01.01.2015 Views

model 4010 – operation - Tdl-tech.com

model 4010 – operation - Tdl-tech.com

model 4010 – operation - Tdl-tech.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MODEL <strong>4010</strong> – OPERATION<br />

Connect the stereo input from your turntable to the Stereo Input connectors on the <strong>4010</strong> rear panel<br />

using a suitable length stereo cable. A good quality cable will help to minimize hum and noise<br />

pickup. Connect the Mono output to your sound system or <strong>com</strong>puter sound card input using a stereo<br />

cable. It is better to listen and record in stereo even though both channels are the same.<br />

In general, if you are going to use the External Processor connectors on the rear panel, you will need<br />

a “flat” stereo preamplifier to drive the external processor. We are writing an Application Note with<br />

some specific information on this subject. If the External Processor connectors are not used, make<br />

sure the Enable - Disable front panel switch is set to Disable.<br />

The factory gain setting is 52 dB which should be sufficient for listening and for many sound cards.<br />

If you happen to have a sound card with low sensitivity, the gain can be increased to either 56 or 60<br />

dB by changing the jumpers on the main circuit board. There is a page in this Guide that shows the<br />

gain vs. the jumper setting. This diagram is also on the underside of the top cover.<br />

To turn on the <strong>4010</strong>, just flip the POWER ON switch to its up position. The red power-on indicator<br />

will light.<br />

MODE SWITCH<br />

Adjust the mode switch to get the best sounding speech or music. This will often be the “L+R” or<br />

Mono setting or “L-R” for vertical-cut (or hill-and-dale) recordings. But don’t be afraid to<br />

experiment by using just the Left or Right channel or the Blend control.<br />

TURNOVER<br />

The Turnover frequency is part of the equalization setting that de-emphasizes the emphasis that was<br />

used when the recording was made. There is an extensive Table in this Guide that shows many<br />

record brands and suggests a Turnover setting. You can see from the size of this Table that there was<br />

much variation because there was no universal recording standard prior to 1955 when the Recording<br />

Industry Association of America (RIAA) standard was generally adopted by recording<br />

manufacturers. To make matters worse, many recording engineers liked to experiment and didn’t<br />

even follow their “<strong>com</strong>pany’s standard.” Hence, the Table is just a suggestion for a starting setting.<br />

Please experiment until you are satisfied with the sound quality – you can’t damage anything.<br />

ROLLOFF<br />

The Rolloff attenuation is the other part of the equalization setting and suggested starting numbers<br />

are also in the Table. Again, please experiment until you are satisfied with the sound quality.<br />

RUMBLE FILTER<br />

The Rumble Filter was originally included in phonograph preamplifiers to minimize low-frequency<br />

“rumble” in the playback turntable. But this filter can also be used as part of the equalization<br />

process. If you are hearing too much bass, you may be able to get a better overall sound balance by<br />

increasing the filter frequency.


HF FILTER<br />

It is usually best to start a listening session or a restoration project with this filter set to its highest<br />

setting: 24 kHz. Listen to the speech or music and lower the filter setting until you begin to hear a<br />

loss of high frequencies (treble notes), then increase the filter setting by one switch position. If you<br />

are doing a restoration, your <strong>com</strong>puter recording software probably has a built-in spectrum analyzer<br />

[1]. You can use it to verify your filter setting choice by turning on the analyzer. Reset the filter to<br />

24 kHz and then turn it to lower steps as you watch the analysis display. Stop when you start to see<br />

a loss of high frequencies. Used properly, the HF Filter can remove much of the high frequency<br />

noise inherent to cylinders and 78 RPM recordings. It would not be un<strong>com</strong>mon to find a setting of<br />

8 to 12 kHz suitable for early 78s.<br />

VOLUME CONTROL<br />

Set the Volume control as needed. If you are recording to a <strong>com</strong>puter through a sound card, watch<br />

the record level display and set the Volume for maximum peaks in the -3 to -1 dB range. It is<br />

preferable to record in this range as it maximizes the signal-to-noise ratio.<br />

NOTES:<br />

1. Software such as Cool Edit Pro, Adobe Audition, Diamond Cut 6 or 7, Wavelab and others have<br />

spectrum analyzers. Consult your program documentation to find out how to start the analyzer.<br />

In the rare instance your software doesn’t have an analyzer, there are stand-alone programs such as<br />

Spectrogram which can be downloaded from: www.visualizationsoftware.<strong>com</strong>/gram.html


CIRCUIT BOARD TOP VIEW<br />

PLACE JUMPERS<br />

HERE FOR<br />

52 dB GAIN<br />

PLACE JUMPERS<br />

HERE FOR<br />

56 dB GAIN<br />

PLACE JUMPERS<br />

HERE FOR<br />

60 dB GAIN<br />

SET BOTH JUMPERS THE SAME OR THE<br />

EQUALIZATION WILL BE INCORRECT.


