02.01.2015 Views

David Zureick-Brown - Rational points and algebraic cycles

David Zureick-Brown - Rational points and algebraic cycles

David Zureick-Brown - Rational points and algebraic cycles

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R<strong>and</strong>om Dieudonné Modules <strong>and</strong> the Cohen-Lenstra<br />

Heuristics<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong><br />

Bryden Cais<br />

Jordan Ellenberg<br />

Emory University<br />

Slides available at http://www.mathcs.emory.edu/~dzb/slides/<br />

Arithmetic of abelian varieties in families<br />

Lausanne, Switzerl<strong>and</strong><br />

November 13, 2012


Basic Question<br />

How often does p divide h(−D)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 2 / 29


Basic Question<br />

What is<br />

P(p | h(−D)) = lim<br />

X →∞<br />

#{0 ≤ D ≤ X s.t. p | h(−D)}<br />

<br />

#{0 ≤ D ≤ X }<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 3 / 29


Guess: R<strong>and</strong>om Integer<br />

P(p | h(−D)) = P(p | D) = 1 p <br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 4 / 29


Data (Buell ’76)<br />

P(p | h(−D)) ≈ 1 p + 1 p 2 − 1 p 5 − 1 + · · · (p odd )<br />

p7 = 1 − ∏ (1 − 1 )<br />

p i i≥1<br />

= 0.43 . . . ≠ 1/3 (p = 3)<br />

= 0.23 . . . ≠ 1/5 (p = 5)<br />

P(Cl(−D) 3<br />

∼ = Z/9Z) ≈ 0.070<br />

P(Cl(−D) 3<br />

∼ = (Z/3Z) 2 ) ≈ 0.0097<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 5 / 29


R<strong>and</strong>om finite abelian groups<br />

Idea<br />

P(p | h(−D)) = P(p | #G) = <br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 6 / 29


R<strong>and</strong>om finite abelian groups<br />

Idea<br />

P(p | h(−D)) = P(p | #G) = <br />

Let G p be the set of isomorphism classes of finite abelian groups of<br />

p-power order.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 6 / 29


R<strong>and</strong>om finite abelian groups<br />

Idea<br />

P(p | h(−D)) = P(p | #G) = <br />

Let G p be the set of isomorphism classes of finite abelian groups of<br />

p-power order.<br />

Theorem (Cohen, Lenstra)<br />

(i)<br />

∑ 1<br />

# Aut G = ∏ G∈G p i<br />

(<br />

1 − 1 p i ) −1<br />

= C −1<br />

p<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 6 / 29


R<strong>and</strong>om finite abelian groups<br />

Idea<br />

P(p | h(−D)) = P(p | #G) = <br />

Let G p be the set of isomorphism classes of finite abelian groups of<br />

p-power order.<br />

Theorem (Cohen, Lenstra)<br />

(i)<br />

∑ 1<br />

# Aut G = ∏ G∈G p i<br />

(ii) G ↦→<br />

(<br />

1 − 1 p i ) −1<br />

= C −1<br />

p<br />

C p<br />

# Aut G is a probability distribution on G p<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 6 / 29


R<strong>and</strong>om finite abelian groups<br />

Idea<br />

P(p | h(−D)) = P(p | #G) = <br />

Let G p be the set of isomorphism classes of finite abelian groups of<br />

p-power order.<br />

Theorem (Cohen, Lenstra)<br />

(i)<br />

∑ 1<br />

# Aut G = ∏ G∈G p i<br />

(ii) G ↦→<br />

(<br />

1 − 1 p i ) −1<br />

= C −1<br />

p<br />

C p<br />

# Aut G is a probability distribution on G p<br />

(iii) Avg (#G[p]) = Avg ( p rp(G)) = 2<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 6 / 29


Cohen <strong>and</strong> Lenstra’s conjecture<br />

Let f : G p → Z be a function.<br />

Definition<br />

Avg f = ∑<br />

G∈G p<br />

C p<br />

# Aut G · f (G)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 7 / 29


Cohen <strong>and</strong> Lenstra’s conjecture<br />

Let f : G p → Z be a function.<br />

Definition<br />

Avg f = ∑<br />

G∈G p<br />

C p<br />

# Aut G · f (G)<br />

Avg Cl f =<br />

∑<br />

0≤D≤X f (Cl(−D) p)<br />

∑<br />

0≤D≤X 1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 7 / 29


Cohen <strong>and</strong> Lenstra’s conjecture<br />

Let f : G p → Z be a function.<br />

Definition<br />

Avg f = ∑<br />

G∈G p<br />

C p<br />

# Aut G · f (G)<br />

Avg Cl f =<br />

∑<br />

0≤D≤X f (Cl(−D) p)<br />

∑<br />

0≤D≤X 1<br />

Conjecture (Cohen, Lenstra)<br />

(i) Avg Cl f = Avg f<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 7 / 29


