05.01.2015 Views

Potential of Molecular Markers in Plant Biotechnology - ResearchGate

Potential of Molecular Markers in Plant Biotechnology - ResearchGate

Potential of Molecular Markers in Plant Biotechnology - ResearchGate

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Review article<br />

Table 2. Summary Advantage and disadvantage <strong>of</strong> Some commonly used markers.<br />

Type <strong>of</strong> markers Advantages Disadvantages<br />

Restriction Fragment<br />

Length Polymorphism<br />

(RFLP)<br />

Randomly Amplified<br />

Polymorphic DNA<br />

(RAPD)<br />

Simple Sequence<br />

Repeat (SSR)<br />

Amplified Fragment<br />

Length Polymorphism<br />

(AFLP)<br />

Sequence-Tagged<br />

Site<br />

(STS)<br />

ISOZYMES<br />

-High genomic abundance<br />

-Co-dom<strong>in</strong>ant markers<br />

-Highly reproducible<br />

-Can use filters many times<br />

-Good genome coverage<br />

-Can be used across species<br />

-No sequence <strong>in</strong>formation<br />

-Can be used <strong>in</strong> plants reliably (well-tested)<br />

-Needed for map based clon<strong>in</strong>g<br />

-High genomic abundance<br />

-Good genome coverage<br />

-No sequence <strong>in</strong>formation<br />

-Ideal for automation<br />

-Less amount <strong>of</strong> DNA (poor DNA acceptable)<br />

-No radioactive label<strong>in</strong>g<br />

-Relatively faster<br />

-High genomic abundance<br />

-Highly reproducible<br />

-Fairly good genome coverage<br />

-High polymorphism<br />

-No radioactive label<strong>in</strong>g<br />

-Easy to automate<br />

-Multiple alleles<br />

-High genomic abundance<br />

-High polymorphism<br />

-No need for sequence <strong>in</strong>formation<br />

-Can be used across species<br />

-Work with smaller RFLP fragments<br />

-Useful <strong>in</strong> prepar<strong>in</strong>g contig maps<br />

-Useful <strong>in</strong> prepar<strong>in</strong>g contig maps<br />

-No radioactive label<strong>in</strong>g<br />

-Fairly good genome coverage<br />

-Highly reproducible<br />

-Can use filters many times<br />

-Useful for evolutionary studies<br />

-Isolation lot easier than that <strong>of</strong> DNA<br />

-Can be used across species<br />

-No radioactive label<strong>in</strong>g<br />

-No need for sequence <strong>in</strong>formation<br />

-Need large amount <strong>of</strong> good quality DNA<br />

-Laborious (compared to RAPD)<br />

-Difficult to automate<br />

-Need radioactive label<strong>in</strong>g<br />

-Clon<strong>in</strong>g and characterization <strong>of</strong><br />

probe are required<br />

-No probe or primer <strong>in</strong>formation<br />

-Dom<strong>in</strong>ant markers<br />

-Not reproducible<br />

-Can not be used across species<br />

-Not very well-tested<br />

-Can not be used across species<br />

-Need sequence <strong>in</strong>formation<br />

-Not well-tested<br />

-Very tricky due to changes <strong>in</strong><br />

patterns with respect to materials<br />

used<br />

-Cannot get consistent map (not<br />

reproducible)<br />

-Need to have very good primers<br />

-Laborious<br />

-Cannot detect mutations out <strong>of</strong> the target<br />

sites<br />

-Need sequence <strong>in</strong>formation<br />

-Clon<strong>in</strong>g and characterization <strong>of</strong><br />

probe are required<br />

-Laborious<br />

-Limited <strong>in</strong> polymorphism<br />

-Expensive (each system is unique)<br />

-Have to know the location <strong>of</strong> the<br />

tissue -Not easily automated<br />

charge and conformation <strong>of</strong> prote<strong>in</strong>s can be detected,<br />

reduc<strong>in</strong>g the resolv<strong>in</strong>g power <strong>of</strong> allozymes.<br />

The other markers generally show <strong>in</strong>termediate<br />

levels <strong>of</strong> polymorphism, result<strong>in</strong>g from base<br />

substitutions, <strong>in</strong>sertions or deletions which may alter<br />

primer anneal<strong>in</strong>g sites and recognition sites <strong>of</strong><br />

restriction enzymes, or change the size <strong>of</strong> restriction<br />

fragments and amplified products. In choos<strong>in</strong>g the<br />

appropriate technique, the level <strong>of</strong> polymorphism<br />

detected by the marker needs to be considered <strong>in</strong><br />

relation to the presumed degree <strong>of</strong> genetic relatedness<br />

with<strong>in</strong> the material to be studied. Higher resolv<strong>in</strong>g<br />

power is required when samples are more closely<br />

related. For example, analyses with<strong>in</strong> species or<br />

among closely related species may call for fast<br />

evolv<strong>in</strong>g markers such as microsatellites. However if<br />

the objective is to study genetic relatedness at higher<br />

taxonomic levels (such as congeneric species),<br />

AFLPs or RFLPs may be a better choice because comigrat<strong>in</strong>g<br />

fast-evolv<strong>in</strong>g markers will have less chance<br />

<strong>of</strong> be<strong>in</strong>g homologous. A primary guid<strong>in</strong>g pr<strong>in</strong>ciple <strong>in</strong><br />

marker selection is that more conservative markers<br />

(those hav<strong>in</strong>g slower evolutionary rates) are needed<br />

with <strong>in</strong>creas<strong>in</strong>g evolutionary distance and vice-versa.<br />

155

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!