02.01.2015 Views

GRB emission models and multiwavelength properties - Inaf

GRB emission models and multiwavelength properties - Inaf

GRB emission models and multiwavelength properties - Inaf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>GRB</strong> <strong>emission</strong> <strong>models</strong> <strong>and</strong><br />

<strong>multiwavelength</strong> <strong>properties</strong><br />

Gabriele Ghisellini<br />

INAF-Osservatorio Astronomico di Brera - Italy<br />

with the help of: Z. Bosniak, D. Burlon, A. Celotti, C. Firmani,<br />

G. Ghirl<strong>and</strong>a, D. Lazzati, M. Nardini, L. Nava, F. Tavecchio


The “st<strong>and</strong>ard” model


“The” model:<br />

Internal/External<br />

Shocks<br />

Rees-Meszaros-Piran<br />

Shell still opaque<br />

Relativ. e - + B:<br />

synchrotron<br />

Relativ. e - + B:<br />

synchrotron


Why internal shocks<br />

Spikes have<br />

same duration<br />

A process<br />

that repeats<br />

itself<br />

Counts/s<br />

Time [seconds]


Spectra<br />

E F(E)<br />

<br />

E peak<br />

Energy [MeV]<br />

<br />

Fishman & Meegan 1995


Kaneko+ 2006<br />

[keV]


Nava PhD thesis 2009 Kaneko+ 2006<br />

[keV]


Prompt radiation:<br />

Synchrotron


Synchrotron -ray <strong>emission</strong><br />

The shell itself carries B-field<br />

B can also be produced <strong>and</strong> amplified<br />

by the internal shock<br />

The shock can accelerate e- to<br />

relativistic energies<br />

Synchrotron seems a good choice<br />

hsyn ~ a few hundreds keV seems<br />

reasonable


Synchrotron -ray <strong>emission</strong><br />

Radiative cooling is (<strong>and</strong> must be)<br />

very rapid<br />

tcool ~ 10 - 7<br />

3<br />

e<br />

(/100)<br />

2<br />

MeV<br />

sec<br />

Extremely short - No way to make it longer<br />

t cool<br />


Energy spectrum of a cooling electron<br />

Fast cooling<br />

+ synchro:<br />

E() ¿ -1/2<br />

¿<br />

N() -3/2<br />

Photon index


Kaneko+ 2006


Kaneko+ 2006 Nava PhD thesis 2009<br />

Line of death for<br />

cooling e-<br />

Line of death for<br />

non cooling e-


Can it be rescued by:<br />

Reacceleration No, in IS e- are accelerated only<br />

once. More generally, only few selected e- (<strong>and</strong><br />

always the same) must be (re)accelerated<br />

Adiabatic losses No, too small regions would be<br />

involved, large e- densities, too much IC<br />

Fast decaying B-field No, synchro not efficient <strong>and</strong><br />

too much IC<br />

Self absorption No, lots of e- needed, too much IC<br />

Self Compton No, tcool Small pitch angles No,<br />

too small even in this case<br />

No, Very very small to avoid<br />

cooling, becomes inefficient<br />

External shocks to avoid cooling No, same reason


Seeking alternatives…<br />

• Bulk Compton (Lazzati+ 2000; GG+ 2000)<br />

• Quasi-thermal Comptonization (GG &<br />

Celotti 1999)<br />

• Black-body from “deep impacts”<br />

(Thompson+2007; GG+ 2007; Lazzati+ 2009)<br />

• Reconnection <strong>and</strong> continuous heating<br />

(Giannios 2008)


Seeds <br />

Wolf Rayet (about<br />

to explode)<br />

<br />

Bulk Compton<br />

100


Problems<br />

• Time to refill the funnel of seeds<br />

• Needs a lot of seeds, not clear if the<br />

funnel is sufficient<br />

• Does not work for short (they do not<br />

have a SN)


Quasi thermal Componization<br />

• Heating for r/c, not instantaneous<br />

acceleration<br />

• Cooling=Heating<br />

sub-relat. “T”<br />

• Synchro is self absorbed <strong>and</strong> produces<br />

seeds for quasi saturated<br />

Comptonization<br />

• y needs to be >10


Quasi-saturated spectrum: 0 +Wien


Problems<br />

• Epeak ~ kT too high<br />

• Needs time ((<br />

must be large)<br />

• Wien peak not observed<br />

• Seeds should be distributed in the<br />

center, e- more externally, to explain<br />

>-1


“Deep impacts”<br />

Thompson, Meszaros & Rees 2007<br />

Lazzati, Morsony Begelman 2008<br />

GG+ 2007<br />

At R ~ R star the fireball dissipates<br />

part of its energy BB


Dissipation<br />

Wolf Rayet (about<br />

to explode)<br />

BB<br />

Transparency<br />

1 j<br />

(i.e very small)