Cohen <strong>and</strong> Lenstra’s conjecture<br />

Let f : G p → Z be a function.<br />

Definition<br />

Avg f = ∑<br />

G∈G p<br />

C p<br />

# Aut G · f (G)<br />

Avg Cl f =<br />

∑<br />

0≤D≤X f (Cl(−D) p)<br />

∑<br />

0≤D≤X 1<br />

Conjecture (Cohen, Lenstra)<br />

(i) Avg Cl f = Avg f<br />

(ii) Avg (# Cl(−D)[p]) = 2<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 7 / 29


Cohen <strong>and</strong> Lenstra’s conjecture<br />

Let f : G p → Z be a function.<br />

Definition<br />

Avg f = ∑<br />

G∈G p<br />

C p<br />

# Aut G · f (G)<br />

Avg Cl f =<br />

∑<br />

0≤D≤X f (Cl(−D) p)<br />

∑<br />

0≤D≤X 1<br />

Conjecture (Cohen, Lenstra)<br />

(i) Avg Cl f = Avg f<br />

(ii) Avg (# Cl(−D)[p]) 2 = 2 + p<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 7 / 29


Cohen <strong>and</strong> Lenstra’s conjecture<br />

Let f : G p → Z be a function.<br />

Definition<br />

Avg f = ∑<br />

G∈G p<br />

C p<br />

# Aut G · f (G)<br />

Avg Cl f =<br />

∑<br />

0≤D≤X f (Cl(−D) p)<br />

∑<br />

0≤D≤X 1<br />

Conjecture (Cohen, Lenstra)<br />

(i) Avg Cl f = Avg f<br />

(ii) Avg (# Cl(−D)[p]) 2 = 2 + p<br />

(iii) P(Cl(−D) p<br />

∼ = G) =<br />

C p<br />

# Aut G .<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 7 / 29


Progress<br />

Davenport-Heilbronn – Avg Cl(−D)[3] = 2<br />

Bhargava – Avg Cl(K)[2] = 3 (K cubic)<br />

Bhargava – counts quartic dihedral extensions<br />

Kohnen-Ono – N p ∤h (X ) ≫ x 2<br />

1<br />

log x<br />

Heath-<strong>Brown</strong> – N p|h (X ) ≫ x 10<br />

9<br />

log x<br />

Byeon – N Clp ∼ =(Z/gZ)<br />

2(X ) ≫ x 1 g<br />

log x<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 8 / 29


Cohen-Lenstra over F q (t), l ≠ p<br />

Cl(−D) = Pic(Spec O K )<br />

vs<br />

Pic(C)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 9 / 29


Cohen-Lenstra over F q (t), l ≠ p<br />

Cl(−D) = Pic(Spec O K )<br />

vs<br />

Pic(C) deg<br />

−→ Z → 0<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 9 / 29


Cohen-Lenstra over F q (t), l ≠ p<br />

Cl(−D) = Pic(Spec O K )<br />

vs<br />

0 → Pic 0 (C) → Pic(C) deg<br />

−→ Z → 0<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 9 / 29


Basic Question over F q (t), l ≠ p<br />

Fix G ∈ G l .<br />

What is<br />

P(Pic 0 (C) l<br />

∼ = G)<br />

(Limit is taken as deg f → ∞, where C : y 2 = f (x).)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 10 / 29


Main Tool over F q (t) – Tate Module<br />

Aut T l (Jac C ) ∼ = Z 2g<br />

l<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 11 / 29


Main Tool over F q (t) – Tate Module<br />

Gal Fq<br />

→ Aut T l (Jac C ) ∼ = Z 2g<br />

l<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 11 / 29


Main Tool over F q (t) – Tate Module<br />

Frob ∈ Gal Fq<br />

→ Aut T l (Jac C ) ∼ = Z 2g<br />

l<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 11 / 29


Main Tool over F q (t) – Tate Module<br />

- Frob ∈ Gal Fq → Aut T l (Jac C ) ∼ = Z 2g<br />

l<br />

- coker (Frob − Id) ∼ = Jac C (F q ) l = Pic 0 (C)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 11 / 29


