06.01.2015 Views

extreme hydrological events on the lower danube ... - sh.fgg.uni-lj.si

extreme hydrological events on the lower danube ... - sh.fgg.uni-lj.si

extreme hydrological events on the lower danube ... - sh.fgg.uni-lj.si

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EXTREME HYDROLOGICAL EVENTS ON THE LOWER DANUBE<br />

AND IN THE MOUTH AREA DURING RECENT DECADES<br />

Maria Mikhailova 1 , Victor Morozov 2 , Nataliya Cheroy 2<br />

1 Water Problems Institute, Rus<strong>si</strong>an Academy of Sciences<br />

Moscow, Rus<strong>si</strong>a<br />

2 Danube Hydrometeorological Observatory<br />

Izmail, Ukraine<br />

mv.mikhailova@gmail.com, morozov@izm.odesa.ukrtel.net, nataly_cheroy@mail.ru<br />

Abstract<br />

The formati<strong>on</strong> and transformati<strong>on</strong> of <strong>the</strong> <str<strong>on</strong>g>extreme</str<strong>on</strong>g> rainfall flood in August 2002,<br />

spring–summer flood in March–June 2006, and water levels during low water period<br />

in August–October 2003, and <strong>the</strong> preceding meteorological <strong>si</strong>tuati<strong>on</strong> were studied.<br />

During catastrophic rainfall and spring–summer floods, at some gauging stati<strong>on</strong>s <strong>the</strong><br />

levels exceeded historical marks and caused inundati<strong>on</strong>s. In autumn 2003, water<br />

levels in <strong>the</strong> Lower Danube reached minimum-recorded values and affected<br />

agriculture, water supply, navigati<strong>on</strong>, etc.<br />

Keywords: <str<strong>on</strong>g>extreme</str<strong>on</strong>g> <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> <str<strong>on</strong>g>events</str<strong>on</strong>g>, rainfall flood, spring and summer flood, low<br />

water period, drought, inundati<strong>on</strong>.<br />

1 INTRODUCTION<br />

Late in <strong>the</strong> 20th century and early in <strong>the</strong> 21st century, a frequency of catastrophic<br />

<str<strong>on</strong>g>hydrological</str<strong>on</strong>g> <str<strong>on</strong>g>events</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> Danube River increased. In <strong>the</strong> Danube River ba<strong>si</strong>n and in<br />

<strong>the</strong> ba<strong>si</strong>ns of <strong>the</strong> o<strong>the</strong>r European rivers (Elbe River in Germany, Kuban’ and Terek<br />

rivers in Rus<strong>si</strong>a, etc), <str<strong>on</strong>g>extreme</str<strong>on</strong>g> <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> <str<strong>on</strong>g>events</str<strong>on</strong>g> happened over <strong>the</strong> latest years,<br />

are evidence of new tendencies in <strong>the</strong> meteorological and <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> processes.<br />

Global climate warming, inten<strong>si</strong>ficati<strong>on</strong> of synoptic processes, increment in <strong>the</strong> total<br />

amount of precipitati<strong>on</strong> and its irregularity resulted in an increase in a frequency of<br />

<str<strong>on</strong>g>extreme</str<strong>on</strong>g> <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> <str<strong>on</strong>g>events</str<strong>on</strong>g>.<br />

In a frame of our investigati<strong>on</strong>s, we c<strong>on</strong><strong>si</strong>der: formati<strong>on</strong> and transformati<strong>on</strong> of <strong>the</strong><br />

Danube catastrophic rainfall flood in August 2002, when <strong>the</strong> flood peak spread from<br />

<strong>the</strong> river source to <strong>the</strong> Ir<strong>on</strong> Gate reservoir in 15 days, and at a number of gauging<br />

stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Middle and Lower Danube <strong>the</strong> levels exceeded historical maxima and<br />

caused a catastrophic inundati<strong>on</strong>; formati<strong>on</strong> of <strong>the</strong> <str<strong>on</strong>g>extreme</str<strong>on</strong>g> spring–summer flood in<br />

March–June 2006, when water levels <strong>on</strong> <strong>the</strong> Lower Danube also exceeded historical<br />

maxima; peculiarities of <strong>the</strong> <str<strong>on</strong>g>extreme</str<strong>on</strong>g> low water period (drought) in August–October<br />

2003, when water levels <strong>on</strong> <strong>the</strong> Lower Danube were <strong>the</strong> lowest <strong>si</strong>nce 1950.<br />

In our study, we use <strong>the</strong> results of join Rus<strong>si</strong>an and Ukrainian investigati<strong>on</strong>s of <strong>the</strong><br />

regime of <strong>the</strong> Lower Danube and its delta, and <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> and meteorological<br />

observati<strong>on</strong>al data of Danube Hydrometeorological Observatory (Izmail). L<strong>on</strong>g-term<br />

trends in changes in many hydrometeorological characteristics were revealed. During<br />

recent decades, <strong>the</strong> air and water temperature, <strong>the</strong> amount of precipitati<strong>on</strong> increased.


2 RAINFALL FLOOD IN AUGUST 2002<br />

2.1 Synoptic <strong>si</strong>tuati<strong>on</strong> preceding <strong>the</strong> flood<br />

Severe squalls, downpours, and <strong>the</strong> flood in <strong>the</strong> first half of August 2002 were due to<br />

<strong>the</strong> inten<strong>si</strong>ficati<strong>on</strong> of <strong>the</strong> meridi<strong>on</strong>al atmospheric processes, which induced c<strong>on</strong>diti<strong>on</strong>s<br />

favorable for <strong>the</strong> intru<strong>si</strong><strong>on</strong> of <strong>the</strong> cold Arctic air far to Sou<strong>the</strong>rn Europe.<br />

The flood in Western and Central Europe was caused by <strong>the</strong> following factors: <strong>the</strong><br />

unusually intense cold air outbreaks in south of Western Europe; cyclogene<strong>si</strong>s<br />

inten<strong>si</strong>ficati<strong>on</strong> and formati<strong>on</strong> of upper level cycl<strong>on</strong>es with cold centers; intense<br />

cycl<strong>on</strong>ic activity at <strong>the</strong> polar fr<strong>on</strong>t, where very warm Atlantic tropical air interacted<br />

with cold Arctic air masses; c<strong>on</strong>vective instability and large-scale ordered ascending<br />

moti<strong>on</strong>s at <strong>the</strong> atmospheric fr<strong>on</strong>t. All <strong>the</strong>se factors produced violent squalls and rains,<br />

with а precipitati<strong>on</strong> depth well above normal. There were avalanches in Europe's<br />

mountainous regi<strong>on</strong>s. In <strong>the</strong> first half of August, а rain belt covered <strong>the</strong> sou<strong>the</strong>rn and<br />

eastern parts of Germany and Austria, Czechia, Slovakia, and adjacent territories.<br />

