04.01.2015 Views

Nestor Voronka - NASA's Institute for Advanced Concepts

Nestor Voronka - NASA's Institute for Advanced Concepts

Nestor Voronka - NASA's Institute for Advanced Concepts

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

NIAC Phase I Fellows Meeting<br />

Atlanta, Georgia<br />

March 7-8, 7<br />

2006<br />

Modular Spacecraft with<br />

Integrated Structural<br />

Electrodynamic Propulsion<br />

<strong>Nestor</strong> <strong>Voronka</strong>, Robert Hoyt,<br />

Brian Gilchrist, Keith Fuhrhop<br />

TETHERS<br />

UNLIMITED,<br />

INC. NC.<br />

11807 N. Creek Pkwy S., Suite B-102B<br />

Bothell, WA 98011<br />

(425) 486-0100 Fax: (425) 482-9670<br />

voronka@tethers.com


Motivation<br />

– Traditional propulsion uses propellant as reaction<br />

mass<br />

– Advantages (of reaction mass propulsion)<br />

• Can move spacecraft center of mass, readily and relatively<br />

quickly<br />

• Multiple thrusters offer independent and complete control of<br />

spacecraft (6DOF)<br />

– Disadvantages<br />

• Propellant is a finite and mission limiting resource<br />

• Propellant mass requirements increases exponentially with<br />

mission ∆V V requirements<br />

• Propellant may be a source of contamination <strong>for</strong> optics and<br />

solar panels<br />

– Are there innovative alternatives


NASA’s s Vision of Exploration<br />

– President’s s Vision Mandates NASA to “implement a<br />

sustainable and af<strong>for</strong>dable human and robotic program to<br />

explore the solar system and beyond”<br />

– Current architectures require very large total masses<br />

to be launched from Earth<br />

– Propellant mass fractions <strong>for</strong> In-situ resource<br />

utilization (ISRU) and mining based architectures are<br />

significant and costly<br />

There exists a critical need <strong>for</strong> highly efficient low-cost<br />

propulsion to assure access to space & in-space propulsion


Space Propulsion Landscape<br />

10,000 sec<br />

2,000 sec<br />

I sp<br />

Courtesy Gallimore, A., UMich


Electrodynamic Space Tether Propulsion<br />

– In-space propulsion system<br />

– PROS:<br />

• Converts electrical energy into<br />

thrust/orbital energy<br />

• Little or no consumables (propellant) are<br />

required<br />

– CONS:<br />

• Long (1-100km) 100km) flexible structures<br />

exhibit complex dynamics, especially in<br />

higher current/thrust cases<br />

• Gravity gradient tethers have constrained<br />

thrust vector<br />

• Relies on ambient plasma to close<br />

current loop


Proposed Solution<br />

– Multifunctional propulsion-and<br />

and-<br />

structure system that utilizes<br />

Lorentz <strong>for</strong>ces generated by<br />

current carrying booms to<br />

generate thrust with little or<br />

no propellant expenditure<br />

• Utilizes same principles as<br />

electrodynamic tether propulsion<br />

– Utilize relatively short (≈100(<br />

meter), rigid booms with<br />

integrated conductors capable<br />

of carrying large currents, that<br />

have plasma contactors at the<br />

ends


Per<strong>for</strong>mance of Proposed Approach<br />

– Current flowing in a moving wire through space<br />

interacts with the ambient magnetic field<br />

• Earth’s s Magnetic Field in LEO ≈ 30,000 nT<br />

• Interplanetary Magnetic Field ≈ 5 nT<br />

– Lorentz Force: F = iL x B<br />

– Space Tether Electrodynamic Propulsion<br />

• Example: 10km conductor, 1Ampere in LEO<br />

– Thrust |iLxB|<br />

iLxB| ≈ 0.3 Newtons<br />

– Proposed Integrated Structural Propulsion<br />

• Example: 100m conductor, 100 Ampere (!) in LEO<br />

– Thrust |iLxB|<br />

iLxB| ≈ 0.3 Newtons<br />

– Torque ≈ 750 N· N m


‘Structural’ ED Propulsion<br />

– By connecting six booms to a spacecraft along<br />

orthogonal axes, full 6DOF of motion can be<br />

controlled (translational and rotational)