R<strong>and</strong>om Tate-modules<br />

F ∈ GL 2g (Z l ) (w/ Haar measure)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 12 / 29


R<strong>and</strong>om Tate-modules<br />

F ∈ GL 2g (Z l ) (w/ Haar measure)<br />

Theorem (Friedman, Washington)<br />

P(coker F − I ∼ = L) =<br />

C l<br />

# Aut L<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 12 / 29


R<strong>and</strong>om Tate-modules<br />

F ∈ GL 2g (Z l ) (w/ Haar measure)<br />

Theorem (Friedman, Washington)<br />

Conjecture<br />

P(coker F − I ∼ = L) =<br />

P(Pic 0 (C) ∼ = L) =<br />

C l<br />

# Aut L<br />

C l<br />

# Aut L<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 12 / 29


Progress<br />

In the limit (w/ upper <strong>and</strong> lower densities):<br />

Achter – conjectures are true for GSp 2g instead of GL 2g .<br />

Ellenberg-Venkatesh – conjectures are true if l ∤ q − 1.<br />

Garton – explicit conjectures for GSp 2g , l | q − 1.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 13 / 29


Cohen-Lenstra over F p (t), l = p<br />

Basic question – what is<br />

P(p | # Jac C (F p ))<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 14 / 29


Cohen-Lenstra over F p (t), l = p<br />

T l (Jac C ) ∼ = Z r l , 0 ≤ r ≤ g<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 15 / 29


Cohen-Lenstra over F p (t), l = p<br />

Definition<br />

The p-rank of Jac C is the integer r.<br />

T l (Jac C ) ∼ = Z r l , 0 ≤ r ≤ g<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 15 / 29


Cohen-Lenstra over F p (t), l = p<br />

Definition<br />

The p-rank of Jac C is the integer r.<br />

Complication<br />

T l (Jac C ) ∼ = Z r l , 0 ≤ r ≤ g<br />

As C varies, r varies. Need to know the distribution of p-ranks, or find a<br />

better <strong>algebraic</strong> gadget than T l (Jac C ).<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 15 / 29


Dieudonné Modules<br />

Definition<br />

(i) D = Z q [F , V ]/(FV = VF = p, Fz = z σ F , Vz = z σ−1 V ).<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 16 / 29


Dieudonné Modules<br />

Definition<br />

(i) D = Z q [F , V ]/(FV = VF = p, Fz = z σ F , Vz = z σ−1 V ).<br />

(ii) A Dieudonné module is a D-module which is finite <strong>and</strong> free as a Z q<br />

module.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 16 / 29


Dieudonné Modules<br />

Definition<br />

(i) D = Z q [F , V ]/(FV = VF = p, Fz = z σ F , Vz = z σ−1 V ).<br />

(ii) A Dieudonné module is a D-module which is finite <strong>and</strong> free as a Z q<br />

module.<br />

Jac C<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 16 / 29


Dieudonné Modules<br />

Definition<br />

(i) D = Z q [F , V ]/(FV = VF = p, Fz = z σ F , Vz = z σ−1 V ).<br />

(ii) A Dieudonné module is a D-module which is finite <strong>and</strong> free as a Z q<br />

module.<br />

Jac C<br />

<br />

<br />

M = H 1 cris (Jac C, Z p )<br />

<br />

<br />

<br />

<br />

<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 16 / 29


Dieudonné Modules<br />

Definition<br />

(i) D = Z q [F , V ]/(FV = VF = p, Fz = z σ F , Vz = z σ−1 V ).<br />

(ii) A Dieudonné module is a D-module which is finite <strong>and</strong> free as a Z q<br />

module.<br />

Jac C<br />

M = H 1 cris (Jac C, Z p )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

{Jac C [p n ]} n<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 16 / 29


Dieudonné Modules<br />

Definition<br />

(i) D = Z q [F , V ]/(FV = VF = p, Fz = z σ F , Vz = z σ−1 V ).<br />

(ii) A Dieudonné module is a D-module which is finite <strong>and</strong> free as a Z q<br />

module.<br />

Jac C<br />

M = H 1 cris (Jac C, Z p )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

H 1 dR (Jac C, F p )<br />

<br />

<br />

<br />

{Jac C [p n ]} n<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 16 / 29


Dieudonné Modules<br />

Definition<br />

(i) D = Z q [F , V ]/(FV = VF = p, Fz = z σ F , Vz = z σ−1 V ).<br />

(ii) A Dieudonné module is a D-module which is finite <strong>and</strong> free as a Z q<br />

module.<br />

Jac C<br />

M = H 1 cris (Jac C, Z p )<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

H 1 dR (Jac C, F p )<br />

<br />

<br />

<br />

{Jac C [p n ]} n<br />

<br />

V −1 : df ↦→ “d(f p )”<br />

p<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 16 / 29


Invariants via Dieudonné Modules<br />

Invariants<br />

(i) p-rank(Jac C ) = dim F ∞ (M ⊗ F p ).<br />

(ii) a(Jac C ) = dim Hom(α p , Jac C [p]) = dim (ker V ∩ ker F ).<br />

(iii) Jac C (F p ) p = coker(F − Id)| F ∞ (M⊗F p).<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 17 / 29