FREQUENTLY ASKED QUESTIONS<br />

Mr. Tipton:<br />

I have been using the <strong>4010</strong> for playback of 78s for about a year and thought<br />

I'd offer a couple of <strong>com</strong>ments and questions. I am generally pleased with<br />

the unit's performance; the greater number of settings offers more flexibility<br />

in playback than did the Owl One that I was using previously and makes<br />

easier the playback of oddball records, such as early Emersons with "45-<br />

degree" grooves. However, I would say that the one thing missing is a good,<br />

effective high frequency filter for playback of 78s. The existing filter on the<br />

unit, when playing back 78s (which generally have significant surface noise),<br />

appears to have negligible effect. I do use my old Owl multifilter (with three<br />

notch filters of varying bandwidth) in conjunction with the <strong>4010</strong>, but really<br />

miss that high frequency notch filter that was part of the Owl One and<br />

seemed particularly suited to playback of 78s.<br />

One question concerning using the turnover control, which theoretically<br />

<strong>com</strong>pensates for the bass attenuation among the various record labels. What<br />

I don't understand is, when selecting turnover downwards to progressively<br />

lower levels (e.g., 250, 200, 150 Hz), I notice a corresponding significant<br />

boost in the midrange frequencies - something I didn't hear with the Owl.<br />

This effect is very obvious when playing back acoustically recorded discs.<br />

Should adjusting the bass turnover "point" really affect the midranges<br />

Cheers,<br />

Hello,<br />

All designs involve some <strong>com</strong>promises and the <strong>4010</strong> is no exception. Our goal in designing the <strong>4010</strong><br />

was to create a tool for archivists and others who are interested in digitally restoring vintage analog<br />

records as accurately as possible.<br />

One of our design maxims was, to borrow a phrase, “First do no harm.” That’s why we decided to<br />

use a 2-pole Butterworth lowpass filter (-12 dB/octave) HF filter instead of aggressive notch filters<br />

like those used in the Owl One which create too many issues in terms of frequency and phase<br />

distortion.<br />

Subjectively, our HF filter will have the most effect with a flat turnover and rolloff. The audible<br />

effect will be<strong>com</strong>e less as the rolloff frequency is decreased because the rolloff filter is providing<br />

a lot of high frequency attenuation. We feel that after creating as good a hard-disk image as possible,


other clean-up is better done in software. And the results can be more easily undone, if desired.<br />

Other users have <strong>com</strong>mented on the apparent boost in midrange response when the turnover control<br />

is set to lower frequencies. Unlike other processors such as the Owl One and the Re-equalizer, the<br />

<strong>4010</strong> uses a fixed-gain turnover amplifier in order to minimize phase and frequency distortions. This<br />

may have the appearance of boost in the midrange but it’s really a matter of volume. That is, the<br />

whole curve moves up or down (in gain) with the volume setting. This is illustrated in the graph on<br />

the following page. The five curves from upper to lower correspond to turnover frequencies of 150<br />

Hz to 400 Hz with the rolloff constant at -9 dB.<br />

Comparisons to the Owl One and the Re-equalizer show identical frequency response curves at the<br />

various turnover/rolloff settings. Rest assured that the <strong>4010</strong> turnover and rolloff controls provide<br />

accurate playback response, although the process of choosing the correct turnover setting is<br />

subjectively a somewhat different experience. One reviewer noted that, in his opinion, the <strong>4010</strong><br />

made it easier to dial in the best turnover setting.<br />

Ron<br />

The Re-equalizer is available from Esoteric Sound, www.esotericsound.<strong>com</strong>.<br />

The Owl One is not in production but may be available as “pre-owned equipment.”


MODEL <strong>4010</strong> – CIRCUIT DESCRIPTION<br />

Figure 1 shows the <strong>model</strong> <strong>4010</strong> block diagram. Operational amplifier (opamp) U1 is a stereo buffer,<br />

that is, it has unity gain. It sends the stereo signal to either an external processor or to the stereo-tomono<br />

converter, U2. (Because U1 has unity gain, in general a “flat” stereo preamplifier must be used<br />

to properly drive an external processor.)<br />

The U2 output goes to the Mode switch which lets you select Left, Right, L+R (mono), L-R<br />

(vertical-cut) or the LR Blend. The amount of blend, from full Left to full Right, is set by the Blend<br />

control. The Mode switch output goes to the line of four filters or response-shaping networks and<br />

the Volume control. These filters will be described in more detail in the following paragraphs.<br />

In Figure 3, the low-noise opamps U4 and U5 provide all of the preamp’s gain and frequency<br />

response shaping with the switch-selectable RC networks. Because of the circuit design, the gain<br />

and frequency response of each stage (U4 and U5) are independent. The DC and low frequency gain<br />

is set by:<br />

A = (1 + (R23 / Ra)) * (1 + (R38 / Rb))<br />

where both Ra and Rb can be jumper selected to set the maximum gain to 52, 56 or 60 dB. Both<br />

jumpers should be set the same or the overall equalization response will not be correct.<br />

Response shaping is done by the RC networks with rotary switch S2 controlling the Turnover<br />

frequency and S3 controlling the Rolloff frequency. The <strong>4010</strong> front panel Rollfoff switch is labeled<br />

in dB of attenuation at 10 kHz but you may find equalization information that lists the Rolloff<br />

frequency so the correspondence between frequency and attenuation is included in the Table in this<br />

Guide.<br />

We wrote two <strong>com</strong>puter programs to calculate the network values. PZNET calculates the series RC<br />

values for the Turnover network given the Pole Frequency (50 Hz in all cases), the Zero Frequency<br />

and a value for the <strong>com</strong>mon input resistor, R27. RCNET calculates the capacitor values for the<br />

Rolloff network given the Frequency and the <strong>com</strong>mon series resistor value, R42. Both of these<br />

programs can be freely downloaded from our website.<br />

Figure 4 shows the Rumble Filter, Volume control and output lowpass filter (HF Filter). The Rumble<br />

Filter is a 3-pole Butterworth highpass and the HF Filter is a 2-pole Butterworth lowpass.<br />

Component values were calculated with FilterLab version 2.0, a free download from<br />

Microchip.<strong>com</strong>.<br />

The 24 volts from the wall-wart power supply is very noisy so it enters the <strong>model</strong> <strong>4010</strong> into a<br />

shielded enclosure within the rack-mount cabinet.The PWR<strong>4010</strong> circuit board has additional 24 volt<br />

filtering, a voltage “splitter” and the voltage regulators. This is shown in Figure 5. By first regulating<br />

to ±9 volts and then to ±6 volts, the hum and noise is reduced to a level that is as quiet as battery<br />

<strong>operation</strong>.