On <strong>the</strong> upper Danube and upper Elbe, particularly heavy rains occurred <strong>on</strong> 6–7 and<br />

11–12 August. The first porti<strong>on</strong> of rains caused floods <strong>on</strong> rivers in Germany (Sax<strong>on</strong>y<br />

and Bavaria) and in <strong>the</strong> sou<strong>the</strong>rn and western parts of Czechia. When <strong>the</strong> sec<strong>on</strong>d<br />

wave of rains came, soil had already been water-saturated and water levels in <strong>the</strong><br />

rivers had already been high. Therefore, <strong>the</strong> water levels <strong>on</strong> all <strong>the</strong> rivers rose<br />

rapidly, occa<strong>si</strong><strong>on</strong>ally reaching а historical maximum.<br />

2.2 Development and transformati<strong>on</strong> of <strong>the</strong> Danube rainfall flood<br />

When analyzing <strong>the</strong> formati<strong>on</strong> and movement of <strong>the</strong> August 2002 flood, daily water<br />

levels from <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> gauging stati<strong>on</strong>s located throughout <strong>the</strong> length of <strong>the</strong><br />

Danube River from its upper reach to <strong>the</strong> mouth were used as <strong>the</strong> initial informati<strong>on</strong><br />

(Figure 1 and Table 1). The data were obtained by <strong>the</strong> Danube Hydrometeorological<br />

Observatory (DHMO) through in internati<strong>on</strong>al exchange of <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> data. Water<br />

levels measured daily at 08:00 GMT were used to c<strong>on</strong>struct <strong>the</strong> plots (Figure 2)<br />

which <strong>sh</strong>owed <strong>the</strong> evoluti<strong>on</strong> of <strong>the</strong> flood from <strong>the</strong> Danube River source to its mouth.<br />

To compare <strong>the</strong> water levels measured in August 2002 with <strong>the</strong> historical maximum<br />

levels, <strong>the</strong> data of <strong>the</strong> DНМО and reference data <strong>on</strong> Danube hydrology were used<br />

(Hydrology…, 1963; Die D<strong>on</strong>au…, 1986; Hydrology…, 2004; Mikhailov et al., 2004).<br />

The very first flood wave <strong>on</strong> <strong>the</strong> Upper Danube (from <strong>the</strong> river source to <strong>the</strong><br />

c<strong>on</strong>fluence with <strong>the</strong> Morava) began to form approximately <strong>on</strong> 6 August. The first flood<br />

peak at <strong>the</strong> gauging stati<strong>on</strong>s of Ingolstadt, Regensburg, Passau, Linz, Kienstock, and<br />

Bratislava occurred <strong>on</strong> 8–9 August. А sec<strong>on</strong>d flood wave began to form after 11<br />

August. Since heavy precipitati<strong>on</strong> <strong>si</strong>multaneously fell across <strong>the</strong> Upper Danube ba<strong>si</strong>n<br />

and its tributaries, <strong>the</strong> peak of <strong>the</strong> sec<strong>on</strong>d flood wave between Ingolstadt and<br />

Kienstock (80 km above Vienna) occurred almost <strong>si</strong>multaneously, <strong>on</strong> 13–15 August.<br />

Only below Kienstock <strong>the</strong> flood took <strong>the</strong> form of а str<strong>on</strong>g wave moving downstream.<br />

А new flood peak occurred at <strong>the</strong> German gauging stati<strong>on</strong>s of <strong>the</strong> Danube River<br />

(Ingolstadt, Regensburg, and Passau) <strong>on</strong> 14, 15, and 13 August, respectively.


Figure 1. Danube River ba<strong>si</strong>n and locati<strong>on</strong> of gauging stati<strong>on</strong>s. 1–29 – gauging<br />

stati<strong>on</strong>s in accordance with Table 1 and 2.<br />

At <strong>the</strong> upper boundary of <strong>the</strong> Middle Danube, <strong>the</strong> water level near Bratislava was<br />

ri<strong>si</strong>ng rapidly, beginning <strong>on</strong> 12 August. The maximum water level at Bratislava was<br />

measured <strong>on</strong> 16 August. It reached 986 cm above gauging stati<strong>on</strong> zero and<br />

exceeded <strong>the</strong> historical maximum of July 1954 by 2 cm. The flood wave peak<br />

covered <strong>the</strong> distance between Kienstock and Bratislava (146 km) in 2 days, moving<br />

at a rate of 73 km/day, or 0.84 m/s<br />

At Budapest, <strong>the</strong> water level began to rise approximately <strong>on</strong> 8 August (Figure 2). The<br />

sec<strong>on</strong>d flood wave covered <strong>the</strong> distance between Bratislava and Budapest (222 km)<br />

in 3 days (it moved at а rate of 74 km/day, or 0.86 m/s). In Budapest, а lowland area<br />

of <strong>the</strong> Pest district located <strong>on</strong> <strong>the</strong> left bank of <strong>the</strong> Danube was damaged.<br />

Embankments near <strong>the</strong> Parliament Building and subways were submerged, some<br />

o<strong>the</strong>r buildings were destroyed. The flood peaked <strong>on</strong> 19 August. The level rose to<br />

844 cm above gauging stati<strong>on</strong> zero. It was <strong>on</strong>ly 1 cm <strong>lower</strong> than <strong>the</strong> historical<br />

maximum and about 630 cm higher than <strong>the</strong> early August mean level. By 21 August,<br />

<strong>the</strong> flood wave reached Baja, and by 22 August, it reached Mohacs (at <strong>the</strong> boundary<br />

between Hungary and Croatia). The distance from Budapest to Mohacs (200 km)<br />

was covered in 3 days at а rate of 66.7 km/day, or 0.77 m/s.<br />

In Croatia, <strong>the</strong> maximum levels were recorded at Bezdan <strong>on</strong> 22 August and Bogojevo<br />

<strong>on</strong> 23 August; <strong>the</strong>y were 712 and 727 cm above gauging stati<strong>on</strong> zero, exceeding <strong>the</strong><br />

early August mean level by almost 600 cm. From Mohacs to Novi Sad in Serbia (192<br />

km), <strong>the</strong> flood wave came in 3 days, moving at а rate of 64 km/day, or 0.74 m/s, and<br />

from Novi Sad to Zemun (82 km), in 2 days at а rate of 41 km/day, or 0.47 m/s. The<br />

maximum levels were recorded <strong>on</strong> 25 and 27 August, respectively. At Вazias,<br />

Romania, <strong>the</strong> flood peak occurred <strong>on</strong> 28 August. Thus, <strong>on</strong> <strong>the</strong> Middle Danube (from<br />

Bratislava to <strong>the</strong> Ir<strong>on</strong> Gate reservoir), <strong>the</strong> flood wave spread in about 12 days.