Principally quasi polarized Dieudoneé modules<br />

Definition<br />

A principally quasi polarized Dieudoneé module a Dieudoneé module M<br />

together with a non-degenerate symplectic pairing 〈 , 〉 such that for all<br />

x, y ∈ M,<br />

〈Fx, y〉 = σ〈x, Vy〉.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 18 / 29


Main Theorem<br />

Theorem (Cais, Ellenberg, ZB)<br />

(i) Mod pqp D has a natural probability measure.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 19 / 29


Main Theorem<br />

Theorem (Cais, Ellenberg, ZB)<br />

(i) Mod pqp D has a natural probability measure.<br />

(Push forward along Sp 2g (Z p ) 2 → Sp 2g (Z p ) · F 0 · Sp 2g (Z p ))<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 19 / 29


Main Theorem<br />

Theorem (Cais, Ellenberg, ZB)<br />

(i) Mod pqp D has a natural probability measure.<br />

(Push forward along Sp 2g (Z p ) 2 → Sp 2g (Z p ) · F 0 · Sp 2g (Z p ))<br />

(ii) P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 19 / 29


Main Theorem<br />

Theorem (Cais, Ellenberg, ZB)<br />

(i) Mod pqp D has a natural probability measure.<br />

(Push forward along Sp 2g (Z p ) 2 → Sp 2g (Z p ) · F 0 · Sp 2g (Z p ))<br />

(ii) P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

(iii) P(r(M) = g − s) = complicated but explicit expression.<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 19 / 29


Main Theorem<br />

Theorem (Cais, Ellenberg, ZB)<br />

(i) Mod pqp D has a natural probability measure.<br />

(Push forward along Sp 2g (Z p ) 2 → Sp 2g (Z p ) · F 0 · Sp 2g (Z p ))<br />

(ii) P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

(iii) P(r(M) = g − s) = complicated but explicit expression.<br />

(iii’) P(r(M) = g − 2) = (p −2 + p −3 ) ·<br />

i=1<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 19 / 29


Main Theorem<br />

Theorem (Cais, Ellenberg, ZB)<br />

(i) Mod pqp D has a natural probability measure.<br />

(Push forward along Sp 2g (Z p ) 2 → Sp 2g (Z p ) · F 0 · Sp 2g (Z p ))<br />

(ii) P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

(iii) P(r(M) = g − s) = complicated but explicit expression.<br />

(iii’) P(r(M) = g − 2) = (p −2 + p −3 ) ·<br />

(iv) 1 st moment is 2.<br />

i=1<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 19 / 29


Main Theorem<br />

Theorem (Cais, Ellenberg, ZB)<br />

(i) Mod pqp D has a natural probability measure.<br />

(Push forward along Sp 2g (Z p ) 2 → Sp 2g (Z p ) · F 0 · Sp 2g (Z p ))<br />

(ii) P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

(iii) P(r(M) = g − s) = complicated but explicit expression.<br />

(iii’) P(r(M) = g − 2) = (p −2 + p −3 ) ·<br />

(iv) 1 st moment is 2.<br />

i=1<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

(v) P ( p ∤ # coker(F − Id)| F ∞ (M⊗F p))<br />

= Cp .<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 19 / 29


Proofs<br />

Part (i)<br />

Mod pqp D has a natural probability measure.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 20 / 29


Proofs<br />

Part (i)<br />

Mod pqp D has a natural probability measure.<br />

1 (D, 〈 , 〉, F , V ) s.t., FV = VF = p <strong>and</strong> 〈F (−) , −〉 = σ〈− , V (−)〉.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 20 / 29


Proofs<br />

Part (i)<br />

Mod pqp D has a natural probability measure.<br />

1 (D, 〈 , 〉, F , V ) s.t., FV = VF = p <strong>and</strong> 〈F (−) , −〉 = σ〈− , V (−)〉.<br />