PHONOGRAPH EQUALIZATION SETTINGS<br />

The following TABLE provides suggested starting values for playback equalization of mono<br />

recordings. Don’t be afraid to experiment as even this extensive table may be incorrect.<br />

This information was taken from several sources: The Operating Manual for the Rek-O-Kut Re-<br />

Equalizer, the Dial Your Discs chart which appeared in High Fidelity magazine in the early 1950s,<br />

the chart provided by OWL Electronics, the chart <strong>com</strong>piled by James R. Powell, Jr. and published<br />

in the ARSC Journal, and the jackets of early LPs. In addition, equalization data was found on the<br />

web sites listed in the NOTES section.<br />

When a recording is mastered (recorded) the amplitudes of the bass frequencies are reduced for<br />

primarily mechanical reasons. When the recording is played, these low frequencies amplitudes must<br />

be increased. The TURNOVER is the frequency below which the amplitude must be increased<br />

during playback.<br />

ROLLOFF is the amount of treble (high frequency) attenuation (cut) at 10 kHz required during<br />

playback to <strong>com</strong>pensate for the treble boost used during mastering. Some charts list Rolloff as a<br />

frequency instead of an attenuation so a correspondence list is included at the end of this Table.<br />

MATRIX is a “number” (may be a <strong>com</strong>bination of numbers and letters) molded into the record just<br />

outside the center label. This number is the “matrix” or mold identifier used to press the record. It<br />

can be used to determine, at lease approximately, when the record was manufactured. In some cases,<br />

the two sides of a record can have very different matrix numbers which means the two side may<br />

need different equalization settings.<br />

Remember, there was no equalization standard before 1955 so this table is a list of suggestions!<br />

Increase the Turnover if the bass sounds too thin. Increase the Rolloff if the treble sounds too strong.<br />