Modular Spacecraft<br />

– By making booms and spacecraft modules<br />

modular and interconnectable, , we create self-<br />

assembling Tinkertoy ® like components <strong>for</strong><br />

space structures and systems


Optimal Path Planning<br />

• Chemical Systems near-impulsive<br />

– Hohmann and Bi-elliptical transfers<br />

• Low-thrust trajectory planning (e.g.<br />

electric propulsion)<br />

– Near continuous low level thrust<br />

– Additional constraints <strong>for</strong> optimization<br />

problem<br />

• Available Power (eclipse periods)<br />

• Tethers and Structural<br />

Electrodynamic Propulsion<br />

– Additional constraints due to ambient<br />

magnetic field<br />

• Thrust Vector direction limited<br />

• Thrust dependent on magnetic field<br />

strength!


Low-Thrust Trajectory Optimization<br />

– EP Orbit Raising from GTO to GEO<br />

• Optimizing both thrust magnitude & angle<br />

• Variable thrust can increase payload mass<br />

fraction up to 3%, and be 5-10% 5<br />

more fuel<br />

efficient<br />

– Secondary Effects to consider<br />

• J2 effects, solar eclipsing, solar cell<br />

degradation due to radiation<br />

Kimbrel, M.S., “Optimization of EP Orbit Raising”, MIT, 2002.


ESA’s SMART-1 1 Mission<br />

– Small Missions <strong>for</strong> <strong>Advanced</strong> Research in<br />

