01.01.2015 Views

Global crystal bases and q-Schur algebras

Global crystal bases and q-Schur algebras

Global crystal bases and q-Schur algebras

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Global</strong> <strong>crystal</strong> <strong>bases</strong> <strong>and</strong> q-<strong>Schur</strong> <strong>algebras</strong><br />

Anna Stokke<br />

University of Winnipeg<br />

a.stokke@uwinnipeg.ca<br />

June 2, 2012<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 1 / 20


The quantum enveloping algebra U q (gl n )<br />

U q (gl n ) is the associative algebra over C(q) with generators<br />

e i , f i , 1 ≤ i < n, K j , K −1<br />

j<br />

, 1 ≤ i ≤ n<br />

subject to certain relations involving the indeterminate q.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 2 / 20


The quantum enveloping algebra U q (gl n )<br />

U q (gl n ) is the associative algebra over C(q) with generators<br />

e i , f i , 1 ≤ i < n, K j , K −1<br />

j<br />

, 1 ≤ i ≤ n<br />

subject to certain relations involving the indeterminate q.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 2 / 20


The quantum enveloping algebra U q (gl n )<br />

U q (gl n ) is the associative algebra over C(q) with generators<br />

e i , f i , 1 ≤ i < n, K j , K −1<br />

j<br />

, 1 ≤ i ≤ n<br />

subject to certain relations involving the indeterminate q.<br />

U q (sl n ) is the subalgebra generated by e i , f i , K i K −1 −1<br />

i+1<br />

<strong>and</strong> Ki K i+1 .<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 2 / 20


Comultiplication on U q (gl n )<br />

The comultiplication ∆ : U q (gl n ) ⊗ U q (gl n ) → U q (gl n ) gives an<br />

action on tensor products of U q (gl n )-modules:<br />

∆(e i ) = e i ⊗ 1 + K −1<br />

i<br />

K i+1 ⊗ e i , ∆(f i ) = f i ⊗ K i K −1<br />

i+1 + 1 ⊗ f i,<br />

∆(K i ) = K i ⊗ K i<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 3 / 20


Young tableaux<br />

A sequence of non-negative integers λ = (λ 1 , λ 2 , . . . , λ n ) is a<br />

partition of r if λ 1 ≥ · · · ≥ λ n ≥ 0 <strong>and</strong> λ 1 + · · · + λ n = r.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 4 / 20


Young tableaux<br />

A sequence of non-negative integers λ = (λ 1 , λ 2 , . . . , λ n ) is a<br />

partition of r if λ 1 ≥ · · · ≥ λ n ≥ 0 <strong>and</strong> λ 1 + · · · + λ n = r.<br />

λ ⊣ r Example. (2, 2, 1) ⊣ 5<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 4 / 20


Young tableaux<br />

A sequence of non-negative integers λ = (λ 1 , λ 2 , . . . , λ n ) is a<br />

partition of r if λ 1 ≥ · · · ≥ λ n ≥ 0 <strong>and</strong> λ 1 + · · · + λ n = r.<br />

λ ⊣ r Example. (2, 2, 1) ⊣ 5<br />

The Young diagram of shape λ is an arrangement of<br />

r = λ 1 + · · · + λ k boxes in k left-justified rows with the ith row<br />

consisting of λ i boxes.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 4 / 20


Young tableaux<br />

A sequence of non-negative integers λ = (λ 1 , λ 2 , . . . , λ n ) is a<br />

partition of r if λ 1 ≥ · · · ≥ λ n ≥ 0 <strong>and</strong> λ 1 + · · · + λ n = r.<br />

λ ⊣ r Example. (2, 2, 1) ⊣ 5<br />

The Young diagram of shape λ is an arrangement of<br />

r = λ 1 + · · · + λ k boxes in k left-justified rows with the ith row<br />

consisting of λ i boxes.<br />

Example. λ = (2, 2, 1) =⇒ [λ] =<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 4 / 20


Young tableaux<br />

A sequence of non-negative integers λ = (λ 1 , λ 2 , . . . , λ n ) is a<br />

partition of r if λ 1 ≥ · · · ≥ λ n ≥ 0 <strong>and</strong> λ 1 + · · · + λ n = r.<br />

