05.01.2015 Views

Potential of Molecular Markers in Plant Biotechnology - ResearchGate

Potential of Molecular Markers in Plant Biotechnology - ResearchGate

Potential of Molecular Markers in Plant Biotechnology - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Review article<br />

Disadvantages: Disadvantages <strong>in</strong>clude the need for<br />

purified, high molecular weight DNA, the dom<strong>in</strong>ance<br />

<strong>of</strong> alleles, and the possible non-homology <strong>of</strong><br />

comigrat<strong>in</strong>g fragments belong<strong>in</strong>g to different loci. In<br />

addition, due to the high number and different<br />

<strong>in</strong>tensity <strong>of</strong> bands per primer comb<strong>in</strong>ation, there is the<br />

need to adopt certa<strong>in</strong> strict but subjectively<br />

determ<strong>in</strong>ed criteria for acceptance <strong>of</strong> bands <strong>in</strong> the<br />

analysis. Special attention should be paid to the fact<br />

that AFLP bands are not always <strong>in</strong>dependent. For<br />

example, <strong>in</strong> case <strong>of</strong> an <strong>in</strong>sertion between two<br />

restriction sites the amplified DNA fragment results<br />

<strong>in</strong> <strong>in</strong>creased band size. This will be <strong>in</strong>terpreted as the<br />

loss <strong>of</strong> a small band and at the same time as the ga<strong>in</strong><br />

<strong>of</strong> a larger band. This is important for the analysis <strong>of</strong><br />

genetic relatedness, because it would enhance the<br />

weight <strong>of</strong> non-<strong>in</strong>dependent bands compared to the<br />

other bands. However, the major disadvantage <strong>of</strong><br />

AFLP markers is that these are dom<strong>in</strong>ant markers.<br />

Applications: AFLPs can be applied <strong>in</strong> studies<br />

<strong>in</strong>volv<strong>in</strong>g genetic identity, parentage and<br />

identification <strong>of</strong> clones and cultivars, and<br />

phylogenetic studies <strong>of</strong> closely related species<br />

because <strong>of</strong> the highly <strong>in</strong>formative f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g<br />

pr<strong>of</strong>iles generally obta<strong>in</strong>ed. Their high genomic<br />

abundance and generally random distribution<br />

throughout the genome make AFLPs a widely valued<br />

technology for gene mapp<strong>in</strong>g studies (Vos et al.<br />

1995). AFLP markers have successfully been used for<br />

analyz<strong>in</strong>g genetic diversity <strong>in</strong> some other plant<br />

species such as peanut (Herselman, 2003), soybean<br />

(Ude et al. 2003), and maize (Lübberstedt et al.<br />

2000). This technique is useful for breeders to<br />

accelerate plant improvement for a variety <strong>of</strong> criteria,<br />

by us<strong>in</strong>g molecular genetics maps to undertake<br />

marker-assisted selection and positional clon<strong>in</strong>g for<br />

special characters. <strong>Molecular</strong> markers are more<br />

reliable for genetic studies than morphological<br />

characteristics because the environment does not<br />

affect them. SAMPL is considered more applicable to<br />

<strong>in</strong>traspecific than to <strong>in</strong>terspecific studies due to<br />

frequent null alleles. AFLP markers are useful <strong>in</strong><br />

genetic studies, such as biodiversity evaluation,<br />

analysis <strong>of</strong> germplasm collections, genotyp<strong>in</strong>g <strong>of</strong><br />

<strong>in</strong>dividuals and genetic distance analyses. The<br />

availability <strong>of</strong> many different restriction enzymes and<br />

correspond<strong>in</strong>g primer comb<strong>in</strong>ations provides a great<br />

deal <strong>of</strong> flexibility, enabl<strong>in</strong>g the direct manipulation <strong>of</strong><br />

AFLP fragment generation for def<strong>in</strong>ed applications<br />

(e.g. polymorphism screen<strong>in</strong>g, QTL analysis, genetic<br />

mapp<strong>in</strong>g).<br />

M<strong>in</strong>isatellites, Variable Number <strong>of</strong> Tandem Repeats<br />

(VNTR)<br />

Introduction: The term m<strong>in</strong>isatellites was <strong>in</strong>troduced<br />

by Jeffrey et al. (1985). These loci conta<strong>in</strong> tandem<br />

repeats that vary <strong>in</strong> the number <strong>of</strong> repeat units<br />

between genotypes and are referred to as variable<br />

number <strong>of</strong> tandem repeats (VNTRs) (i.e. a s<strong>in</strong>gle<br />

locus that conta<strong>in</strong>s variable number <strong>of</strong> tandem repeats<br />

between <strong>in</strong>dividuals) or hypervariable regions<br />

(HVRs) (i.e. numerous loci conta<strong>in</strong><strong>in</strong>g tandem repeats<br />

with<strong>in</strong> a genome generat<strong>in</strong>g high levels <strong>of</strong><br />

polymorphism between <strong>in</strong>dividuals). M<strong>in</strong>isatellites<br />

are a conceptually very different class <strong>of</strong> marker.<br />

They consist <strong>of</strong> chromosomal regions conta<strong>in</strong><strong>in</strong>g<br />

tandem repeat units <strong>of</strong> a 10–50 base motif, flanked by<br />

conserved DNA restriction sites. A m<strong>in</strong>isatellite<br />

pr<strong>of</strong>ile consist<strong>in</strong>g <strong>of</strong> many bands, usually with<strong>in</strong> a 4–<br />

20 kb size range, is generated by us<strong>in</strong>g common<br />

multilocus probes that are able to hybridize to<br />

m<strong>in</strong>isatellite sequences <strong>in</strong> different species. Locus<br />

specific probes can be developed by molecular<br />

clon<strong>in</strong>g <strong>of</strong> DNA restriction fragments, subsequent<br />

screen<strong>in</strong>g with a multilocus m<strong>in</strong>isatellite probe and<br />

isolation <strong>of</strong> specific fragments. Variation <strong>in</strong> the<br />

number <strong>of</strong> repeat units, due to unequal cross<strong>in</strong>g over<br />

or gene conversion, is considered to be the ma<strong>in</strong><br />

cause <strong>of</strong> length polymorphisms. Due to the high<br />

mutation rate <strong>of</strong> m<strong>in</strong>isatellites, the level <strong>of</strong><br />

polymorphism is substantial, generally result<strong>in</strong>g <strong>in</strong><br />

unique multilocus pr<strong>of</strong>iles for different <strong>in</strong>dividuals<br />

with<strong>in</strong> a population.<br />

Advantages: The ma<strong>in</strong> advantages <strong>of</strong> m<strong>in</strong>isatellites<br />

are their high level <strong>of</strong> polymorphism and high<br />

reproducibility.<br />

Disadvantages: Disadvantages <strong>of</strong> m<strong>in</strong>isatellites are<br />

similar to RFLPs due to the high similarity <strong>in</strong><br />

methodological procedures. If multilocus probes are<br />

used, highly <strong>in</strong>formative pr<strong>of</strong>iles are generally<br />

observed due to the generation <strong>of</strong> many <strong>in</strong>formative<br />

bands per reaction. In that case, band pr<strong>of</strong>iles can not<br />

be <strong>in</strong>terpreted <strong>in</strong> terms <strong>of</strong> loci and alleles and similar<br />

sized fragments may be non-homologous. In addition,<br />

the random distribution <strong>of</strong> m<strong>in</strong>isatellites across the<br />

genome has been questioned (Schlötterer 2004).<br />

147

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!