Table 1.Maximum rain flood levels, August–September 2002, and historical maximum levels at gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Danube<br />

River. Da<strong>sh</strong> means lack of informati<strong>on</strong>.<br />

№ Gauging<br />

stati<strong>on</strong><br />

Country<br />

Distance from<br />

<strong>the</strong> Black Sea<br />

(port of Sulina)<br />

(km)<br />

Maximum level<br />

above gauging<br />

stati<strong>on</strong> zero (cm)<br />

Rain flood in August 2002<br />

Date<br />

Height of rise<br />

above <strong>the</strong> preflood<br />

level (cm)<br />

Historical maximum (in ice-free period)<br />

Period Level Date<br />

(cm)<br />

1 Ingolstadt Germany 2458 642 14.08 390 1827–1970 778 18.06.1910<br />

2 Regensburg Germany 2376 627 15.08 280 1884–2001 666 28.03.1988<br />

3 Passau Germany 2225 1083 13.08 550 1877–2001 1230 10.07.1954<br />

4 Linz Austria 2135 799 13.08 420 1893–2001 963 11.07.1954<br />

5 Kienstock Austria 2015 1085 14.08 780 1830-2001 896 13.07.1954<br />

6 Bratislava Slovakia 1869 986 16.08 650 1823–2001 984 15.07.1954<br />

7 Nagymaros Hungary 1695 707 18.08 600 1876–2001 682 17.06.1965<br />

8 Budapest Hungary 1647 844 19.08 630 1876-2001 845 17.06.1965<br />

9 Mohach Hungary 1447 924 22.08 650 1876–2001 984 19.06.1965<br />

10 Bezdan Croatia 1425 712 22.08 600 1876–2001 776 24.06.1965<br />

11 Bogojevo Croatia 1367 727 23.08 600 1890–2001 817 15.06.1965<br />

12 Novi Sad Serbia 1255 602 25.08 460 1888-2001 778 30.06.1965<br />

13 Zemun Serbia 1173 470 27.08 240 1876–2001 757 26.03.1981<br />

14 Bazias Romania 1072 628 28.08 50 1874–1970 795 06.04.1942<br />

15 Orsova Romania 955 2540 01.08 – 1888–2001 2568 17.10.1994<br />

16 Turnu-Severin Romania 931 831 27.08 150 1879–2001 906 28.03.1981<br />

17 Novo Selo Bulgaria 834 513 28.08 360 1941–2001 900 28.03.1981<br />

18 Calafat Romania 795 415 22,28.08 360 1879–2001 801 29.03.1981<br />

19 Lom Bulgaria 743 558 28–29.08 360 1921–2001 934 29.03.1981<br />

20 Zimnicea Romania 554 411 30.08 310 1879–2001 800 02.06.1970<br />

21 Giurgiu Romania 493 376 24,30.08 320 1879–2001 795 02.03.1970<br />

22 Olenita Romania 430 393 31.08 320 1879–2001 784 1897<br />

23 Hirsova Romania 253 413 02–03.09 320 1898–2001 727 04–06.06.1970<br />

24 Braila Romania 170 431 02–03.09 270 1874–2001 639 28.05.1970<br />

25 Reni Ukraine 127 350 2.09 220 1921–2001 555 28.05.1970


1100<br />

900<br />

1000<br />

900<br />

800<br />

700<br />

Н, cm<br />

Bratislava<br />

800<br />

700<br />

600<br />

Н, cm<br />

Budapest<br />

600<br />

500<br />

500<br />

400<br />

300<br />

200<br />

100<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0<br />

1.8<br />

5.8<br />

9.8<br />

13.8<br />

17.8<br />

21.8<br />

25.8<br />

29.8<br />

2.9<br />

6.9<br />

10.9<br />

1.8<br />

5.8<br />

9.8<br />

13.8<br />

17.8<br />

21.8<br />

25.8<br />

29.8<br />

2.9<br />

6.9<br />

10.9<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

2600<br />

Н, cm Novi Sad<br />

Н, cm<br />

Orsova<br />

2500<br />

2400<br />

2300<br />

2200<br />

1.8<br />

5.8<br />

9.8<br />

13.8<br />

17.8<br />

21.8<br />

25.8<br />

29.8<br />

2.9<br />

6.9<br />

10.9<br />

1.8<br />

5.8<br />

9.8<br />

13.8<br />

17.8<br />

21.8<br />

25.8<br />

29.8<br />

2.9<br />

6.9<br />

10.9<br />

500<br />

400<br />

400<br />

Н, cm<br />

Calafat<br />

300<br />

Н, cm<br />

300<br />

200<br />

100<br />

200<br />

100<br />

Reni<br />

0<br />

0<br />

1.8<br />

5.8<br />

9.8<br />

13.8<br />

17.8<br />

21.8<br />

25.8<br />

29.8<br />

2.9<br />

6.9<br />

10.9<br />

1.8<br />

5.8<br />

9.8<br />

13.8<br />

17.8<br />

21.8<br />

25.8<br />

29.8<br />

2.9<br />

6.9<br />

10.9<br />

Figure 2. Level variati<strong>on</strong>s at some gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Danube River, August–<br />

September 2002<br />

On <strong>the</strong> Lower Danube, <strong>the</strong> water level rise started <strong>on</strong> 9 August, when <strong>the</strong> water was<br />

released from <strong>the</strong> Ir<strong>on</strong> Gate I and II reservoirs at <strong>the</strong> boundary between Serbia and<br />

Romania. The removal was made in advance to accumulate <strong>the</strong> flood water and, if<br />

pos<strong>si</strong>ble, to decrease <strong>the</strong> flood downstream of <strong>the</strong> reservoir. In <strong>the</strong> period from 9 to<br />

16 August, <strong>the</strong> water level at <strong>the</strong> head of <strong>the</strong> reservoir was <strong>lower</strong>ed by 90 cm, and in<br />

<strong>the</strong> period from 17 to 22 August, by ano<strong>the</strong>r 170 cm. When <strong>the</strong> flood reached <strong>the</strong> Ir<strong>on</strong><br />

Gate (26–27 August), <strong>the</strong> level in <strong>the</strong> reservoir was <strong>lower</strong>ed by 260 cm. This made it<br />

pos<strong>si</strong>ble to accumulate <strong>the</strong> bulk of <strong>the</strong> flood water in <strong>the</strong> reservoir and to prevent а<br />

fur<strong>the</strong>r level rise <strong>on</strong> <strong>the</strong> Lower Danube.