λ ⊣ r Example. (2, 2, 1) ⊣ 5<br />

The Young diagram of shape λ is an arrangement of<br />

r = λ 1 + · · · + λ k boxes in k left-justified rows with the ith row<br />

consisting of λ i boxes.<br />

Example. λ = (2, 2, 1) =⇒ [λ] =<br />

A λ-tableau is obtained by filling the boxes of the Young diagram of<br />

shape λ with numbers from the set {1, 2, . . . , n}.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 4 / 20


Semist<strong>and</strong>ard Young tableaux<br />

T = 2 3 4<br />

6 6<br />

, S = 2 1 5<br />

4 5<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 5 / 20


Semist<strong>and</strong>ard Young tableaux<br />

T = 2 3 4<br />

6 6<br />

, S = 2 1 5<br />

4 5<br />

T is semist<strong>and</strong>ard since the entries in its rows are weakly increasing<br />

<strong>and</strong> entries in its columns are strictly increasing. S is column<br />

increasing but not semist<strong>and</strong>ard.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 5 / 20


Highest weight modules<br />

A U q (gl n )-module V is a highest weight module if it contains a<br />

highest weight vector v, where e i v = 0 for 1 ≤ i < n, such that<br />

U q (gl n )v = V .<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 6 / 20


Highest weight modules<br />

A U q (gl n )-module V is a highest weight module if it contains a<br />

highest weight vector v, where e i v = 0 for 1 ≤ i < n, such that<br />

U q (gl n )v = V .<br />

For each partition λ with at most n nonzero parts there is a unique<br />

highest weight finite-dimensional irreducible U q (gl n )-module V (λ).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 6 / 20


Highest weight modules<br />

A U q (gl n )-module V is a highest weight module if it contains a<br />

highest weight vector v, where e i v = 0 for 1 ≤ i < n, such that<br />

U q (gl n )v = V .<br />

For each partition λ with at most n nonzero parts there is a unique<br />

highest weight finite-dimensional irreducible U q (gl n )-module V (λ).<br />

For χ = (χ 1 , . . . , χ n ), an n-tuple of nonnegative integers, the<br />

subspace V (λ) χ = {v ∈ V (λ) | K i v = q χ i<br />

v, i = 1, . . . , n} is a weight<br />

space <strong>and</strong><br />

V (λ) = ⊕ χ V χ .<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 6 / 20


Fundamental modules<br />

Let Λ k = (1, . . . , 1, 0, . . . , 0) ⊣ k ≤ n; can write λ = ∑ n<br />

i=1 a iΛ i .<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 7 / 20


Fundamental modules<br />

Let Λ k = (1, . . . , 1, 0, . . . , 0) ⊣ k ≤ n; can write λ = ∑ n<br />

i=1 a iΛ i .<br />

The U q (gl n )-modules V (Λ k ) are called fundamental modules.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 7 / 20


Fundamental modules<br />

Let Λ k = (1, . . . , 1, 0, . . . , 0) ⊣ k ≤ n; can write λ = ∑ n<br />

i=1 a iΛ i .<br />

The U q (gl n )-modules V (Λ k ) are called fundamental modules.<br />

V (Λ k ) is an ( n<br />

k)<br />

-dimensional vector space with basis<br />

{[T ] | T column increasing} labeled by one-column Young tableau of<br />

shape Λ k = (1) k with entries from {1, 2, . . . , n}.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 7 / 20


Fundamental modules cont’d<br />

{ [T ] if i /∈ T<br />

K i [T ] =<br />

q[T ] otherwise<br />

{ 0 if i + 1 ∈ T or i /∈ T<br />

f i [T ] =<br />

[T ′ ] otherwise, where i is replaced with i + 1<br />

{ 0 if i + 1 /∈ T or i ∈ T<br />

e i [T ] =<br />

[T ′ ] otherwise, where i + 1 is replaced with i<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 8 / 20