⎡ ⎤ ⎡ ⎤<br />

2 D = Z 2g ⎢<br />

q , 〈 , 〉 = ⎣ 0 I<br />

−I 0<br />

⎥<br />

⎦, F 0 =<br />

⎢<br />

⎣ pI 0<br />

0 I<br />

⎥<br />

⎦, V 0 = pF −1 .<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 20 / 29


Proofs<br />

Part (i)<br />

Mod pqp D has a natural probability measure.<br />

1 (D, 〈 , 〉, F , V ) s.t., FV = VF = p <strong>and</strong> 〈F (−) , −〉 = σ〈− , V (−)〉.<br />

⎡ ⎤ ⎡ ⎤<br />

2 D = Z 2g ⎢<br />

q , 〈 , 〉 = ⎣ 0 I<br />

−I 0<br />

Proposition<br />

⎥<br />

⎦, F 0 =<br />

⎢<br />

⎣ pI 0<br />

0 I<br />

⎥<br />

⎦, V 0 = pF −1 .<br />

The double coset space Sp 2g (Z p ) · F 0 · Sp 2g (Z p ) contains all pqp<br />

Dieudoneé modules.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 20 / 29


Proofs<br />

Part (i)<br />

Mod pqp D has a natural probability measure.<br />

1 (D, 〈 , 〉, F , V ) s.t., FV = VF = p <strong>and</strong> 〈F (−) , −〉 = σ〈− , V (−)〉.<br />

⎡ ⎤ ⎡ ⎤<br />

2 D = Z 2g ⎢<br />

q , 〈 , 〉 = ⎣ 0 I<br />

−I 0<br />

Proposition<br />

⎥<br />

⎦, F 0 =<br />

⎢<br />

⎣ pI 0<br />

0 I<br />

⎥<br />

⎦, V 0 = pF −1 .<br />

The double coset space Sp 2g (Z p ) · F 0 · Sp 2g (Z p ) contains all pqp<br />

Dieudoneé modules.<br />

Proof: Witt’s theorem – Sp 2g acts transitively on symplecto-bases.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 20 / 29


Proofs<br />

Part (i)<br />

Mod pqp D has a natural probability measure.<br />

1 (D, 〈 , 〉, F , V ) s.t., FV = VF = p <strong>and</strong> 〈F (−) , −〉 = σ〈− , V (−)〉.<br />

⎡ ⎤ ⎡ ⎤<br />

2 D = Z 2g ⎢<br />

q , 〈 , 〉 = ⎣ 0 I<br />

−I 0<br />

Proposition<br />

⎥<br />

⎦, F 0 =<br />

⎢<br />

⎣ pI 0<br />

0 I<br />

⎥<br />

⎦, V 0 = pF −1 .<br />

The double coset space Sp 2g (Z p ) · F 0 · Sp 2g (Z p ) contains all pqp<br />

Dieudoneé modules.<br />

Proof: Witt’s theorem – Sp 2g acts transitively on symplecto-bases.<br />

Note: F ∉ Sp 2g (Z p ), but rather the subset of GSp 2g (Z p ) of multiplier p g<br />

matricies.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 20 / 29


Proofs<br />

Part (ii)<br />

P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 21 / 29


Proofs<br />

Part (ii)<br />

P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

1 Duality implies that W 1 := ker(F ⊗ F p ) <strong>and</strong> W 2 := ker(V ⊗ F p ) are<br />

maximal isotropics.<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 21 / 29


Proofs<br />

Part (ii)<br />

P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

1 Duality implies that W 1 := ker(F ⊗ F p ) <strong>and</strong> W 2 := ker(V ⊗ F p ) are<br />

maximal isotropics.<br />

2 a(M) = dim (W 1 ∩ W 2 )<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 21 / 29


Proofs<br />

Part (ii)<br />

P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

1 Duality implies that W 1 := ker(F ⊗ F p ) <strong>and</strong> W 2 := ker(V ⊗ F p ) are<br />

maximal isotropics.<br />

2 a(M) = dim (W 1 ∩ W 2 )<br />

i=1<br />

3 Argue that W 1 <strong>and</strong> W 2 are r<strong>and</strong>omly distributed.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 21 / 29


Proofs<br />

Part (ii)<br />

P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

1 Duality implies that W 1 := ker(F ⊗ F p ) <strong>and</strong> W 2 := ker(V ⊗ F p ) are<br />

maximal isotropics.<br />

2 a(M) = dim (W 1 ∩ W 2 )<br />

i=1<br />

3 Argue that W 1 <strong>and</strong> W 2 are r<strong>and</strong>omly distributed.<br />

4 This expression is the probability that two r<strong>and</strong>om maximal isotropics<br />

intersect with dimension s.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 21 / 29