On <strong>the</strong> Lower Danube (from Turnu-Severin to <strong>the</strong> sea), <strong>the</strong>re was not а flood but an<br />

artificial release of water from <strong>the</strong> Ir<strong>on</strong> Gate I (<strong>the</strong> dam <strong>si</strong>te is 943 km from <strong>the</strong> Black<br />

Sea) and Ir<strong>on</strong> Gate II (863 km from <strong>the</strong> Black Sea) reservoirs. А comparis<strong>on</strong> of <strong>the</strong><br />

level changes at Novi Sad and Оrsova (at <strong>the</strong> head of <strong>the</strong> reservoir) (Figure 1) clearly<br />

dem<strong>on</strong>strates how <strong>the</strong> timely water removal from <strong>the</strong> reservoir "smoo<strong>the</strong>d out" <strong>the</strong><br />

rainfall flood. While at Novi Sad <strong>the</strong> maximum level was recorded <strong>on</strong> 25 August and<br />

at Zimnicea and Bazias <strong>the</strong> maximum was measured <strong>on</strong> 27 and 28 August, а<br />

minimum level occurred at Orsova <strong>on</strong> 22 August.<br />

On <strong>the</strong> Romanian reach of <strong>the</strong> Danube at Calafat, <strong>the</strong> level began ri<strong>si</strong>ng <strong>on</strong> 9 August<br />

(when <strong>the</strong> water was released from <strong>the</strong> reservoir) (Figure 2). By 22 August, <strong>the</strong> water<br />

level had reached а maximum (415 cm above gauging stati<strong>on</strong> zero) and exceeded<br />

<strong>the</strong> mean level before <strong>the</strong> release of water by 360 cm. Then it <strong>lower</strong>ed by 20 cm and<br />

reached а maximum again <strong>on</strong> 28 August. At Zimnicea, Giurgiu, and Oltenita, <strong>the</strong><br />

level varied in а <strong>si</strong>milar way. At <strong>the</strong> first two points, it began ri<strong>si</strong>ng <strong>on</strong> 9 August,<br />

reaching а maximum of 411 and 376 cm, respectively, <strong>on</strong> 30 August. At Oltenita, <strong>the</strong><br />

maximum level was recorded <strong>on</strong> 31 August (393 cm above gauging stati<strong>on</strong> zero).<br />

The maximum levels at <strong>the</strong>se three gauging stati<strong>on</strong>s exceeded <strong>the</strong> mean levels<br />

before <strong>the</strong> release of water by 310, 320, and 320 cm, respectively. At <strong>the</strong> Romanian<br />

gauging stati<strong>on</strong>s of Hirsova and Braila and at <strong>the</strong> Ukrainian gauging stati<strong>on</strong> of Reni,<br />

<strong>the</strong> level began ri<strong>si</strong>ng <strong>on</strong> 10–11 August (Figure 2). The maximum level was reached<br />

<strong>on</strong> 2 September (413, 431, and 350 cm above gauging stati<strong>on</strong> zero, respectively).<br />

The maximum level exceeded <strong>the</strong> mean level before <strong>the</strong> release of water from <strong>the</strong><br />

reservoir by 320, 270, and 230 cm, respectively, which indicates that <strong>the</strong> release<br />

wave moving al<strong>on</strong>g <strong>the</strong> Lower Danube was gradually smoo<strong>the</strong>d out. Two release<br />

wave peaks <strong>si</strong>milar to those at Calafat <strong>sh</strong>ould be noted: at Zimnicea <strong>on</strong> 25 and 30<br />

August, at Giurgiu <strong>on</strong> 24 and 30 August, at Oltenita <strong>on</strong> 25 and 31 August, at Нirsova<br />

<strong>on</strong> 25 August and 2 September. There was <strong>on</strong>ly <strong>on</strong>e peak at Reni.<br />

Therefore, <strong>on</strong> <strong>the</strong> Lower Danube, <strong>the</strong>re was no catastrophic flood because of <strong>the</strong><br />

regulating capacity of <strong>the</strong> reservoirs. The maximum levels during <strong>the</strong> release of water<br />

from <strong>the</strong> reservoir (at <strong>the</strong> end of August and early in September) were far below <strong>the</strong><br />

historical maximum. As <strong>the</strong> release wave moved downstream, <strong>the</strong> difference<br />

between <strong>the</strong> maximum levels <strong>on</strong> <strong>the</strong> Lower Danube and <strong>the</strong> historical maximum<br />

levels decreased. For example, at <strong>the</strong> Bulgarian gauging stati<strong>on</strong> of Novo Selo it was<br />

387 cm, at <strong>the</strong> Romanian reach between Calafat and Braila it fell from 386 to 208 cm,<br />

and at <strong>the</strong> Ukrainian gauging stati<strong>on</strong> of Reni it was <strong>on</strong>ly 205 cm. The release wave<br />

moved from Calafat to Reni (668 km) in 11 days at <strong>the</strong> rate of 60.7 km/day, or 0.70<br />

m/s.<br />

On <strong>the</strong> Ukrainian reach of <strong>the</strong> Danube, <strong>the</strong> maximum level of 350 cm above <strong>the</strong> Reni<br />

gauging stati<strong>on</strong> zero <strong>on</strong> 2 September corresp<strong>on</strong>ds to <strong>the</strong> river water discharge of<br />

8900 m 3 /s. This discharge is far below <strong>the</strong> Danube mean maximum annual discharge<br />

at <strong>the</strong> head of <strong>the</strong> delta (11800 m 3 /s). In <strong>the</strong> Chilia Branch of <strong>the</strong> Danube delta, <strong>the</strong><br />

maximum level rise in early September of 2002 was even less than that <strong>on</strong> <strong>the</strong> neardelta<br />

reach (Reni). This is explained by а <strong>si</strong>gnificant decrease in <strong>the</strong> level range<br />

during <strong>the</strong> movement of <strong>the</strong> flood and release wave in <strong>the</strong> delta because of <strong>the</strong><br />

stabilizing impact of <strong>the</strong> sea, where seas<strong>on</strong>al level changes do not exceed 0.3–0.4 m<br />

(Hydrology…, 2004; Mikhailov et al., 2004).