Fundamental modules cont’d<br />

{ [T ] if i /∈ T<br />

K i [T ] =<br />

q[T ] otherwise<br />

{ 0 if i + 1 ∈ T or i /∈ T<br />

f i [T ] =<br />

[T ′ ] otherwise, where i is replaced with i + 1<br />

{ 0 if i + 1 /∈ T or i ∈ T<br />

e i [T ] =<br />

[T ′ ] otherwise, where i + 1 is replaced with i<br />

Example. n = 3, V (Λ 2 ) has basis<br />

{[ ] [ ] [ ]} [<br />

1 , 1 , 2 ; f 2<br />

2 3 3<br />

[<br />

1<br />

2<br />

]<br />

is a highest weight vector.<br />

1<br />

2<br />

]<br />

=<br />

[<br />

1<br />

3<br />

]<br />

, f 2<br />

[<br />

2<br />

3<br />

]<br />

= 0.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 8 / 20


The highest weight U q (gl n )-module V (λ)<br />

Let λ = ∑ n<br />

i=1 a iΛ i be a partition into at most n parts.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 9 / 20


The highest weight U q (gl n )-module V (λ)<br />

Let λ = ∑ n<br />

i=1 a iΛ i be a partition into at most n parts.<br />

W (λ) = V (Λ n ) ⊗an ⊗ V (Λ n−1 ) ⊗a n−1<br />

⊗ · · · ⊗ V (Λ 1 ) ⊗a 1<br />

U q (gl n )-module.<br />

is a<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 9 / 20


The highest weight U q (gl n )-module V (λ)<br />

Let λ = ∑ n<br />

i=1 a iΛ i be a partition into at most n parts.<br />

W (λ) = V (Λ n ) ⊗an ⊗ V (Λ n−1 ) ⊗a n−1<br />

⊗ · · · ⊗ V (Λ 1 ) ⊗a 1<br />

U q (gl n )-module.<br />

is a<br />

Let v λ be the tensor product of highest weight vectors of each V (Λ i ).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 9 / 20


The highest weight U q (gl n )-module V (λ)<br />

Let λ = ∑ n<br />

i=1 a iΛ i be a partition into at most n parts.<br />

W (λ) = V (Λ n ) ⊗an ⊗ V (Λ n−1 ) ⊗a n−1<br />

⊗ · · · ⊗ V (Λ 1 ) ⊗a 1<br />

U q (gl n )-module.<br />

is a<br />

Let v λ be the tensor product of highest weight vectors of each V (Λ i ).<br />

V (λ) = U q (gl n )v λ<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 9 / 20


Example<br />

Example. n = 3, λ = (2, 1) = Λ 1 + Λ 2 , W (λ) = V (Λ 2 ) ⊗ V (Λ 1 )<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 10 / 20


Example<br />

Example. n = 3, λ = (2, 1) = Λ 1 + Λ 2 , W (λ) = V (Λ 2 ) ⊗ V (Λ 1 )<br />

⎧ [ ] [ ] [ ]<br />

⎫<br />

⎨ [ ]<br />

[ ]<br />

[ ] ⎬<br />

B = 1 ⊗<br />

⎩<br />

1 , 1 ⊗ 1 , 2 ⊗ 1 , . . .<br />

2<br />

3<br />

3<br />

⎭<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 10 / 20


Example<br />

Example. n = 3, λ = (2, 1) = Λ 1 + Λ 2 , W (λ) = V (Λ 2 ) ⊗ V (Λ 1 )<br />

⎧ [ ] [ ] [ ]<br />

⎫<br />

⎨ [ ]<br />

[ ]<br />

[ ] ⎬<br />

B = 1 ⊗<br />

⎩<br />

1 , 1 ⊗ 1 , 2 ⊗ 1 , . . .<br />

2<br />

3<br />

3<br />

⎭<br />

v λ =<br />

[<br />

1<br />

2<br />

]<br />

[<br />

⊗<br />

1<br />

]<br />

, V (λ) = U q (gl 3 )v λ .<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 10 / 20