Manufacturer Speed Turnover Rolloff<br />

Acoustic Records ALL 300 FLAT<br />

Acoustic Records – alternate 78 FLAT FLAT<br />

AFRS Transcriptions 33 RIAA FLAT<br />

1944 some or if NAB specified RIAA -16<br />

12 inch transcriptions 629 FLAT<br />

Allegro 33 LP -16<br />

Allied 33 RIAA -16<br />

American Recording Society 33 RIAA -12<br />

Angel 33 RIAA FLAT<br />

Angel – alternate 33 RIAA -12


Arizona (until 1955) 33 400 -12<br />

Artist 78 RIAA -16<br />

Atlantic 33 RIAA -16<br />

Audiophile 33 RIAA -12<br />

78 400 FLAT<br />

Autograph (Marsh Electrical) 78 1000 FLAT<br />

Audio Fidelity (901 - 903) 33 RIAA -16<br />

Bach Guild (501 - 529) 33 LP -16<br />

Bach Guild – alternate 33 RIAA -16<br />

Balkan 78 RIAA -5<br />

Banner (up to 10002) 33 LP -16<br />

Bartok 33 LP -16<br />

(301 - 307, 309, 906 - 920) 33 629 -16<br />

Berliner 71.29 300 FLAT<br />

BBC Transcriptions (1930 - 1949) (70000) ALL 300 -9<br />

(“P” matrix) (1954 - 1956) 33 400 -10<br />

(“R” matrix) (


(1001 - 1022) 33 629 -16<br />

Canyon (up to C6160) 33 400 -12<br />

Capitol (4095 / E2KP > 9607) 33 RIAA RIAA<br />

Contemporary 33 400 -12<br />

(3501, 2501/2/5/7, 2001/2) 33 400 -12<br />

(2504) 33 RIAA -16<br />

(after AP121) 33 RIAA RIAA<br />

Cook 33 RIAA -12<br />

(binaural - inside band) 33 RIAA FLAT<br />

Coral (1946 - 1954) 78 629 -12<br />

(Up to MG4400) (with raised matrix) 33 800 -8


Cylinder records ALL FLAT FLAT<br />

Decca (US) (pre 1946) 78 300 FLAT<br />

(1946 - 1954) 78 629 -12<br />

(Up to MG4400) (with raised matrix) 33 800 -8<br />

Decca – alternate 33 400 -12<br />

(1951) 33 300 -14<br />

(1953) 33 LP -11<br />

(Until Nov 1955) 33 RIAA -16<br />

Decca (1934) – alternate 78 400 -12<br />

(1949) 78 250 -5<br />

Decca (English) 78 300 FLAT<br />

FFRR (1944) (ARL1186 - 1B) 33 RIAA -10<br />

(>ARL2530 - 2A) 33 RIAA RIAA<br />

DGG (Deutsche Grammophone) 33 LP -10<br />

78 300 -5<br />

Dial 33 LP -16<br />

45/78 LP -16<br />

Ducretet-Thomson 33 LP -11<br />

Edison 80 FLAT FLAT<br />

Early 78s (Mid 1930s) 78 RIAA FLAT<br />

Electra (2 - 15, 18 - 20, 24 - 26) 33 629 -16<br />

(17, 22) 33 400 -12<br />

(16, 21, 23, 24) 33 RIAA RIAA<br />

Electrical 78's (1925 - 1938) 78 300 FLAT<br />

(1932 - 1938) 78 300/RIAA FLAT<br />

(1938 - 1946) 78 300/RIAA FLAT, -5<br />

(1947 - 1954) 78 300/RIAA -16<br />

Electrola 78 800 -10<br />

EMI (1931 - 1953) 78 300 FLAT<br />

(1949-53) (2XEA213-392/XAX561-817)(1N,2N) 33/45 RIAA FLAT<br />

(July 17, 1953) 33/78 RIAA FLAT<br />

EMS 33 400 -12


Epic 33 LP -16<br />

Epic – alternate (Until 1954) 33 RIAA -16<br />

Esoteric (ES500, 517, EST5, 6) 33 400 -12<br />

(E2KP to 9607) RIAA -12<br />

European 78s (General) 78 300 -5<br />

Festival 33 LP -16<br />

Folkways 33 LP -16<br />

Fraternity Records (Up to F-1013) 33 RIAA FLAT<br />

Good Time Jazz (3, 9 - 19) 33 400 -12<br />

(1, 5 - 8) 33 RIAA -16<br />

Gramophone Company 78 300 FLAT<br />

Handel Society 33 LP -16<br />

Haydn Society (


London (Pre 1944) 78 300 FLAT<br />

FFRR (1944) (ARL1186-1B) 33 RIAA -10<br />

(>ARL2530-2A) 33 RIAA RIAA<br />

London (Up to LL-846) – alternate 33 450 -11<br />

London International 33 450 -11<br />

Lyricord (Before 1953) (E0 - E3 matrix) 33 400 -12<br />

(XTV matrix) 33 LP -16<br />

(If “629" listed on jacket) 33 629 -16<br />

Majestic 78 RIAA -16<br />

Marsh Laboratories (Electrical) 78 1000 FLAT<br />

Mercury (MG10000 series, approximate fit) 33 RIAA -10<br />

(Through Oct 1954,


Overtone – alternate 33 RIAA -16<br />

Oxford 33 LP -16<br />

Pacific Jazz (1 - 13) 33 400 -12<br />

Parlophone<br />

1925 - 1953 78 300 FLAT<br />

1949 - 1953 33 RIAA FLAT<br />

Parlophone – alternate 78 RIAA FLAT<br />

Period (Up to 576) 33 RIAA -16<br />

Philharmonia 33 400 -12<br />

Polydor 33/78 300 -10<br />

Polymusic 33 RIAA -16<br />

Binaural – inside band 33 RIAA FLAT<br />

Rachmaninoff Society 33 LP -16<br />

RCA-Victor<br />

Early Acoustics 71.29 300 FLAT<br />

Later Acoustics 76.59-78 300 FLAT<br />

1925 78 300 FLAT<br />

1931 (Program transcriptions) 33 800 FLAT<br />

1935 78 300/RIAA -5<br />

1938 - 1954 78 RIAA -8<br />

1954 (New Ortho only) 78 RIAA RIAA<br />

1930 - 1950 (European) 78 300 FLAT<br />

1949 (D9 to E0LRC3980) 33/45 800 -8<br />

1950 - 8/1952 (>E0LRC3981) 33/45 RIAA -12<br />

8/1952 (New Orthophonic) (>E2RP4094) 33/45/78 RIAA RIAA<br />

Remington (Up to 199-135) 33 RIAA -16<br />

Riverside 33 400 -12<br />

Renaissance 33 LP -12<br />

Stradivari 33 LP -16<br />

Supraphone 78 400 FLAT<br />

Technicord 78 800 -12


Telefunken 78 400 -5<br />