3 SPRING–SUMMER FLOOD IN MARCH–JUNE 2006<br />

3.1 Synoptic <strong>si</strong>tuati<strong>on</strong> preceding <strong>the</strong> flood<br />

The spring–summer flood period in <strong>the</strong> Danube River ba<strong>si</strong>n (in particular in its middle<br />

and <strong>lower</strong> parts) is <strong>the</strong> main and well-defined phase of river water regime. This flood<br />

period is caused by snow melting and rains. Al<strong>on</strong>g <strong>the</strong> Lower Danube, <strong>the</strong> spring–<br />

summer flood period usually falls <strong>on</strong> March–July. The <str<strong>on</strong>g>extreme</str<strong>on</strong>g> spring flood in 2006<br />

(by dates and durati<strong>on</strong>) was <strong>si</strong>milar to analogous spring floods in o<strong>the</strong>r years, but<br />

was heavier. Spring 2006 in <strong>the</strong> Danube River ba<strong>si</strong>n was moderately warm and<br />

moist. The quantity of precipitati<strong>on</strong> during three spring m<strong>on</strong>ths has c<strong>on</strong><strong>si</strong>derably<br />

exceeded m<strong>on</strong>thly norm: in March by 55%, in April by 35%, and in May by 6%.<br />

M<strong>on</strong>thly average air temperatures were close to normal.<br />

Early in summer, <strong>the</strong> wea<strong>the</strong>r <strong>on</strong> <strong>the</strong> upper and middle reaches of <strong>the</strong> Danube River<br />

was characterized by cycl<strong>on</strong>ic activity with heavy storm rainfall. The m<strong>on</strong>thly sums of<br />

precipitati<strong>on</strong> in June amounted 90% of normal.<br />

Main causes of <strong>the</strong> <str<strong>on</strong>g>extreme</str<strong>on</strong>g> spring–summer flood in March–June 2006 were, firstly,<br />

great snow supply accumulated by <strong>the</strong> beginning of March both in mountain areas<br />

and <strong>on</strong> <strong>the</strong> plain; sec<strong>on</strong>dly, warm wea<strong>the</strong>r at <strong>the</strong> beginning of spring (March–April),<br />

promoted active snow melting; and thirdly, heavy rains in spring m<strong>on</strong>ths.<br />

3.2 Development and transformati<strong>on</strong> of <strong>the</strong> Danube spring–summer flood<br />

When analyzing <strong>the</strong> development and transformati<strong>on</strong> of <strong>the</strong> spring–summer flood in<br />

March-June 2006, daily water levels from 29 <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> gauging stati<strong>on</strong>s al<strong>on</strong>g <strong>the</strong><br />

Danube River from its upper reach to <strong>the</strong> sea (Figure 1) were used as <strong>the</strong> initial<br />

informati<strong>on</strong>. The maximum water levels during <strong>the</strong> spring–summer flood 2006, and<br />

historical maximum levels are resulted in Table 2 (Mikhailov et al., 2008).<br />

In 2006 at some gauging stati<strong>on</strong>s of <strong>the</strong> Middle Danube (Nagymaros, Budapest,<br />

Zemun and Bazias) and at <strong>the</strong> majority of gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Lower Danube<br />

(from Turnu-Severin to Reni a little above <strong>the</strong> delta head), historical maximum levels<br />

were exceeded in 2006 (Table 2). The greatest excess of <str<strong>on</strong>g>extreme</str<strong>on</strong>g> levels during <strong>the</strong><br />

spring–summer flood 2006 above <strong>the</strong> historical maxima was observed at <strong>the</strong> gauging<br />

stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Romanian and Bulgarian reaches of Danube River and reached 60<br />

cm (Calafat), 51 cm (Lom), 39 cm (Zimnicea), 37 cm (Hirsova), and 60 cm (Braila).<br />

As a result of this complex influence of snow and rain feed, two waves of <strong>the</strong> spring–<br />

summer floods have been formed (in March–April and at <strong>the</strong> end of May – <strong>the</strong><br />

beginning of June, corresp<strong>on</strong>dingly). At <strong>the</strong> gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Upper Danube,<br />

<strong>the</strong> highest water levels were noted at <strong>the</strong> end of March – <strong>the</strong> beginning of April<br />

(Table 2), i.e. during <strong>the</strong> passage of <strong>the</strong> first flood wave (<strong>the</strong> height of <strong>the</strong> flood wave<br />

has increased from 3–3.5 m (Ingolstadt, Regensburg) to 4.5–5.5 m (Passau,<br />

Kienstock).


Table 2.Maximum spring–summer flood levels, March–June 2006, and historical maximum levels at gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Danube<br />

River. Da<strong>sh</strong> means lack of informati<strong>on</strong>.<br />

№ Gauging<br />

stati<strong>on</strong><br />

Country<br />

Distance from port of Sulina<br />

(without brackets) and from<br />

<strong>the</strong> Prorva branch mouth<br />

(in square brackets) (km)<br />

Spring–summer flood in March–June<br />

2006<br />

Maximum level above<br />

gauging stati<strong>on</strong> zero<br />

(cm)<br />

Historical maximum (in ice-free period)<br />

Date Period Level<br />

(cm)<br />

1 Ingolstadt Germany 2458 476 11.03 1827–2005 778 18.06.1910<br />

2 Regensburg Germany 2376 523 30.03 1884–2005 666 28.03.1988<br />

3 Passau Germany 2225 863 29.03 1877–2005 1230 10.07.1954<br />

4 Linz Austria 2135 613 29.03 1893–2005 963 11.07.1954<br />

5 Kienstock Austria 2015 789 30.03 1830–2005 1085 14.08.2002<br />

6 Bratislava Slovakia 1869 829 2.04 1823–2005 986 16.08.2002<br />

7 Nagymaros Hungary 1695 713 4.04 1876–2005 707 18.08.2002<br />

8 Budapest Hungary 1647 856 4.04 1876–2005 845 17.06.1965<br />

9 Mohach Hungary 1447 931 8,9.04 1876–2005 984 19.06.1965<br />

10 Bezdan Croatia 1425 734 10.04 1876–2005 776 24.06.1965<br />

11 Bogojevo Croatia 1367 791 10.04 1890–2005 817 15.06.1965<br />

12 Novi Sad Serbia 1255 745 12.04 1888–2005 778 30.06.1965<br />

13 Zemun Serbia 1173 783 17.04 1876–2005 757 26.03.1981<br />

14 Bazias Romania 1072 807 15–17.04 1874–2005 795 06.04.1942<br />

15 Orsova Romania 955 2450 01.06 1971–2005 2568 17.10.1994<br />

16 Turnu-Severin Romania 931 928 27 04 1879–2005 906 28.03.1981<br />

17 Novo Selo Bulgaria 834 922 20 04 1941–2005 900 28.03.1981<br />

18 Calafat Romania 795 861 22,23.04 1879–2005 801 29.03.1981<br />

19 Lom Bulgaria 743 985 23.04 1921–2005 934 29.03.1981<br />

20 Zimnicea Romania 554 839 24.04 1879–2005 800 02.06.1970<br />

21 Giurgiu Romania 493 822 24.04 1879–2005 795 02.06.1970<br />

22 Olenita Romania 430 809 24.04 1879–2005 784 1897<br />

23 Hirsova Romania 253 764 25.04 1898–2005 727 04–06.06.1970<br />

24 Braila Romania 170 699 26.04 1874–2005 639 28.05.1970<br />

25 Reni Ukraine 127 [163] 562 26.04 1921–2005 555 28.05.1970<br />

26 Izmail Ukraine [94] 400 25.04 1921–2005 420 22.05.1970<br />

27 Kiliya Ukraine [47] 249 2.05 1921–2005 282 02.04.1942<br />

28 Vilkovo Ukraine [18] 189 1.05 1921–2005 191 19.02.1979<br />

29 Primorskoye Ukraine 0 538 1.05 1951–2005 599 19.02.1979<br />

Date


At <strong>the</strong> gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Middle Danube (from Bratislava to Bazias), two waves<br />

of <strong>the</strong> spring flood also became apparent: from <strong>the</strong> middle of March to <strong>the</strong> beginning<br />

of May and in <strong>the</strong> first half of June (Figure 3). Rain floods have gradually merged with<br />

two waves of <strong>the</strong> spring flood, and by <strong>the</strong> end of <strong>the</strong> middle reach, waves were<br />

smoo<strong>the</strong>d out. The <str<strong>on</strong>g>extreme</str<strong>on</strong>g> levels <strong>on</strong> <strong>the</strong> Middle Danube were observed later, than<br />