Problems<br />

fine tuned (<strong>and</strong> small) in Thompson+ 2008<br />

BB


There can be a Black Body … but<br />

BATSE<br />

Time integrated<br />

spectrum<br />

BB<br />

power law<br />

Cut Cut off off pl pl<br />

Time resolved<br />

spectra<br />

30 keV<br />

Ghirl<strong>and</strong>a+ 2007


There can be a Black Body … but<br />

BATSE<br />

Time integrated<br />

spectrum<br />

BB<br />

power law<br />

Cut Cut off off pl pl<br />

30 keV<br />

Time resolved<br />

spectra<br />

The same occurs<br />

for ALL <strong>GRB</strong>s<br />

detected by<br />

BATSE <strong>and</strong> with<br />

WFC<br />

Ghirl<strong>and</strong>a+ 2007


FERMI-GBM<br />

FERMI-GBM<br />

Cutoff PL<br />

Ghirl<strong>and</strong>a+ 2009<br />

30 keV


FERMI-GBM<br />

FERMI-GBM<br />

BB+PL<br />

Ghirl<strong>and</strong>a+ 2009<br />

30 keV


FERMI-GBM<br />

FERMI-GBM<br />

Cutoff PL<br />

Ghirl<strong>and</strong>a+ 2009


FERMI-GBM<br />

FERMI-GBM<br />

BB+PL<br />

The The same same occurs occurs for for all all time time slices slices<br />

Ghirl<strong>and</strong>a+ 2009


Reconnection <strong>and</strong> continuous<br />

heating (Giannios 2008)<br />

1 MeV<br />

Very promising, especially for<br />

magnetized fireballs, but….


Reconnecting regions should<br />

behave r<strong>and</strong>omly


Reconnecting regions should<br />

behave r<strong>and</strong>omly<br />

Instead there are trends


E peak [keV] Rate<br />

peak<br />

=k L 1/2<br />

E peak<br />

1/2<br />

Ghirl<strong>and</strong>a+ 2009<br />

FERMI-GBM<br />

Luminosity [erg/s]


How to explain it<br />

It is NOT DUE to selection effects!!!!!!<br />

It indicates something fundamental <strong>and</strong><br />

very robust… that we do not<br />

underst<strong>and</strong> yet.<br />

Geometrical Difficult<br />

Sequence of Difficult<br />

Radiation process Likely, but which<br />

one


First conclusion<br />

• We do not know yet what is<br />

the <strong>emission</strong> mechanism of the<br />

prompt


Fermi-LAT<br />

<strong>GRB</strong> 090510<br />

• Short<br />

• Very hard<br />

• z=0.903<br />

• Detected by the LAT up to 31 GeV!!<br />

• Well defined timing<br />

• Delay: ~GeV arrive after ~MeV (fraction of<br />

seconds)<br />

• Quantum Gravity Violation of Lorentz<br />

invariance


precursor<br />

8-260 keV<br />

0.26-5 MeV<br />

LAT all<br />

>100 MeV<br />

Abdo et al 2009<br />

0.6s<br />

0.5s<br />

31 GeV<br />

>1 1 GeV<br />

Time since trigger (precursor)


precursor<br />

8-260 keV<br />

0.26-5 MeV<br />

Delay between GBM <strong>and</strong> LAT<br />

Due to Lorentz invariance<br />

violation<br />

LAT all<br />

>100 MeV<br />

Abdo et al 2009<br />

0.6s<br />

0.5s<br />

31 GeV<br />

>1 1 GeV<br />

Time since trigger (precursor)


Average<br />

0.1 GeV<br />

30 GeV<br />

F( F() [erg/cm 2 /s]<br />

Time<br />

resolved<br />

0.5-1s<br />

1<br />

2<br />

Different component<br />

3<br />

4<br />

3<br />

Abdo et al 2009<br />

Energy [keV]


Average<br />

0.1 GeV<br />

30 GeV<br />

F( F() [erg/cm 2 /s]<br />

Time<br />

resolved<br />

1<br />

2<br />

Different component<br />

3<br />

0.5-1s<br />

3<br />

If LAT <strong>and</strong> GBM radiation are cospatial:<br />

4<br />

If LAT <strong>and</strong> GBM radiation are cospatial: <br />

>1000 to avoid photon-photon absorption<br />

If >1000: deceleration of the fireball<br />

occurs early early afterglow!<br />

If >1000: large electron energies <br />

synchrotron afterglow!<br />

Abdo et al 2009<br />

Energy [keV]


Fermi-LAT<br />

t 2<br />

“Signature”<br />

t -1.5<br />

Ghirl<strong>and</strong>a+ 2009


0.1-1 GeV<br />

>1 GeV<br />

Ghirl<strong>and</strong>a+ 2009<br />

T-T* [s]


T-T* [s]<br />

Ghirl<strong>and</strong>a+ 2009


~MeV <strong>and</strong> ~GeV <strong>emission</strong> are NOT cospatial.<br />

But the ~GeV <strong>emission</strong> is… No measurable<br />

delay in arrival time of high energy photons:<br />

tdelay 4.7 M Planck<br />

Ghirl<strong>and</strong>a+ 2009<br />

T-T* [s]


Conclusions<br />

“Paradigm”: internal+external shocks,<br />

synchrotron for both: it does not<br />

work<br />

Problems: efficiency, spectrum, trends<br />

Fermi/LAT detection large Early<br />

high energy afterglow<br />

Violation of the Lorentz invariance<br />

Violation of the Lorentz invariance No<br />

(not yet)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!