Tempo 33 RIAA -16<br />

Transcriptions (Many pre-WWII) 33/78 RIAA FLAT<br />

(Old vertical-cut) 33 300 -5<br />

(NAB vertical-cut) 33 400 -16<br />

Transradio 33 LP -16<br />

Ultraphone 33/78 400 FLAT<br />

Urania (Old - up to XTV20383) 33 RIAA -16<br />

Later (E2KP9607) 33 RIAA RIAA<br />

Urania – alternate 33 400 -12<br />

Vangard (411 - 422, 6000 - 6018, 7001 - 7011,<br />

8000 - 8004, up to XTV20383) 33 LP -16<br />

Vangard (411 - 422, 6000 - 6018) – alternate 33 RIAA -16<br />

Vox (Up to XTV20386, PL8400) 33 RIAA -16<br />

War Department - Special Services 12 inch 33 800 -5<br />

Westminster (E0 matrix) 33 800 -8<br />

(Up to E2PK9607) 33 RIAA -12<br />

(Up to XTV20383) 33 LP -16<br />

Westminster (Before 1956) – alternate 33 400 -12<br />

Westrex (English Western Electric) 78 200 FLAT<br />

Victor ALL See RCA-Victor<br />

Vitaphone (motion picture) 33 300 FLAT<br />

Vocalion (Electrical) 78 300 FLAT<br />

Western Electric (Early transcription) 33 300 FLAT<br />

Zonophone 78 300 FLAT<br />

(Early) 71.29 300 FLAT


A TABLE OF CORRESPONDENCES<br />

TURNOVER<br />

FLAT<br />

150 Hz<br />

200 Hz<br />

250 Hz = FFRR (1949)<br />

300 Hz = FFRR (1951)<br />

400 Hz = AES<br />

450 Hz = LP = FFRR (1953)<br />

500 Hz = RIAA = NAB<br />

629 Hz = “629"<br />

800 Hz<br />

1000 Hz<br />

ROLLOFF<br />

FLAT 0 dB<br />

6500 Hz -5 dB = FFRR (1949)<br />

5500 Hz -6 dB<br />

4800 Hz -7 dB<br />

4300 Hz -8 dB<br />

3800 Hz -9 dB<br />

3300 Hz -10 dB<br />

3000 Hz -11 dB = FFRR (1953)<br />

2500 Hz -12 dB = AES<br />

2122 Hz -13.8 dB = RIAA = FFRR (1951)<br />

1600 Hz -16 dB = NAB<br />

NOTES:<br />

These web sites deal primarily with 78 RPM information and equalization:<br />

http://www.sound.westhost.<strong>com</strong>/project91.htm<br />

http://www.shellac.org/slumber/equal.html<br />

http://www.rfwilmut.clara.net/repro78/repro.html


EXTERNAL PROCESSOR<br />

OUT IN<br />

L R R L<br />

L<br />

STEREO<br />

IN<br />

R<br />

R3<br />

47K<br />

U1<br />

BUFFER<br />

both<br />

100<br />

ohms<br />

U2<br />

STEREO<br />

TO<br />

MONO<br />

L<br />

S1<br />

MODE<br />

R<br />

L+R<br />

L-R<br />

BLEND<br />

U4<br />

TURNOVER<br />

MONO<br />

U5<br />

ROLLOFF<br />

U6<br />

RUMBLE<br />

FILTER<br />

R58<br />

VOLUME<br />

CONTROL<br />

U7<br />

HF FILTER<br />

MONO<br />

OUT<br />

R1<br />

47K<br />

S6<br />

ENABLE / DISABLE<br />

U3<br />

LR BLEND<br />

GAIN<br />

SET<br />

S2<br />

11 POSITIONS<br />

GAIN<br />

SET<br />

S3<br />

11 POSITIONS<br />

S4<br />

5 POSITIONS<br />

S5<br />

11 POSITIONS<br />

R19<br />

BLEND<br />

Gain can be set to 52, 56 or 60 dB.<br />

Both jumpers must be set the same or the<br />

equalization will be incorrect.<br />

Fig. 1 -- Model <strong>4010</strong> Block Diagram


+6V<br />

U1 OPA2227<br />

R1<br />

47K<br />

C1 +<br />

470 uF<br />

R2 10K 5<br />

6<br />

+<br />

-<br />

8<br />

7<br />

RIGHT<br />

C2<br />

100 nF<br />

+6V<br />

C5<br />

100 nF<br />

R19<br />

BLEND<br />

dual 5K linear<br />

CW<br />

CCW<br />

RIGHT<br />

IN<br />

J1<br />

H1<br />

S6<br />

DPDT<br />

J5<br />

P10<br />

P9<br />

H10<br />

H9<br />

R82 100<br />

R5 10K<br />

R6 10K<br />

R7 4990<br />

6<br />

5<br />

-<br />

+<br />

7<br />

-R-L<br />

R9 10K<br />

2<br />

3<br />

-<br />

+<br />

R10 10K<br />

1<br />

RIGHT<br />

FROM U1<br />

H2<br />

CCW<br />

R20<br />

10K<br />

R21<br />

10K<br />

CW<br />

3<br />

2<br />

+<br />

-<br />

+6V<br />

7<br />

4<br />

6<br />

C7<br />

100 nF<br />

R84<br />

10K<br />

LEFT<br />

IN<br />

J9<br />

J2<br />

CASE<br />

J6<br />

J7<br />

J8<br />

CASE<br />

R3<br />

47K<br />

R4 10K 3<br />

2<br />

C3<br />

470 uF<br />

+<br />

-<br />

+<br />

R83 100<br />

LEFT<br />

1<br />

4<br />

C4<br />

100 nF<br />

R12 10K<br />

9<br />

-<br />

10<br />

+<br />

R13 10K<br />

8<br />

U2 OPA4227<br />

-L<br />

R15 10K<br />

R16 10K<br />

13<br />

12<br />

-<br />

+<br />

R17 4990<br />

14<br />

LEFT<br />

FROM U1<br />

-R+L<br />

C6<br />

100 nF<br />

R<br />

L<br />

L+R (MONO)<br />

L-R (VERT)<br />

RL BLEND<br />

S1<br />

MODE<br />

-6V<br />

C8<br />

100 nF<br />

U3 OPA227<br />

TO TURNOVER<br />

SELECTION<br />

-6V<br />

-6V<br />

Fig. 2 -- Model <strong>4010</strong> input amp, mode switch and blend control


FROM<br />

FIG 1<br />

R22 10K<br />

3<br />

+<br />

2<br />

-<br />

R23<br />

200K<br />

+6V<br />

7<br />

4<br />

-6V<br />

6<br />

C9<br />

100 nF<br />

R27 10K<br />