<strong>on</strong> <strong>the</strong> Upper Danube – from <strong>the</strong> beginning to <strong>the</strong> middle of April, i.e. also during <strong>the</strong><br />

first wave of spring flood wave.<br />

900<br />

800<br />

Н, cm<br />

Bratislava<br />

900<br />

800<br />

Н, cm<br />

Novi Sad<br />

700<br />

700<br />

600<br />

600<br />

500<br />

500<br />

400<br />

400<br />

300<br />

300<br />

200<br />

200<br />

100<br />

100<br />

0<br />

0<br />

1.2<br />

15.2<br />

1.3<br />

15.3<br />

29.3<br />

12.4<br />

26.4<br />

10.5<br />

24.5<br />

7.6<br />

21.6<br />

5.7<br />

1.2<br />

15.2<br />

1.3<br />

15.3<br />

29.3<br />

12.4<br />

26.4<br />

10.5<br />

24.5<br />

7.6<br />

21.6<br />

5.7<br />

2600<br />

2500<br />

2400<br />

2300<br />

2200<br />

2100<br />

2000<br />

1900<br />

1800<br />

1.2<br />

15.2<br />

1.3<br />

Н, cm<br />

15.3<br />

29.3<br />

12.4<br />

26.4<br />

10.5<br />

Orsova<br />

24.5<br />

7.6<br />

21.6<br />

5.7<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1.2<br />

Н, cm<br />

15.2<br />

1.3<br />

15.3<br />

29.3<br />

12.4<br />

26.4<br />

Turnu-Severin<br />

10.5<br />

24.5<br />

7.6<br />

21.6<br />

5.7<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1.2<br />

900<br />

Н, сm Calafat 800<br />

Н, cm<br />

Reni<br />

15.2<br />

1.3<br />

15.3<br />

29.3<br />

12.4<br />

26.4<br />

10.5<br />

24.5<br />

7.6<br />

21.6<br />

5.7<br />

Figure 3. Level variati<strong>on</strong>s at some gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Middle and Lower<br />

Danube, March–June 2006<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1.2<br />

15.2<br />

1.3<br />

15.3<br />

29.3<br />

12.4<br />

26.4<br />

10.5<br />

24.5<br />

7.6<br />

21.6<br />

5.7


Significant rise of <strong>the</strong> water levels exceeding historical maxima was noted at <strong>the</strong><br />

upper boundary of <strong>the</strong> Middle Danube (at Nagymaros and Budapest). Here, <strong>the</strong><br />

additi<strong>on</strong>al water inflow of a large left tributary of <strong>the</strong> Morava affected <strong>on</strong> <strong>the</strong> levels<br />

rise. Below <strong>the</strong> c<strong>on</strong>fluence of <strong>the</strong> Danube tributaries – <strong>the</strong> Sava and <strong>the</strong> Tisza,<br />

historical maximum levels were exceeded at <strong>the</strong> gauging stati<strong>on</strong>s of Zemun and<br />

Bazias.<br />

Al<strong>on</strong>g <strong>the</strong> Middle Danube, <strong>the</strong> height of <strong>the</strong> spring–summer flood quickly increased<br />

from 5.5 m (Bratislava) up to 6.5–7.0 m (Nagymaros, Budapest). At Bazias in a z<strong>on</strong>e<br />

of influence of Ir<strong>on</strong> Gate-I reservoir, <strong>the</strong> level rise was about 2.5 m.<br />

The spring–summer flood 2006 had <strong>the</strong> <str<strong>on</strong>g>extreme</str<strong>on</strong>g> character <strong>on</strong> <strong>the</strong> Lower Danube<br />

(especially <strong>on</strong> <strong>the</strong> reach between Calafat and Braila). The <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> regime of <strong>the</strong><br />

Lower Danube is determined by <strong>the</strong> Ir<strong>on</strong> Gate I reservoir, which is located in a gap<br />

between <strong>the</strong> Carpathians and <strong>the</strong> Balkans (943 km from <strong>the</strong> sea).<br />

In 2006, <strong>the</strong> water level regime <strong>on</strong> <strong>the</strong> Lower Danube was transformed by an artificial<br />

release of water. On a peak of spring–summer flood, water levels in <strong>the</strong> reservoir<br />

were close to a level of dead storage. During <strong>the</strong> release of maximal discharges of<br />

<strong>the</strong> spring–summer flood, its regulating ability has been completely exhausted.<br />

From Turnu-Severin to Reni, <str<strong>on</strong>g>extreme</str<strong>on</strong>g> water levels were observed during <strong>the</strong> first<br />

flood wave at <strong>the</strong> end of April. On this reach, <strong>the</strong> water levels exceeded historical<br />

maxima (Table 2).<br />

On <strong>the</strong> Ukrainian reach of <strong>the</strong> Danube River, <strong>the</strong> greatest levels were observed at <strong>the</strong><br />

end of April – <strong>the</strong> beginning of May and did not exceeded historical maxima. It could<br />

be explained by flood wave “smoothing out” seaward, typical to for all river mouth<br />

reaches, where seas<strong>on</strong>al level fluctuati<strong>on</strong>s are minimal (Mikhailov et al., 2008).<br />

The spring–summer flood <strong>on</strong> <strong>the</strong> Lower Danube caused str<strong>on</strong>g flooding. Only in<br />

Romania. nearly 90000 ha of cropland, 1000 km of roads were submerged. About<br />