Example<br />

Example. n = 3, λ = (2, 1) = Λ 1 + Λ 2 , W (λ) = V (Λ 2 ) ⊗ V (Λ 1 )<br />

⎧ [ ] [ ] [ ]<br />

⎫<br />

⎨ [ ]<br />

[ ]<br />

[ ] ⎬<br />

B = 1 ⊗<br />

⎩<br />

1 , 1 ⊗ 1 , 2 ⊗ 1 , . . .<br />

2<br />

3<br />

3<br />

⎭<br />

v λ =<br />

[<br />

1<br />

2<br />

]<br />

[<br />

⊗<br />

1<br />

]<br />

, V (λ) = U q (gl 3 )v λ .<br />

Basis for W (λ) is indexed by column-increasing λ-tableaux;<br />

B = {ω(T ) | T column-increasing }<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 10 / 20


Bases for V (λ)<br />

Dimension of V (λ) is number of semist<strong>and</strong>ard tableaux of shape λ<br />

with entries in {1, 2, . . . , n}.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 11 / 20


Bases for V (λ)<br />

Dimension of V (λ) is number of semist<strong>and</strong>ard tableaux of shape λ<br />

with entries in {1, 2, . . . , n}.<br />

<strong>Global</strong> <strong>crystal</strong> basis (Kashiwara, Lusztig, 1996)<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 11 / 20


Bases for V (λ)<br />

Dimension of V (λ) is number of semist<strong>and</strong>ard tableaux of shape λ<br />

with entries in {1, 2, . . . , n}.<br />

<strong>Global</strong> <strong>crystal</strong> basis (Kashiwara, Lusztig, 1996)<br />

(LT-basis) Leclerc-Toffin basis (2000)<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 11 / 20


Bases for V (λ)<br />

Dimension of V (λ) is number of semist<strong>and</strong>ard tableaux of shape λ<br />

with entries in {1, 2, . . . , n}.<br />

<strong>Global</strong> <strong>crystal</strong> basis (Kashiwara, Lusztig, 1996)<br />

(LT-basis) Leclerc-Toffin basis (2000)<br />

(CL-basis) Carter-Lusztig basis (AS, 2005)<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 11 / 20


Bases for V (λ)<br />

Dimension of V (λ) is number of semist<strong>and</strong>ard tableaux of shape λ<br />

with entries in {1, 2, . . . , n}.<br />

<strong>Global</strong> <strong>crystal</strong> basis (Kashiwara, Lusztig, 1996)<br />

(LT-basis) Leclerc-Toffin basis (2000)<br />

(CL-basis) Carter-Lusztig basis (AS, 2005)<br />

Carter-Lusztig basis in terms of q-<strong>Schur</strong> algebra (G. Cliff, AS, 2010).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 11 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

W (λ) has basis B(λ) = {ω(T ) | T column increasing }<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 12 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

W (λ) has basis B(λ) = {ω(T ) | T column increasing }<br />

A = {f /h | f , h ∈ C[q], h(0) ≠ 0}<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 12 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

W (λ) has basis B(λ) = {ω(T ) | T column increasing }<br />

A = {f /h | f , h ∈ C[q], h(0) ≠ 0}<br />

Let L W (λ) denote the A-span of B(λ) (<strong>crystal</strong> lattice of W (λ)).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 12 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

W (λ) has basis B(λ) = {ω(T ) | T column increasing }<br />

A = {f /h | f , h ∈ C[q], h(0) ≠ 0}<br />

Let L W (λ) denote the A-span of B(λ) (<strong>crystal</strong> lattice of W (λ)).<br />

Define an involution − : U q (gl n ) → U q (gl n ) by<br />

e i = e i , f i = f i , K j = K −1<br />

j<br />

, q = q −1 , 1 ≤ i < n, 1 ≤ j ≤ n.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 12 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

W (λ) has basis B(λ) = {ω(T ) | T column increasing }<br />

A = {f /h | f , h ∈ C[q], h(0) ≠ 0}<br />

Let L W (λ) denote the A-span of B(λ) (<strong>crystal</strong> lattice of W (λ)).<br />

Define an involution − : U q (gl n ) → U q (gl n ) by<br />

e i = e i , f i = f i , K j = K −1<br />

j<br />

, q = q −1 , 1 ≤ i < n, 1 ≤ j ≤ n.<br />

For w = uv λ ∈ V (λ), define w = uv λ , u ∈ U q (gl n ).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 12 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