S2<br />

1<br />

R85<br />

C10 4640<br />

100 nF<br />

S2-1 FLAT<br />

S2-2 150 Hz, R28 = 4990, C11 = 212 nF<br />

S2-3 200 Hz, R29 = 3320, C12 = 239 nF<br />

S2-4 250 Hz, R30 = 2490, C13 = 255 nF<br />

S2-5 300 Hz, R31 = 2000, C14 = 265 nF<br />

S2-6 400 Hz, R32 = 1430, C15 = 279 nF<br />

S2-7 450 Hz, R33 = 1240, C16 = 283 nF<br />

S2-8 500 Hz, R34 = 1100, C17 = 286 nF<br />

S2-9 629 Hz, R35 = 866, C18 = 293 nF<br />

S2-10 800 Hz, R36 = 665, C19 = 298 nF<br />

S2-11 1000 Hz, R37 = 523, C20 = 302 nF<br />

R28<br />

2 3 4 5<br />

TURNOVER<br />

(H3 NOT SHOWN FOR CLARITY)<br />

6 7 8 9 10 11<br />

R37<br />

C20<br />

3<br />

2<br />

+<br />

-<br />

R38<br />

200K<br />

+6V<br />

7<br />

4<br />

6<br />

C21<br />

100nF<br />

C22<br />

100nF<br />

R42 1000<br />

S3-1 FLAT<br />

S2-2 6500 Hz (-5dB), C23 = 24n5 F<br />

S3-3 5500 Hz (-6dB), C24 = 29 nF<br />

S3-4 4800 Hz (-7dB), C25 = 33 nF<br />

S3-5 4300 Hz (-8dB), C26 = 37 nF<br />

S3-6 3800 Hz (-9dB), C27 = 42 nF<br />

S3-7 3300 Hz (-10 dB), C28 = 48 nF<br />

S3-8 3000 Hz (-11dB), C29 = 54 nF<br />

S3-9 2500 Hz (-12dB), C30 = 62 nF<br />

S3-10 2122 Hz (-14dB), C31 = 77 nF<br />

S3-11 1600 Hz (-16dB), C32 = 100 nF<br />

ROLLOFF<br />

1 2 3 4 5 6 7 8 9 10 11<br />

S3<br />

C23<br />

(H4 NOT SHOWN FOR CLARITY)<br />

C32<br />

TO<br />

RUMBLE<br />

FILTER<br />

JB1<br />

R24<br />

10K5<br />

R26<br />

6490<br />

U4 OPA227<br />

C11<br />

JB2<br />

R39<br />

10K5<br />

-6V<br />

R41<br />

6490<br />

U5 OPA227<br />

52dB<br />

60dB<br />

52dB<br />

60dB<br />

56dB<br />

R25<br />

8250<br />

56dB<br />

R40<br />

8250<br />

Fig. 3 -- Model <strong>4010</strong> Turnover and rolloff frequency selection<br />

(Revised April 14, 2008)


+6V<br />

5<br />

6<br />

+<br />

-<br />

C33<br />

820 nF [1]<br />

7 10<br />

9<br />

+<br />

-<br />

4<br />

8<br />

C36<br />

100 nF<br />

U6 OPA4227<br />

C34<br />

820 nF<br />

[2]<br />

C35<br />

820 nF<br />

[3]<br />

12<br />

C37<br />

100 nF<br />

+<br />

13 -<br />

11<br />

[4]<br />

14<br />

(H5 - H7 and P5 - P7 NOT SHOWN)<br />

VOLUME<br />

R58<br />

5KA<br />

[3]<br />

5000 Hz<br />

6000 Hz<br />

S5<br />

R59 12K4<br />

R60 10K2<br />

[2]<br />

R70 24K9<br />

R71 21K<br />

C38<br />

2n7 F<br />

C39<br />

1n2 F<br />

[1]<br />

3<br />

2<br />

+<br />

-<br />

1<br />

R43<br />

88.7K<br />

S4<br />

R48<br />

44K2<br />

BYPASS<br />

(2 Hz)<br />

-6V<br />

R53<br />

178K<br />

7000 Hz<br />

8000 Hz<br />

R61 8870<br />

R62 7680<br />

R72 17K8<br />

R73 15K8<br />

R81<br />

49R9<br />

H5<br />

[1]<br />

[2]<br />

[3]<br />

[4]<br />

[5]<br />

R44<br />

4870<br />

R45<br />

2050<br />

R46<br />

1020<br />

R47<br />

1780<br />

[5]<br />

R49<br />

2430<br />

R50<br />

1020<br />

R51<br />

511<br />

R52<br />

887<br />

20 Hz<br />

40 Hz<br />

70 Hz<br />

110 Hz<br />

R54<br />

9760<br />

R55<br />

4120<br />

R56<br />

2050<br />

R57<br />

3570<br />

[5]<br />

10 kHz<br />

12 kHz<br />

15 kHz<br />

17 kHz<br />

20 kHz<br />

22 kHz<br />

R63 6340<br />

R64 5110<br />

R65 4220<br />

R66 3650<br />

R67 3160<br />

R68 2870<br />

R74 12K4<br />

R75 10K5<br />

R76 8250<br />

R77 7320<br />

R78 6190<br />

R79 5620<br />

H7<br />

H8<br />

P8<br />

[1]<br />

[2]<br />

[3]<br />

J3<br />

OUTPUT<br />

J4<br />

CASE<br />

24 kHz<br />

R69 2610<br />

R80 5230<br />

Fig. 4 -- Model <strong>4010</strong> Rumble filter, volume control and output filter


24 VDC POWER IN<br />

J9<br />

C103<br />

100nF<br />

+<br />

C104<br />

47 uF<br />

U102<br />

U103<br />

R106 1400<br />

H102<br />

TO POWER<br />

ON LED<br />

F1<br />

1A<br />

H101<br />

S7<br />

POWER ON/OFF<br />

C102<br />

100nF<br />

D101<br />

1N4004<br />

+<br />

C101<br />

2200 uF<br />

R101<br />

22K1<br />

R103<br />

1000<br />

R102<br />

22K1<br />

C107<br />

100nF<br />

R104<br />

15K<br />

2<br />

1<br />

U101<br />

-<br />

+<br />

LM675T<br />

5<br />

4<br />

3<br />

7809<br />

7806<br />

+<br />

C109 C108<br />

100nF 220 uF<br />

R105<br />

1 ohm<br />

C112<br />

C105<br />

100nF<br />

220 nF<br />

7909<br />

U104<br />

C106<br />

+ 100 uF<br />

+<br />

C110<br />

100nF<br />

C111<br />

220 uF<br />

+<br />

C115<br />

220 uF<br />

7906<br />

U105<br />

C114<br />

100nF<br />

+<br />

C113<br />

220 uF<br />

+6V<br />

+9 V<br />

COMMON<br />

-9 V<br />

-6 V<br />

Fig. 5 -- Model <strong>4010</strong> power supply (pwr<strong>4010</strong>.pcb)