147 settlements got to disaster area, 227 houses were completely destroyed, 800<br />

houses were damaged, and 12000 people were evacuated.<br />

4 LOW WATER PERIOD (DROUGHT) IN AUGUST–OCTOBER 2003<br />

4.1 Synoptic <strong>si</strong>tuati<strong>on</strong> preceding low water period<br />

In <strong>the</strong> Danube River ba<strong>si</strong>n, winter 2002–2003 was cold, and snow supply at <strong>the</strong><br />

beginning of March was <strong>si</strong>gnificant. However, spring 2003 turned out l<strong>on</strong>g and cold,<br />

and <strong>the</strong> most part of melt water <strong>si</strong>nk into <strong>the</strong> soil, and it was observed a serious<br />

deficiency of precipitati<strong>on</strong> not <strong>on</strong>ly <strong>on</strong> <strong>the</strong> Lower Danube, but also in <strong>the</strong> whole river<br />

ba<strong>si</strong>n. Therefore, instead of usual water level ri<strong>si</strong>ng, it was reported gradual falling.<br />

A remarkable deficit in rain and snow was reported by <strong>the</strong> Danube River ba<strong>si</strong>n in<br />

2003. In Germany, a l<strong>on</strong>g-term drought between February and September was<br />

caused by <strong>the</strong> stability of anticycl<strong>on</strong>e wea<strong>the</strong>r c<strong>on</strong>diti<strong>on</strong>s. Hence <strong>the</strong> air temperature<br />

and sun<strong>sh</strong>ine durati<strong>on</strong> exceeded <strong>the</strong> annual mean values and altoge<strong>the</strong>r ten m<strong>on</strong>ths<br />

of <strong>the</strong> year were drier than average.


The total loss of water from plant transpirati<strong>on</strong> and evaporati<strong>on</strong> from <strong>the</strong> ground was<br />

high in several parts of <strong>the</strong> Danube River ba<strong>si</strong>n and may even be higher than <strong>the</strong><br />

amount of snow and rain falling. Many meteorological stati<strong>on</strong>s in Germany recorded<br />

<strong>the</strong> hottest summer ever observed. In <strong>the</strong> o<strong>the</strong>r upstream countries, low precipitati<strong>on</strong><br />

(rain, snow) and exces<strong>si</strong>ve temperatures were reported in 2003 as well. In <strong>the</strong> <strong>lower</strong><br />

part of <strong>the</strong> Danube River ba<strong>si</strong>n <strong>the</strong> wea<strong>the</strong>r was also warmer when compared to <strong>the</strong><br />

average climatic pattern.<br />

4.2 Development of <strong>the</strong> Danube drought<br />

At <strong>the</strong> end of <strong>the</strong> summer, <strong>the</strong> water level fell to <strong>the</strong> low levels, especially <strong>on</strong> <strong>the</strong><br />

Lower Danube. However, at gauging stati<strong>on</strong>s of Orsova, Turnu-Severin, <strong>the</strong>re was no<br />

а pr<strong>on</strong>ounced low water period and minimum-recorded values. Some informati<strong>on</strong><br />

about <strong>the</strong> low water period and historical minimum levels at some gauging stati<strong>on</strong>s<br />

<strong>on</strong> <strong>the</strong> Lower Danube are presented in Table 3 and Figure 4.<br />

Table 3. Low water period, August–October 2003, and historical minimum levels at<br />

gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Lower Danube. Da<strong>sh</strong> means lack of informati<strong>on</strong>.<br />

№ Gauging<br />

stati<strong>on</strong><br />

Distance<br />

from port of<br />

Sulina and<br />

from <strong>the</strong><br />

Prorva<br />

branch<br />

mouth (in<br />

square<br />

brackets)<br />

(km)<br />

Low water period in Historical minimum (in ice-free period)<br />

August-October 2003<br />

Minimum<br />

level<br />

above<br />

gauging<br />

stati<strong>on</strong><br />

zero<br />

(cm)<br />

Date Period Level<br />

(cm)<br />

Date<br />

17 Novo Selo 834 -37 5.09 1941–2007 –52 22.01.1985<br />

18 Calafat 795 –116 5.09, 3.10 1921–2007 –87 04.01.1954<br />

19 Lom 743 12 5.09 1921-2007 9 23.01.1985<br />

20 Zimnicea 554 –66 7.09 – – –<br />

21 Giurgiu 493 –144 8.09 1921–2007 –126 12.09.1990<br />

22 Olenita 430 –59 8.09 1921–2007 –110 24.10.1947<br />

23 Hirsova 253 –125 6–8.09 1921–2007 –123 10,11.10.1992<br />

24 Braila 170 –1 5,6.09 1921–2007 –61 14.01.1954<br />

25 Reni 127 [163] –13 10.09 1921–2007 –66 28.10.1921<br />

26 Izmail [94] 6 4.09 1921–2007 –30 31.10,1.11.1921<br />

27 Kiliya [47] 5 4.09 1921–2007 –23 31.10.1929<br />

28 Vilkovo [18] 43 1.09 1922–2007 –20 11.03.1929<br />

On <strong>the</strong> Romanian reach of <strong>the</strong> Danube, <strong>the</strong> water level at Calafat and Lom had<br />

reached а minimum-recorded values <strong>on</strong> 5 September (–116 and 12 cm in relati<strong>on</strong> to<br />

gauging stati<strong>on</strong> zero corresp<strong>on</strong>dingly). In <strong>the</strong> period from 1 June to 5 September, <strong>the</strong><br />

levels at <strong>the</strong>se gauging stati<strong>on</strong>s were <strong>lower</strong>ed by 280 and 297 cm.<br />

At Zimnicea, Giurgiu, Oltenita, and Hirsova, <strong>the</strong> level changed in а <strong>si</strong>milar way. At<br />

Giurgiu and Hirsova, by 8 September, <strong>the</strong> level dropped by 315 and 337 cm,<br />

accordingly. In Giurgiu, and Hirsova, <strong>the</strong> historical minimum levels were recorded <strong>on</strong><br />

8 September, (–144 and –125 cm in relati<strong>on</strong> to gauging stati<strong>on</strong> zero).


800<br />

H, cm<br />

700<br />

600<br />

Turnu-Severin<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

1.6<br />

14.6<br />

27.6<br />

10.7<br />

23.7<br />

5.8<br />

18.8<br />

31.8<br />

13.9<br />

26.9<br />

9.10<br />

22.10<br />

250<br />

200<br />

H, cm<br />

Calafat<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

1.6<br />

14.6<br />

27.6<br />

10.7<br />

23.7<br />

5.8<br />

18.8<br />

31.8<br />

13.9<br />

26.9<br />

9.10<br />

22.10<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

200<br />

H, cm 150 H, cm<br />

Giurgiu<br />

Lom<br />

100<br />

50<br />

0<br />

1.6<br />

14.6<br />

27.6<br />

10.7<br />

23.7<br />

5.8<br />

18.8<br />

31.8<br />

13.9<br />

26.9<br />

9.10<br />

22.10<br />

-50<br />

-100<br />

-150<br />

-200<br />

1.6<br />

14.6<br />

27.6<br />

10.7<br />

23.7<br />

5.8<br />

18.8<br />

31.8<br />

13.9<br />

26.9<br />

9.10<br />

22.10<br />

250<br />

200<br />

150<br />

100<br />

250<br />

H, cm Hirsova<br />

H, cm<br />

200<br />

Reni<br />

150<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

1.6<br />

14.6<br />

27.6<br />

10.7<br />

23.7<br />

5.8<br />

18.8<br />

31.8<br />

13.9<br />

26.9<br />

9.10<br />

22.10<br />

100<br />

50<br />

0<br />

-50<br />

1.6<br />

14.6<br />

27.6<br />

10.7<br />

23.7<br />

5.8<br />

18.8<br />

31.8<br />

13.9<br />

26.9<br />

9.10<br />

22.10<br />

Figure 4. Level variati<strong>on</strong>s at some gauging stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Lower Danube, August–<br />