Theorem. (Kashiwara) There exists a unique Q[q, q −1 ]-basis<br />

{G(T ) | T semist<strong>and</strong>ard} of V (λ) with the properties that<br />

1 G(T ) ≡ ω(T ) mod qL W (λ)<br />

2 G(T ) = G(T ).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 13 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

Theorem. (Kashiwara) There exists a unique Q[q, q −1 ]-basis<br />

{G(T ) | T semist<strong>and</strong>ard} of V (λ) with the properties that<br />

1 G(T ) ≡ ω(T ) mod qL W (λ)<br />

2 G(T ) = G(T ).<br />

In general, difficult to find.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 13 / 20


<strong>Global</strong> <strong>crystal</strong> basis for V (λ)<br />

Theorem. (Kashiwara) There exists a unique Q[q, q −1 ]-basis<br />

{G(T ) | T semist<strong>and</strong>ard} of V (λ) with the properties that<br />

1 G(T ) ≡ ω(T ) mod qL W (λ)<br />

2 G(T ) = G(T ).<br />

In general, difficult to find.<br />

Leclerc, Toffin provided an intermediate basis for V (λ), related to<br />

global <strong>crystal</strong> basis by an upper triangular matrix. Yields an algorithm<br />

for producing the global <strong>crystal</strong> basis.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 13 / 20


(Quantum) Carter-Lusztig basis<br />

Let f i,i+1 = f i <strong>and</strong> for j > i + 1, define<br />

f ij = f i+1,j f i − q −1 f i f i+1,j .<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 14 / 20


(Quantum) Carter-Lusztig basis<br />

Let f i,i+1 = f i <strong>and</strong> for j > i + 1, define<br />

Define f (k)<br />

i<br />

f ij = f i+1,j f i − q −1 f i f i+1,j .<br />

= f i<br />

k<br />

[k]! , where [k] = qm −q −m<br />

<strong>and</strong> [k]! = [k][k − 1] . . . [1].<br />

q−q −1<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 14 / 20


(Quantum) Carter-Lusztig basis<br />

Let f i,i+1 = f i <strong>and</strong> for j > i + 1, define<br />

Define f (k)<br />

i<br />

f ij = f i+1,j f i − q −1 f i f i+1,j .<br />

= f i<br />

k<br />

[k]! , where [k] = qm −q −m<br />

<strong>and</strong> [k]! = [k][k − 1] . . . [1].<br />

q−q −1<br />

For T a semist<strong>and</strong>ard λ-tableau, define<br />

∏<br />

F T =<br />

f (γ ij )<br />

ij<br />

= f (γ 12)<br />

12<br />

F (γ 13)<br />

13<br />

. . . f (γ 1k)<br />

1k<br />

f (γ 23)<br />

23<br />

. . . f (γ 2k)<br />

2k<br />

1≤i


(Quantum) Carter-Lusztig basis<br />

Let f i,i+1 = f i <strong>and</strong> for j > i + 1, define<br />

Define f (k)<br />

i<br />

f ij = f i+1,j f i − q −1 f i f i+1,j .<br />

= f i<br />

k<br />

[k]! , where [k] = qm −q −m<br />

<strong>and</strong> [k]! = [k][k − 1] . . . [1].<br />

q−q −1<br />

For T a semist<strong>and</strong>ard λ-tableau, define<br />

∏<br />

F T =<br />

f (γ ij )<br />

ij<br />

= f (γ 12)<br />

12<br />

F (γ 13)<br />

13<br />

. . . f (γ 1k)<br />

1k<br />

f (γ 23)<br />

23<br />

. . . f (γ 2k)<br />

2k<br />

1≤i


CL-basis<br />

Theorem (AS) The set {F T v λ | T semist<strong>and</strong>ard } is a basis for V (λ).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 15 / 20


CL-basis<br />

Theorem (AS) The set {F T v λ | T semist<strong>and</strong>ard } is a basis for V (λ).<br />

Example. Let λ = (2, 1), n = 3.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 15 / 20


CL-basis<br />

Theorem (AS) The set {F T v λ | T semist<strong>and</strong>ard } is a basis for V (λ).<br />