“The Restoration Preamp” TM<br />

Model <strong>4010</strong><br />

Parts List<br />

MAIN<strong>4010</strong>.PCB<br />

REFERENCE VALUE DESCRIPTION MANUFACTURER<br />

R1, R3 47K 1%, 1/4 w, metal film<br />

R2, R4, R5, R6,<br />

R9, R10, R12,<br />

R13,R15, R16,<br />

R21, R22, R27,<br />

R84 10K 1%, 1/4 w, metal film<br />

R7, R17, R28 4990 1%, 1/4 w, metal film<br />

R8, R18 Not used<br />

R11, R14, R85 Not used<br />

R19A, R19B 5000 Linear taper, dual single-turn pot Alpha (Mouser 31VW305-F)<br />

R20 499 1%, 1/4 w, metal film<br />

R23, R38 200K 1%, 1/4 w, metal film<br />

R24, R39, R75 10K5 1%, 1/4 w, metal film<br />

R25, R40, R76 8250 1%, 1/4 w, metal film<br />

R26, R41 6490 1%, 1/4 w, metal film<br />

R29 3320 1%, 1/4 w, metal film<br />

R30 2490 1%, 1/4 w, metal film<br />

R31 2000 1%, 1/4 w, metal film<br />

R32 1430 1%, 1/4 w, metal film<br />

R33 1240 1%, 1/4 w, metal film<br />

R34 1100 1%, 1/4 w, metal film<br />

R35 866 1%, 1/4 w, metal film<br />

R36 665 1%, 1/4 w, metal film<br />

R37 523 1%, 1/4 w, metal film<br />

R42 1000 1%, 1/4 w, metal film<br />

R43 88.7K 1%, 1/4 w, metal film<br />

R44 4870 1%, 1/4 w, metal film<br />

R45, R56 2050 1%, 1/4 w, metal film<br />

R46, R50 1020 1%, 1/4 w, metal film<br />

R47 1780 1%, 1/4 w, metal film<br />

R48 44K2 1%, 1/4 w, metal film<br />

R49 2430 1%, 1/4 w, metal film<br />

R51 511 1%, 1/4 w, metal film<br />

R52 887 1%, 1/4 w, metal film<br />

R53 178K 1%, 1/4 w, metal film<br />

R54 9760 1%, 1/4 w, metal film<br />

R55, R65 4120 1%, 1/4 w, metal film<br />

R57 3570 1%, 1/4 w, metal film<br />

R58 5000 Audio taper, single-turn pot Alpha (Mouser 31VJ305-F)<br />

R59, R74 12K4 1%, 1/4 w, metal film<br />

R60 10K2 1%, 1/4 w, metal film


R61 8870 1%, 1/4 w, metal film<br />

R62 7680 1%, 1/4 w, metal film<br />

R63 6340 1%, 1/4 w, metal film<br />

R64 5110 1%, 1/4 w, metal film<br />

R66 3650 1%, 1/4 w, metal film<br />

R67 3160 1%, 1/4 w, metal film<br />

R68 2870 1%, 1/4 w, metal film<br />

R69 2610 1%, 1/4 w, metal film<br />

R70 24K9 1%, 1/4 w, metal film<br />

R71 21K 1%, 1/4 w, metal film<br />

R72 17K8 1%, 1/4 w, metal film<br />

R73 15K8 1%, 1/4 w, metal film<br />

R77 7320 1%, 1/4 w, metal film<br />

R78 6190 1%, 1/4 w, metal film<br />

R79 5620 1%, 1/4 w, metal film<br />

R80 5230 1%, 1/4 w, metal film<br />

R81 49R9 1%, 1/4 w, metal film<br />

R82, R83 100 1%, 1/4 w, metal film<br />

R85 4640 1%, 1/4 w, metal film<br />

C1, C3 470 uF 25 V, radial electrolytic<br />

C2, C4, C5, C6,<br />

C7, C8, C9, C10,<br />

C21, C22, C32,<br />

C36, C37, C40 100 nF 5%, 50 V, polyester film<br />

C11 220 nF 5%, 50 V, polyester film<br />

C12 238 nF 5%, 50 V, polyester film (220 nF in parallel with 18 nF)<br />

C13 253 nF 5%, 50 V, polyester film (220 nF in parallel with 33 nF)<br />

C14 270 nF 5%, 50 V, polyester film<br />

C15 280 nF 5%, 50 V, polyester film (270 nF in parallel with 10 nF)<br />

C16 282 nF 5%, 50 V, polyester film (270 nF in parallel with 12 nF)<br />

C17 285 nF 5%, 50 V, polyester film (270 nF in parallel with 15 nF)<br />

C18 292 nF 5%, 50 V, polyester film (270 nF in parallel with 22 nF)<br />

C19 297 nF 5%, 50 V, polyester film (270 nF in parallel with 27 nF)<br />

C20 303 nF 5%, 50 V, polyester film (270 nF in parallel with 33 nF)<br />

C23 24n2 5%, 50 V, polyester film (22 nF in parallel with 2200 pF)<br />

C24 29n2 5%, 50 V, polyester film (27 nF in parallel with 2200 pF)<br />

C25 33 nF 5%, 50 V, polyester film<br />

C26 36n9 5%, 50 V, polyester film (33 nF in parallel with 3900 pF)<br />

C27 42n3 5%, 50 V, polyester film (39 nF in parallel with 3300 pF)<br />

C28 47n2 5%, 50 V, polyester film (39 nF in parallel with 8200 pF)<br />

C29 53n8 5%, 50 V, polyester film (47 nF in parallel with 6800 pF)<br />

C30 61n6 5%, 50 V, polyester film (56 nF in parallel with 5600 pF)<br />

C31 78 nF 5%, 50 V, polyester film (56 nF in parallel with 22 nF)<br />