Proofs<br />

Part (ii)<br />

P(a(M) = s) = p −(s+1 2 ) ·<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

·<br />

i=1<br />

s∏ (<br />

1 − p<br />

−i ) −1<br />

.<br />

1 Duality implies that W 1 := ker(F ⊗ F p ) <strong>and</strong> W 2 := ker(V ⊗ F p ) are<br />

maximal isotropics.<br />

2 a(M) = dim (W 1 ∩ W 2 )<br />

i=1<br />

3 Argue that W 1 <strong>and</strong> W 2 are r<strong>and</strong>omly distributed.<br />

4 This expression is the probability that two r<strong>and</strong>om maximal isotropics<br />

intersect with dimension s.<br />

5 Compute this with Witt’s theorem (Sp 2g acts transitively on pairs of<br />

maximal isotropics whose intersection has dimension s), <strong>and</strong> compute<br />

explicitly the size of the stabilizers.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 21 / 29


Proofs<br />

Part (iii)<br />

P(r(M) = g − s) = complicated but explicit expression.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 22 / 29


Proofs<br />

Part (iii)<br />

P(r(M) = g − s) = complicated but explicit expression.<br />

1 Recall: r(M) = dim F ∞ (M) = rank(F ⊗ F p ) g .<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 22 / 29


Proofs<br />

Part (iii)<br />

P(r(M) = g − s) = complicated but explicit expression.<br />

1 Recall: r(M) = dim F ∞ (M) = rank(F ⊗ F p ) g .<br />

2 (Prüfer, Crabb, others) The number of nilpotent N ∈ M n (F q ) is<br />

q n(n−1) . Able to modify Crabb’s argument:<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 22 / 29


Proofs<br />

Part (iii)<br />

P(r(M) = g − s) = complicated but explicit expression.<br />

1 Recall: r(M) = dim F ∞ (M) = rank(F ⊗ F p ) g .<br />

2 (Prüfer, Crabb, others) The number of nilpotent N ∈ M n (F q ) is<br />

q n(n−1) . Able to modify Crabb’s argument:<br />

1 Given N nilpotent, get a flag V i := N i (V ).<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 22 / 29


Proofs<br />

Part (iii)<br />

P(r(M) = g − s) = complicated but explicit expression.<br />

1 Recall: r(M) = dim F ∞ (M) = rank(F ⊗ F p ) g .<br />

2 (Prüfer, Crabb, others) The number of nilpotent N ∈ M n (F q ) is<br />

q n(n−1) . Able to modify Crabb’s argument:<br />

1 Given N nilpotent, get a flag V i := N i (V ).<br />

2 There is a unique basis {y 1 , . . . , y g } such that N(y g ) = 0 <strong>and</strong><br />

V i = 〈N i (y mi +1), . . . , N(y g−1 )〉 (where m i = g − dim V i−1 )<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 22 / 29


Proofs<br />

Part (iii)<br />

P(r(M) = g − s) = complicated but explicit expression.<br />

1 Recall: r(M) = dim F ∞ (M) = rank(F ⊗ F p ) g .<br />

2 (Prüfer, Crabb, others) The number of nilpotent N ∈ M n (F q ) is<br />

q n(n−1) . Able to modify Crabb’s argument:<br />

1 Given N nilpotent, get a flag V i := N i (V ).<br />

2 There is a unique basis {y 1 , . . . , y g } such that N(y g ) = 0 <strong>and</strong><br />

V i = 〈N i (y mi +1), . . . , N(y g−1 )〉 (where m i = g − dim V i−1 )<br />

3 The map N ↦→ (N(y 1 ), . . . , N(y g−1 )) ∈ V n−1 is bijective.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 22 / 29


Proofs<br />

Part (iv)<br />

1 st moment is 2: Avg (#G(F p )[p]) = 2<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 23 / 29


Proofs<br />

Part (iv)<br />

1 st moment is 2: Avg (#G(F p )[p]) = 2<br />

1 First fix the p-corank.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 23 / 29


Proofs<br />

Part (iv)<br />

1 st moment is 2: Avg (#G(F p )[p]) = 2<br />

1 First fix the p-corank.<br />

1 Associated p-divisible group decomposes as<br />

G = G m × G et × G ll .<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 23 / 29