October 2003<br />

At <strong>the</strong> Ukrainian gauging stati<strong>on</strong> of Reni, <strong>the</strong> level changed too. Over <strong>the</strong> period from<br />

1 June to 4 September, <strong>the</strong> level dropped by 209 cm. The minimum was reached <strong>on</strong><br />

10 September (–13 cm in relati<strong>on</strong> to gauging stati<strong>on</strong> zero). This level corresp<strong>on</strong>ds to<br />

<strong>the</strong> river water discharge of 2130 m 3 /s. This discharge is below <strong>the</strong> Danube mean<br />

minimum annual discharge at <strong>the</strong> head of <strong>the</strong> delta (3010 m 3 /s).<br />

In <strong>the</strong> Chilia Branch of <strong>the</strong> Danube delta, level drop in August–October of 2003 was<br />

even less than that <strong>on</strong> <strong>the</strong> near-delta reach (Reni). This is explained by backwater<br />

effect of <strong>the</strong> Black Sea level (Hydrology…, 2004).


The rise of water level <strong>on</strong> 14 September, observed at <strong>the</strong> gauges stati<strong>on</strong>s in <strong>the</strong> delta<br />

and near-delta reach, was caused by po<strong>si</strong>tive storm surge in <strong>the</strong> Danube River<br />

mouth area.<br />

5 CONCLUSIONS<br />

The formati<strong>on</strong> and transformati<strong>on</strong> of <strong>the</strong> Danube catastrophic rainfall flood in August<br />

2002 and <str<strong>on</strong>g>extreme</str<strong>on</strong>g> spring–summer flood in March–June 2006, and <strong>the</strong> preceding<br />

synoptic c<strong>on</strong>diti<strong>on</strong>s were c<strong>on</strong><strong>si</strong>dered. In 2002, torrential rains <strong>on</strong> <strong>the</strong> Upper and<br />

Middle Danube triggered two <str<strong>on</strong>g>extreme</str<strong>on</strong>g> rainfall flood waves. At some gauging stati<strong>on</strong>s<br />

<strong>on</strong> <strong>the</strong> Middle and Lower Danube (Bratislava, Budapest, and o<strong>the</strong>rs), <strong>the</strong> August<br />

flood levels exceeded historical maxima and caused a catastrophic inundati<strong>on</strong>.<br />

Owing to <strong>the</strong> timely release of water from <strong>the</strong> Ir<strong>on</strong> Gate reservoir, <strong>the</strong> rain flood was<br />

smoo<strong>the</strong>d out and turned into a flat release wave <strong>on</strong> <strong>the</strong> Lower Danube. The <str<strong>on</strong>g>extreme</str<strong>on</strong>g><br />

spring–summer flood in March–June 2006 was resulted from <strong>si</strong>multaneous melting of<br />

a great snow supply and plentiful rains in <strong>the</strong> Danube Ba<strong>si</strong>n. At a number of gauging<br />

stati<strong>on</strong>s <strong>on</strong> <strong>the</strong> Lower Danube, water levels also exceeded historical maxima.<br />

A low precipitati<strong>on</strong> (rain, snow), reported by <strong>the</strong> Danube River ba<strong>si</strong>n in 2003, and <strong>the</strong><br />

hottest summer led to <strong>the</strong> formati<strong>on</strong> of <strong>the</strong> <str<strong>on</strong>g>extreme</str<strong>on</strong>g> low water period in August–<br />

October 2003, when water levels <strong>on</strong> <strong>the</strong> Lower Danube fell to <strong>the</strong> lowest marks.<br />

In <strong>the</strong> future, global climate warming, inten<strong>si</strong>ficati<strong>on</strong> of synoptic processes, increment<br />

in <strong>the</strong> total amount of precipitati<strong>on</strong> and its irregularity can result in an increase in a<br />

frequency of <str<strong>on</strong>g>extreme</str<strong>on</strong>g> <str<strong>on</strong>g>hydrological</str<strong>on</strong>g> <str<strong>on</strong>g>events</str<strong>on</strong>g>. Informati<strong>on</strong> about <strong>the</strong> <str<strong>on</strong>g>extreme</str<strong>on</strong>g> <str<strong>on</strong>g>hydrological</str<strong>on</strong>g><br />

<str<strong>on</strong>g>events</str<strong>on</strong>g> taking place in <strong>the</strong> Danube Ba<strong>si</strong>n can be of interest of researchers because<br />

many rivers are subject to a str<strong>on</strong>g effect of climatic changes and can have <strong>si</strong>milar<br />

regime features.<br />

Acknowledgments<br />

This work was supported by <strong>the</strong> Rus<strong>si</strong>an Foundati<strong>on</strong> for Ba<strong>si</strong>c Research (grant №07-<br />

05-00406).<br />

References<br />

Die D<strong>on</strong>au und ihr Einzugsgebiet. Eine hydrologische M<strong>on</strong>ographie. 1986: Teil 2. Tabellen. Regi<strong>on</strong>ale<br />

Zusammenarbeit der D<strong>on</strong>auländer.<br />

Hydrology of <strong>the</strong> Mouth Area of <strong>the</strong> Danube. 1963: Gidrometeoizdat, Moscow. In Rus<strong>si</strong>an.<br />

Hydrology of <strong>the</strong> Danube Delta. Ed. Mikhailov, V.N. 2004: GEOS, Moscow. In Rus<strong>si</strong>an.<br />

Mikhailov, V.N., Mikhailova, M.V., Morozov, V.N., Kornilov, M.V. & Khudoleev, V.N. 2004:<br />

Catastrophic flood <strong>on</strong> <strong>the</strong> Danube River in August 2002. Rus<strong>si</strong>an Meteorology and Hydrology. 1(53–<br />

58).<br />

Mikhailov, V.N., Morozov, V.N., Cheroy, N.I., Mikhailova, M.V., Zav’yalova, E.F. 2008: Extreme flood<br />

<strong>on</strong> Danube in 2006. Rus<strong>si</strong>an Meteorology and Hydrology. 1(80–89).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!