C32 100 nF 5%, 50 V, polyester film<br />

C33, C34, C35 820 nF 5%, 50 V, polyester film<br />

C38 2n7 5%, 50 V, polyester film<br />

C39 1n2 5%, 50 V, polyester film


U1 OPA2227 Dual opamp, 8-pin DIP<br />

U2, U6 OPA4227 Quad opamp, 14-pin DIP<br />

U3, U4, U5 OPA227 Opamp, 8-pin DIP<br />

JB1, JB1<br />

Jumper block, 2-pins, 3-positions,<br />

with jumper<br />

H1, H6, H7, H11 3-pin male header Molex 22-03-2031<br />

H2 11-pin male header Molex 22-03-2111<br />

H3, H4 12-pin male header Molex 22-03-2121<br />

H5 5-pin male header Molex 22-03-2051<br />

H8, H12 2-pin male header Molex 22-03-2021<br />

H9, H10 4-pin male header Molex 22-03-2041<br />

P1, P6, P7, P11 3-pin terminal shell Molex 22-01-2037<br />

P2 11-pin terminal shell Molex 22-01-2117<br />

P3, P4 12-pin terminal shell Molex 22-01-2127<br />

P5 5-pin terminal shell Molex 22-01-2057<br />

P8, P12 2-pin terminal shell Molex 22-01-2027<br />

P9, P10 4-pin terminal shell Molex 22-01-2047<br />

60 terminal pins Molex 08-50-0114<br />

(1) Circuit board, MAIN<strong>4010</strong>.PCB<br />

(6) 4-40 x 5/8" machine screws<br />

(6) 4-40 hex nuts<br />

(6) 4-40 hex spacers, nylon, 3/8" length<br />

PWR<strong>4010</strong>.PCB (Voltage Regulators)<br />

R101, R102 22K1 1%, 1/4 w, metal film<br />

R103 1000 1%, 1/4 w, metal film<br />

R104 15K 1%, 1/4 w, metal film<br />

R105 1 ohm 5%, 1/2 w, carbon film<br />

R106 1400 1%, 1/4 w, metal film<br />

C101 2200 uF 50 V, radial electrolytic<br />

C102, C103, C107,<br />

C109, C110,<br />

C112, C114 100 nF 5%, 50 V, polyester film<br />

C105 220 nF 5%, 50 V, polyester film<br />

C108, C111, C113,<br />

C115 220 uF 50 V, radial electrolytic<br />

D101 1N4004 Silicon diode, 400 PIV, 1A<br />

U101 LM675T Power opamp, TO-220/5 Jameco 120926<br />

U102 7809AF +9 V regulator, TO-220<br />

U103 7806AF +6 V regulator, TO-220


U104 7909AF -9 V regulator, TO-220<br />

U105 7906AF -6 V regulator, TO-220<br />

H101 4-pin male header Molex 22-03-2041<br />

H102 7-pin male header Molex 22-03-2071<br />

P101 4-pin terminal shell Molex 22-01-2047<br />

P102A 2-pin terminal shell Molex 22-01-2027<br />

P102B 5-pin terminal shell Molex 22-01-2057<br />

9 terminal pins Molex 08-50-0114<br />

Circuit board, PWR<strong>4010</strong>.PCB<br />

(2) 4-40 x 5/8" machine screws<br />

(2) 4-40 hex spacers, nylon, 3/8" length<br />

(3) 4-40 x 1/2" machine screws<br />

(2) 4-40 x 5/16" machine screws<br />

(2) #4 flat washers, metal<br />

(7) 4-40 hex nuts<br />

Heat sink for U101, U102 and U103 1/8" alum angle, 1.5 x 1.5 x 3.5<br />

Heat sink for U104 and U105<br />

ENCLOSURE MOUNTED PARTS<br />

Rack mount enclosure, 3.5 x 7 x 19 inches Wolgram <strong>model</strong> 2RU7<br />

Front panel<br />

Metalphoto of Cincinnati, PN M<strong>4010</strong>F<br />

Rear panel<br />

Metalphoto of Cincinnati, PN M<strong>4010</strong>B<br />

1/4" thick x 3" wide aluminum bar for internal shielding<br />

(7) Knobs Eagle 45KN017-GRX<br />

LED1 LED, red, panel mount (power on) Lumex (DigiKey 67-1147)<br />

F1 Fuse holder, panel mount, 5 mm with 1A fuse Littlefuse (Mouser 576-03455LS1H)<br />

J2, J3, J4,<br />

J7, J8 Connector, female RCA, panel mount, black Kobiconn (Mouser 161-1052)<br />

J1, J5, J6 Connector, female RCA, panel mount, red Kobiconn (Mouser 161-1053)<br />

J9<br />

5-way binding post, blue<br />

J13 Power in connector, 2.5 mm male, insulated Mouser 163-4303<br />

S1, S2, S3 Rotary switch, 1-pole, 11-positions Mouser 105-13571<br />

S4 Rotary switch, 3-poles, 5-positions Mouser 105-SR2921F-25S<br />

S5 Rotary switch, 2-poles, 11-positions Mouser 105-SR2921F-12S<br />

S6 Toggle switch, DPDT<br />

S7 Toggle switch, SPDT<br />

Misc. hardware, teflon insulated wire, and shrink tubing<br />

OTHER SYSTEM COMPONENTS<br />

Wall DC Power Supply, 24 VDC @ 400 mA or higher<br />

Various manufacturers

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!