Proofs<br />

Part (iv)<br />

1 st moment is 2: Avg (#G(F p )[p]) = 2<br />

1 First fix the p-corank.<br />

1 Associated p-divisible group decomposes as<br />

G = G m × G et × G ll .<br />

2 Fixing the p-corank fixes the dimension of G ll<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 23 / 29


Proofs<br />

Part (iv)<br />

1 st moment is 2: Avg (#G(F p )[p]) = 2<br />

1 First fix the p-corank.<br />

1 Associated p-divisible group decomposes as<br />

G = G m × G et × G ll .<br />

2 Fixing the p-corank fixes the dimension of G ll<br />

2 (Show that G r<strong>and</strong>om ⇒ G et r<strong>and</strong>om.)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 23 / 29


Proofs<br />

Part (iv)<br />

1 st moment is 2: Avg (#G(F p )[p]) = 2<br />

1 First fix the p-corank.<br />

1 Associated p-divisible group decomposes as<br />

G = G m × G et × G ll .<br />

2 Fixing the p-corank fixes the dimension of G ll<br />

2 (Show that G r<strong>and</strong>om ⇒ G et r<strong>and</strong>om.)<br />

3 G(F p ) = G et (F p ) = coker(F | M et − Id).<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 23 / 29


Proofs<br />

Part (iv)<br />

1 st moment is 2: Avg (#G(F p )[p]) = 2<br />

1 First fix the p-corank.<br />

1 Associated p-divisible group decomposes as<br />

G = G m × G et × G ll .<br />

2 Fixing the p-corank fixes the dimension of G ll<br />

2 (Show that G r<strong>and</strong>om ⇒ G et r<strong>and</strong>om.)<br />

3 G(F p ) = G et (F p ) = coker(F | M et − Id).<br />

4 F | M et is r<strong>and</strong>om in GL g (Z p ).<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 23 / 29


Proofs<br />

Part (v)<br />

P ( p ∤ # coker(F − Id)| F ∞ (M⊗F p))<br />

= Cp .<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 24 / 29


Proofs<br />

Part (v)<br />

P ( p ∤ # coker(F − Id)| F ∞ (M⊗F p))<br />

= Cp .<br />

Basically the same proof as the last part.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 24 / 29


Data, Moduli Spaces <strong>and</strong> Wild Speculation<br />

Question<br />

Does P(p ∤ # Jac C (F p )) = C p <br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 25 / 29


Data, Moduli Spaces <strong>and</strong> Wild Speculation<br />

Question<br />

Does P(p ∤ # Jac C (F p )) = C p <br />

Data<br />

- C hyperelliptic, p ≠ 2 – YES!<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 25 / 29


Data, Moduli Spaces <strong>and</strong> Wild Speculation<br />

Question<br />

Does P(p ∤ # Jac C (F p )) = C p <br />

Data<br />

- C hyperelliptic, p ≠ 2 – YES!<br />

- C plane curve, p ≠ 2 – YES!<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 25 / 29


Data, Moduli Spaces <strong>and</strong> Wild Speculation<br />

Question<br />

Does P(p ∤ # Jac C (F p )) = C p <br />

Data<br />

- C hyperelliptic, p ≠ 2 – YES!<br />

- C plane curve, p ≠ 2 – YES!<br />

- C plane curve, p = 2 –<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 25 / 29


Data, Moduli Spaces <strong>and</strong> Wild Speculation<br />

Question<br />

Does P(p ∤ # Jac C (F p )) = C p <br />

Data<br />

- C hyperelliptic, p ≠ 2 – YES!<br />

- C plane curve, p ≠ 2 – YES!<br />

- C plane curve, p = 2 – NO!!<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 25 / 29


C plane curve, p = 2<br />

Theorem (Cais, Ellenberg, ZB)<br />

P(2 ∤ # Jac C (F 2 )) = 0 for plane curves of odd degree.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 26 / 29


