PIC (unit: g C m -2 yr -1 );<br />

Outflow DOC, POC, <strong>and</strong> DIC (unit: g C m -2 yr -1 );<br />

Acid-neutralizing capacity (ANC, unit: μEq L -1 );<br />

Watershed area (unit: m 2 );<br />

Lake area to watershed area;<br />

Mean water depth (unit: m).


Lake/Reservoir Model Validation data:<br />

Gross primary production (GPP);<br />

Respiration (R);<br />

Daily-measured NEP (Net ecosystem production of<br />

carbon) of flux;<br />

DOC, POC, <strong>and</strong> PIC in lake;<br />

Percent of DOC, POC, <strong>and</strong> PIC from the terrestrial <strong>and</strong><br />

phytoplankton carbon;<br />

Ration of fooled soil C decomposition (R d<br />

);<br />

Ration of fooled soil C erosion (R e<br />

);<br />

Conversion of POC to DIC (f pd<br />

);<br />

Conversion of DOC to DIC (f dd<br />

);<br />

Death of algae (D).


Soil DOC model Validation data:<br />

• The volumetric soil water content;<br />

• The maximum canopy water storage;<br />

• Soil water flux (vertical, downward);<br />

• DOC concentration in leaching water;<br />

• Sorption <strong>and</strong> desorption rate of DOC.<br />

(Measurements will be preferable if they can be done at soil<br />

layers with the depth of 10, 30, 60, 100 cm, respectively.)


Methane emissions from hydroelectric<br />

reservoirs in tropics<br />

But it is<br />

an empirical<br />

model!<br />

(Corinne et al., 1999, Global Biogeochemical Cycles)


Atmospheric deposition to l<strong>and</strong> surface: 0.1-0.3 Pg DOC yr -1 (Willey et al., 2000)<br />

DOC contained in soil water: 1.1Pg<br />

DOC contained in groundwater: 8.0 Pg<br />

DOC contained in streams <strong>and</strong> lake: 1.1 Pg<br />

Export to the ocean: 0.2-0.6 Pg DOC yr-1<br />

( Ludwig et al., 1996; Moore, 1998)


Model Testing for 2 Flux tower sites<br />

(Fluxnet-Canada)<br />

110 yrs black spruce 75 yrs mixedwood


Model Validation – OBS Flux Tower<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

Field data from NSA-OBS-FLXTR in Jul 1996<br />

NEP<br />

-0.4<br />

183<br />

184<br />

185<br />

186<br />

187<br />

189<br />

190<br />

191<br />

192<br />

193<br />

194<br />

195<br />

196<br />

197<br />

198<br />

199<br />

200<br />

201<br />

202<br />

203<br />

204<br />

205<br />

206<br />

207<br />

208<br />

209<br />

210<br />

211<br />

212<br />

214<br />

g C m -2 30 min -1<br />

Day of year<br />

Daily Simulation using TRIPLEX-Flux


Model Validation – Using OBS Flux Tower<br />

0.4<br />

Simulated NEP (gC /m 2 /30min)<br />

0.2<br />

0<br />

-0.2<br />

R 2 = 0.7304<br />

-0.4<br />

-0.4 -0.2 0.0 0.2 0.4<br />

Observed NEP (gC /m 2 /30min)<br />

Daily Simulation using TRIPLEX-Flux


Boreal Mixedwood Site (Ontario)<br />

0.40<br />

May<br />

0.20<br />

0.00<br />

-0.20<br />

122<br />

123<br />

125<br />

127<br />

129<br />

130<br />

132<br />

134<br />

136<br />

137<br />

139<br />

141<br />

143<br />

144<br />

146<br />

148<br />

150<br />

151<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

R 2 = 0.77<br />

-0.1<br />

-0.2<br />

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4<br />

Observed NEE (gC m -2 30m in -1 )<br />

Ontario station in 2004<br />

EC (OM W )<br />

Sim ulated NEE<br />

Day of year<br />

NEE (g C m -2 30min -1 )<br />

Simulated NEE (gC m -2 30min -1 )


Comparing NPP Spatial Distribution at L<strong>and</strong>scape Level<br />

(a) TRIPLEX<br />

(Zhou et al, 2005)<br />

(b) Remote Sensing<br />

(Liu et al, 2002)<br />

Fig. 4 The comparison<br />

between NPP (t C ha-1 yr-<br />

1) simulations at<br />

l<strong>and</strong>scape (a) <strong>and</strong> remote<br />

sensing (b) levels for the<br />

LAMF in 1994. (a) was<br />

based on the TRIPLEX<br />

model simulation for 1994<br />

(averaged 3.28 tC ha-1 yr-<br />

1, SD=0.79), <strong>and</strong> (b) was<br />

converted using spatial<br />

data from Liu et al. (2002)<br />

for 1994 (averaged 3.08 tC<br />

ha-1 yr-1, SD=1.15). The<br />

grid size is 3x3 km.<br />

Kappa Statistic (k) = 0.55<br />

Good agreement if 0.55

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!