Technology - Launched on 27 Sept 2003<br />

• Arrived in lunar orbit 15 Nov 2004<br />

• PPS-1350<br />

1350-G G Hall Effect Ion Thruster (70 mNewton)<br />

– Propellant mass fraction = 82.5 kg / 370 kg = 22.3 %<br />

• 2 nd time ion propulsion used <strong>for</strong> primary propulsion<br />

– 1 st<br />

st was NASA Deep Space 1 launched Oct 1998<br />

• Utilized near-constant thrust<br />

• Trajectory optimization<br />

– Propellant consumption<br />

– Radiation Belt Transit Time<br />

– Available power (limited thrust duration during eclipse)<br />

• Thruster 1190W max out of available 1850W BOL


– Nodes<br />

• Energy Storage<br />

• System Control<br />

– Booms<br />

System Elements<br />

• Structural Propulsion Booms<br />

• Plasma Contactors<br />

• Docking Mechanisms and<br />

Sensors<br />

– Key Elements<br />

• Energy Source (Solar)<br />

• Energy Storage<br />

• Electron and Ion Sources


Energy Storage Technologies<br />

Battery Systems<br />

– NiH2<br />

• 35 – 55 cell whr/kg<br />

• 20 – 300 A-hr A<br />

ampacity<br />

• 30% DOD <strong>for</strong> LEO<br />

• 5 – 7 Year LEO life<br />

• 5 – 10 whr/kg system SE<br />

– Li Expectations<br />

• 70 – 150 Cell whr/kg<br />

• 20 – 60 A-hr A<br />

ampacity<br />

• 10 – 15% DOD <strong>for</strong> LEO<br />

• 5 – 7 Year LEO life<br />

• 10– 30 whr/kg system SE<br />

Flywheel Systems<br />

– Near Term<br />

• 25 – 40 whr/kg<br />

• >4 kW hrs capacity<br />

• 90% DOD <strong>for</strong> LEO<br />

• 15 Year LEO life<br />

• 10 – 20 whr/kg system SE<br />

– Far Term<br />

• 50 – 75 whr/kg<br />

• Unlimited thru paralleling<br />

• 90% DOD <strong>for</strong> LEO<br />

• > 15 Year LEO life<br />

• 40 – 75 whr/kg system SE<br />

Courtesy NASA GRC P&PO


Flywheel Technology Challenges and Goals<br />

Auxiliary Bearings –<br />

touchdown and launch loads,<br />

stability, caging<br />

Magnetic Bearings – low<br />

losses, higher speeds,<br />

sensors, dynamic control<br />

The Ultimate Spacecraft Battery<br />

Motor/Generator – low losses,<br />

higher speeds, drive controls<br />

Housing – system and<br />

component integration,<br />

structural/dynamic<br />

response<br />

Composite Rotor – long life,<br />

safety without containment,<br />

light-weight hubs, design and<br />

cert. standards<br />

– High System Specific Energy, Specific Power, Long Life<br />

– High Round (Charge/Discharge) Trip Efficiency<br />

– Multiple Functionality (Power and Torque)<br />

– Long Storage Life Without Degradation<br />

Far Term Goals<br />

– Integrated<br />

Power &<br />

Attitude Systems<br />

• 75 whr/kg<br />

• 92% efficiency<br />

• 25 year LEO life<br />

• -55-220°C<br />

– Energy Storage<br />

• 100 whr/kg<br />

• 30 year life<br />

– Pulse Power<br />

• 2,000 W/kg<br />

Courtesy NASA GRC P&PO


Flywheel Benefits<br />

– Life is virtually independent of Depth of Discharge<br />

– Per<strong>for</strong>ms equally well with low- and high-power loads<br />

– State of charge easily determined by measuring flywheels<br />

rotational velocity<br />

– Demonstrated net (charge/discharge) efficiencies up to 93.7%<br />

• Eddy-current and hysteresis losses in magnetic bearings and motor-<br />

generator<br />

– Two counter-rotating rotating flywheels produce no net torque (OR<br />

can be used <strong>for</strong> attitude control)<br />

!