C plane curve, p = 2<br />

Theorem (Cais, Ellenberg, ZB)<br />

P(2 ∤ # Jac C (F 2 )) = 0 for plane curves of odd degree.<br />

Proof – theta characteristics.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 26 / 29


a-number data<br />

Does<br />

∞∏ (<br />

P(a(Jac C (F p )) = 0) = 1 + p<br />

−i ) −1<br />

i=1<br />

∞∏ (<br />

= 1 − p<br />

−2i+1 ) <br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 27 / 29


a-number data<br />

Does<br />

P(a(Jac C (F p )) = 0) =<br />

Data<br />

- C hyperelliptic, p ≠ 2 –<br />

=<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

∞∏ (<br />

1 − p<br />

−2i+1 ) <br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 27 / 29


a-number data<br />

Does<br />

P(a(Jac C (F p )) = 0) =<br />

Data<br />

- C hyperelliptic, p ≠ 2 – not quite.<br />

=<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

∞∏ (<br />

1 − p<br />

−2i+1 ) <br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 27 / 29


a-number data<br />

Does<br />

P(a(Jac C (F p )) = 0) =<br />

Data<br />

- C hyperelliptic, p ≠ 2 – not quite.<br />

=<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

∞∏ (<br />

1 − p<br />

−2i+1 ) <br />

P(a(Jac C (F p )) = 0) = 1 − 3 −1 (p = 3)<br />

i=1<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 27 / 29


a-number data<br />

Does<br />

P(a(Jac C (F p )) = 0) =<br />

Data<br />

- C hyperelliptic, p ≠ 2 – not quite.<br />

=<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

∞∏ (<br />

1 − p<br />

−2i+1 ) <br />

P(a(Jac C (F p )) = 0) = 1 − 3 −1 (p = 3)<br />

i=1<br />

= (1 − 5 −1 )(1 − 5 −3 ) (p = 5)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 27 / 29


a-number data<br />

Does<br />

P(a(Jac C (F p )) = 0) =<br />

Data<br />

- C hyperelliptic, p ≠ 2 – not quite.<br />

=<br />

∞∏ (<br />

1 + p<br />

−i ) −1<br />

i=1<br />

∞∏ (<br />

1 − p<br />

−2i+1 ) <br />

P(a(Jac C (F p )) = 0) = 1 − 3 −1 (p = 3)<br />

i=1<br />

= (1 − 5 −1 )(1 − 5 −3 ) (p = 5)<br />

= (1 − 7 −1 )(1 − 7 −3 )(1 − 7 −5 ) (p = 7)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 27 / 29


<strong>Rational</strong> <strong>points</strong> on Moduli Spaces<br />

#Hg<br />

- P(a(Jac Cf (F p )) = 0) = lim ord(Fp)<br />

g→∞ #H g (F . p)<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 28 / 29


<strong>Rational</strong> <strong>points</strong> on Moduli Spaces<br />

#Hg<br />

- P(a(Jac Cf (F p )) = 0) = lim ord(Fp)<br />

g→∞ #H g (F . p)<br />

- One can access this through cohomology <strong>and</strong> the Weil conjectures.<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 28 / 29


<strong>Rational</strong> <strong>points</strong> on Moduli Spaces<br />

#Hg<br />

- P(a(Jac Cf (F p )) = 0) = lim ord(Fp)<br />

g→∞ #H g (F . p)<br />

- One can access this through cohomology <strong>and</strong> the Weil conjectures.<br />

- Our data suggests that Hg<br />

ord<br />

pulling back from H g .<br />

has cohomology that does not arise by<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 28 / 29


<strong>Rational</strong> <strong>points</strong> on Moduli Spaces<br />

#Hg<br />

- P(a(Jac Cf (F p )) = 0) = lim ord(Fp)<br />

g→∞ #H g (F . p)<br />

- One can access this through cohomology <strong>and</strong> the Weil conjectures.<br />

- Our data suggests that Hg<br />

ord<br />

pulling back from H g .<br />

has cohomology that does not arise by<br />

- P(a(Jac C (F p )) = 0) = lim g→∞<br />

#M ord<br />

g (F p)<br />

#M g (F p)<br />

= <br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 28 / 29


<strong>Rational</strong> <strong>points</strong> on Moduli Spaces<br />

#Hg<br />

- P(a(Jac Cf (F p )) = 0) = lim ord(Fp)<br />

g→∞ #H g (F . p)<br />

- One can access this through cohomology <strong>and</strong> the Weil conjectures.<br />

- Our data suggests that Hg<br />

ord<br />

pulling back from H g .<br />

has cohomology that does not arise by<br />

- P(a(Jac C (F p )) = 0) = lim g→∞<br />

#M ord<br />

g (F p)<br />

#M g (F p)<br />

= <br />

#A<br />

- P(a(A(F p )) = 0) = lim ord<br />

g (Fp)<br />

g→∞ #A g (F p)<br />

= <br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 28 / 29


Thank you<br />

Thank You!<br />

<strong>David</strong> <strong>Zureick</strong>-<strong>Brown</strong> (Emory University) R<strong>and</strong>om Dieudonné Modules November 13, 2012 29 / 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!