Example. Let λ = (2, 1), n = 3.<br />

V (λ) has one 2-dimensional weight space; Any basis for the weight<br />

space is indexed by tableaux T 1 = 1 3<br />

2<br />

<strong>and</strong> T 2 = 1 2<br />

3<br />

.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 15 / 20


CL-basis<br />

Theorem (AS) The set {F T v λ | T semist<strong>and</strong>ard } is a basis for V (λ).<br />

Example. Let λ = (2, 1), n = 3.<br />

V (λ) has one 2-dimensional weight space; Any basis for the weight<br />

space is indexed by tableaux T 1 = 1 3<br />

2<br />

<strong>and</strong> T 2 = 1 2<br />

3<br />

.<br />

CL-basis is {F T1 v λ , F T2 v λ } = {f 13 v λ = (f 2 f 1 − q −1 f 1 f 2 )v λ , f 1 f 2 v λ }<br />

which is not the same as the global basis.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 15 / 20


Example cont’d<br />

Replace F T1 v λ with F T1 v λ + q −1 F T2 v λ = f 2 f 1 v λ . Then f 2 f 1 v λ = f 2 f 1 v λ .<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 16 / 20


Example cont’d<br />

Replace F T1 v λ with F T1 v λ + q −1 F T2 v λ = f 2 f 1 v λ . Then f 2 f 1 v λ = f 2 f 1 v λ .<br />

[<br />

f 2 f 1 v λ =<br />

[<br />

f 1 f 2 v λ =<br />

1<br />

2<br />

1<br />

3<br />

]<br />

]<br />

[<br />

⊗<br />

[<br />

⊗<br />

3<br />

2<br />

[<br />

]<br />

+ q<br />

[<br />

]<br />

+ q<br />

1<br />

3<br />

2<br />

3<br />

]<br />

]<br />

[<br />

⊗<br />

[<br />

⊗<br />

2<br />

1<br />

]<br />

,<br />

]<br />

.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 16 / 20


Example cont’d<br />

Replace F T1 v λ with F T1 v λ + q −1 F T2 v λ = f 2 f 1 v λ . Then f 2 f 1 v λ = f 2 f 1 v λ .<br />

[<br />

f 2 f 1 v λ =<br />

[<br />

f 1 f 2 v λ =<br />

1<br />

2<br />

1<br />

3<br />

]<br />

]<br />

[<br />

⊗<br />

[<br />

⊗<br />

3<br />

2<br />

[<br />

]<br />

+ q<br />

[<br />

]<br />

+ q<br />

1<br />

3<br />

2<br />

3<br />

]<br />

]<br />

[<br />

⊗<br />

[<br />

⊗<br />

2<br />

1<br />

]<br />

,<br />

]<br />

.<br />

{f 2 f 1 v λ , f 1 f 2 v λ } is the global <strong>crystal</strong> basis.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 16 / 20


Definition of C q [x ij | 1 ≤ i, j ≤ n]<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 17 / 20


Definition of C q [x ij | 1 ≤ i, j ≤ n]<br />

Define C q [x ij | 1 ≤ i, j ≤ n] to be the associative C-algebra generated<br />

by x ij , 1 ≤ i, j ≤ n subject to the relations:<br />

x il x ik = qx ik x il<br />

1 ≤ k < l ≤ n<br />

x jk x ik = qx ik x jk<br />

1 ≤ i < j ≤ n<br />

x il x jk = x jk x il 1 ≤ i < j ≤ n,<br />

1 ≤ k < l ≤ n<br />

x ik x jl − x jl x ik = (q −1 − q)x il x jk 1 ≤ i < j ≤ n,<br />

1 ≤ k < l ≤ n.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 17 / 20


q-<strong>Schur</strong> <strong>algebras</strong><br />

A q (n, r) is the subspace of C q [x ij ] consisting of homogeneous<br />

polynomials of degree r, r ≥ 0.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 18 / 20


q-<strong>Schur</strong> <strong>algebras</strong><br />

A q (n, r) is the subspace of C q [x ij ] consisting of homogeneous<br />

polynomials of degree r, r ≥ 0.<br />

Example. x 2 11 + x 22x 13 ∈ A q (3, 2)<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 18 / 20


q-<strong>Schur</strong> <strong>algebras</strong><br />

A q (n, r) is the subspace of C q [x ij ] consisting of homogeneous<br />

polynomials of degree r, r ≥ 0.<br />

Example. x 2 11 + x 22x 13 ∈ A q (3, 2)<br />

The dual of A q (n, r) is an algebra, called the q-<strong>Schur</strong> algebra.<br />