Integrated Structural ED Boom<br />

– Requirements<br />

• Rigidity based on Application<br />

• Conductive Element(s)<br />

– Boom (Tether) Optimization<br />

• Goal: Maximize Efficiency of Power<br />

to Orbital Energy Conversion<br />

– There is no optimal tether length, nor<br />

optimal current level <strong>for</strong> a desired<br />

thrust <strong>for</strong>ce<br />

– Resistive Losses in boom (tether)<br />

should be minimized


Integrated Structural ED Boom Construction<br />

– Tensegrity (tensile integrity)<br />

Structures<br />

• “an assemblage of tension and compression components arranged in a<br />

discontinuous compression system..” R.B. Fuller Patent, 1962.<br />

– Tubular Booms (e.g. Stem)<br />

– Rigidized Inflatables<br />

• Foam Rigidized<br />

• Mechanically Rigidized<br />

• UV Cured Thermoset Composites<br />

• Thermally Cured Thermoset Composites<br />

• Work Hardened Aluminum Laminates<br />

– On-orbit Construction<br />

strength<br />

and<br />

conductive<br />

elements<br />

UV<br />

dissolving<br />

film


– Field Emissive Cathodes<br />

Electron Emitters<br />

• Microfabricated Emitter tips rely on sharp emitter<br />

tips, and close non-intercepting electrodes to<br />

generate high field required to enable electrons to<br />

quantum tunnel out of the material into space<br />

• High current densities (5000A/cm 2 ) have been<br />

demonstrated<br />

• Development undergoing to increase total current<br />

output and reduce environmental constraints<br />

– Hollow Cathodes<br />

• Electric discharge ionizes neutral gas<br />

• Technology well developed – neutralizers <strong>for</strong> EP<br />

• 100A HCs have been tested (9-40sccm<br />

Xe flow)<br />

– Annual fuel requirement <strong>for</strong> 100A @ 20 sccm<br />

• Xenon – 61.6 kg<br />

• Hydrogen – 0.47 kg<br />

• High current -> > High temperature -> > lifetime limit


Device<br />

Thermionic<br />

Cathode+Gun<br />

Field Emission<br />

Array<br />

Electron Emitter Summary<br />

Power Required<br />

Details<br />

2.1 MW 18 emitters, V f


– Passive Electron Collection<br />

Electron Collection<br />

• Space Tethers typically utilize large<br />

collection areas<br />

– Solid or grid spheres, bare tethers<br />

• To collect 100A, 46.6kV needed<br />

(4.7 MW) <strong>for</strong> a 1 meter sphere (!)<br />

– Hollow Cathode<br />

• 6.2 kW @ 280 sccm to collect<br />

100A of electrons<br />

– 6.6 kg of Hydrogen <strong>for</strong> 1 year


Hollow Cathode Ion Source<br />

– Hollow cathode Ion Emission<br />

• VERY inefficient as compared to electron emission<br />

(ionization efficiency is 1:1)<br />

• Ion emission requires ≈ 14 sccm /Ampere of emission<br />

– Annual fuel requirement <strong>for</strong> 100A @ 1440 sccm<br />

• Xenon – 4400 kg (!)<br />

• Hydrogen – 33 kg<br />

• 4.7kW @ 1440 sccm to emit 100A of ions<br />

– OPTION: Combo plan – ion thruster<br />

(without neutralizer) as contactor/thruster


Liquid Metal Ion Source<br />

– Micro Ion Source Technology – Liquid Metal Ion<br />

• Scalable system, including a passive material supply (no valves)<br />

• Goal: Wide range of ion currents from addressable large area arrays<br />

ays<br />

• Goal: Optimized Power (> 80%) and Mass (≈100%)(<br />

efficiencies<br />

• Power efficiencies on the order of 300 Watts/Ampere expected<br />

• Controllable current over 7 orders of magnitude<br />

• Development Objectives:<br />

– 2006 – 100 mA/cm 2 density, with 1mA-10mA 10mA total current<br />

– 2015 – 10A/cm 2 density, with >10A total current<br />

High Current Liquid Metal Ions<br />

(under development)<br />

Low Current Gas Ions<br />

Classical<br />

Field<br />

Ion Emission<br />

(a wetted<br />

needle)<br />

+ +<br />

_<br />

Microfabricated<br />

Capillary<br />

Architecture<br />

Electric field and surface tension<br />

balance to <strong>for</strong>m a “Taylor cone” at<br />

liquid surface<br />

+ +<br />

Liquid Metal<br />

Reservoir<br />

Accelerating Grid<br />

Extracting Electrode<br />

Simple physics of<br />

field ionization and<br />

Taylor cones<br />

No energy loss, only ionization energy<br />

Less contamination, can only produce ions<br />

Increased reliability from lower voltage<br />

operation, reduced arcing


Applications<br />

– Self-Assembling Modular Spacecraft (SAMS)<br />

– Self-Assembling Structure <strong>for</strong> Refueling Station<br />

– Self-Assembling Space Tug<br />

– Self-Assembling Structure <strong>for</strong> Large Mirror<br />

or Antenna Arrays<br />

– Formation Flying Space Systems<br />

• Terrestrial Planet Finder (TPF)


Summary<br />

– Proposed Concept IS feasible<br />

• Almost propellantless – required consumable <strong>for</strong> ion source<br />

• Almost full 6DOF control – no thrust in B-field B<br />

direction<br />

• Competitive with tradition Electric Propulsion with added benefit t of<br />

structural elements<br />

– Technology Challenges<br />

• High Current Plasma Contactors<br />

– Devices exist – robust units with higher efficiencies needed<br />

• Plasma Contactor Space Charge Limiting<br />

– High current densities may be environmentally limited<br />

• Collision proof coordinated control laws <strong>for</strong> <strong>for</strong>mation flight, and a<br />

self-assembly<br />

– Additional constraints imposed on low-thrust control laws<br />

– Potential Applications<br />

• Space Tug and Commodity Depot<br />

• Structure <strong>for</strong> Beamed Power Solar Array/Antenna Fields<br />

• Structure <strong>for</strong> Space Habitats with Integral Drag Makeup

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!