S q (n, r) = (A q (n, r)) ∗ = {ξ : A q (n, r) → C | ξ linear}.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 18 / 20


q-<strong>Schur</strong> <strong>algebras</strong><br />

A q (n, r) is the subspace of C q [x ij ] consisting of homogeneous<br />

polynomials of degree r, r ≥ 0.<br />

Example. x 2 11 + x 22x 13 ∈ A q (3, 2)<br />

The dual of A q (n, r) is an algebra, called the q-<strong>Schur</strong> algebra.<br />

S q (n, r) = (A q (n, r)) ∗ = {ξ : A q (n, r) → C | ξ linear}.<br />

W (λ) is an S q (n, r)-module; V (λ) = {ξv λ | ξ ∈ S q (n, r)}.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 18 / 20


q-<strong>Schur</strong> <strong>algebras</strong><br />

A q (n, r) is the subspace of C q [x ij ] consisting of homogeneous<br />

polynomials of degree r, r ≥ 0.<br />

Example. x 2 11 + x 22x 13 ∈ A q (3, 2)<br />

The dual of A q (n, r) is an algebra, called the q-<strong>Schur</strong> algebra.<br />

S q (n, r) = (A q (n, r)) ∗ = {ξ : A q (n, r) → C | ξ linear}.<br />

W (λ) is an S q (n, r)-module; V (λ) = {ξv λ | ξ ∈ S q (n, r)}.<br />

(Cliff, A.S., 2010) B 1 = {ξ T w λ | T semist<strong>and</strong>ard} is a basis for V (λ).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 18 / 20


Relationships between <strong>bases</strong><br />

Let {A(U)v λ | U semist<strong>and</strong>ard} denote the LT-basis for V (λ).<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 19 / 20


Relationships between <strong>bases</strong><br />

Let {A(U)v λ | U semist<strong>and</strong>ard} denote the LT-basis for V (λ).<br />

Theorem (A.S.) Let U be a semist<strong>and</strong>ard λ-tableau <strong>and</strong> suppose<br />

that A(U)v λ = ∑ T a T F T v λ . Then<br />

1 a U = q k , k ∈ Z<br />

2 if a U ≠ 0, then U ≤ T in the lexicographic column ordering.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 19 / 20


Relationships between <strong>bases</strong><br />

Let {A(U)v λ | U semist<strong>and</strong>ard} denote the LT-basis for V (λ).<br />

Theorem (A.S.) Let U be a semist<strong>and</strong>ard λ-tableau <strong>and</strong> suppose<br />

that A(U)v λ = ∑ T a T F T v λ . Then<br />

1 a U = q k , k ∈ Z<br />

2 if a U ≠ 0, then U ≤ T in the lexicographic column ordering.<br />

Corollary CL-basis is related to global basis by an upper triangular<br />

invertible matrix.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 19 / 20


Relationships between <strong>bases</strong><br />

Let {A(U)v λ | U semist<strong>and</strong>ard} denote the LT-basis for V (λ).<br />

Theorem (A.S.) Let U be a semist<strong>and</strong>ard λ-tableau <strong>and</strong> suppose<br />

that A(U)v λ = ∑ T a T F T v λ . Then<br />

1 a U = q k , k ∈ Z<br />

2 if a U ≠ 0, then U ≤ T in the lexicographic column ordering.<br />

Corollary CL-basis is related to global basis by an upper triangular<br />

invertible matrix.<br />

Also...algorithm for producing global basis elements in terms of the<br />

q-<strong>Schur</strong> algebra.<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 19 / 20


The end<br />

Thank you!<br />

Anna Stokke (University of Winnipeg) <strong>Global</strong> <strong>bases</strong> & q-<strong>Schur</strong> <strong>algebras</strong> June 2, 2012 20 / 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!