06.01.2015 Views

Mechanical Properties of Aluminum Welds - Course Notes

Mechanical Properties of Aluminum Welds - Course Notes

Mechanical Properties of Aluminum Welds - Course Notes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MECHANICAL PROPERTIES OF<br />

ALUMINUM WELDS FOR<br />

AUTOMOTIVE STRUCTURAL<br />

APPLICATIONS<br />

Jennifer Hyde<br />

Supervisor: Dr. McDermid<br />

MATLS 701 Seminar<br />

Feb 17, 2012


Outline<br />

2<br />

Motivation<br />

Background/Literature Review<br />

Project Outline<br />

Experimental Procedure<br />

Preliminary Results<br />

Summary<br />

Future Work<br />

Acknowledgements


Motivation<br />

3<br />

<br />

Increased use <strong>of</strong> aluminum for light weighting <strong>of</strong><br />

vehicles due to its relatively high strength to weight<br />

ratio<br />

The <strong>Aluminum</strong> Association. <strong>Aluminum</strong> in Transportation<br />

http://aluminumintransportation.org/main/commercial-vehicle/commercial-vehicle (Accessed Feb 2012)


Background: GMAW<br />

4<br />

Gas Metal Arc Welding<br />

(GMAW)→ two metals are joined<br />

by heating from an arc between<br />

the metal and continuously fed<br />

filler wire electrode. This process<br />

uses a shielding gas (argon or<br />

helium) to protect the molten<br />

weld pool from oxidation.<br />

<br />

<br />

Popular welding technique for Al<br />

alloys<br />

Results in 3 distinct regions:<br />

weld; HAZ; base material<br />

S. Kou, Welding Metallurgy, 2 nd ed., Hoboken,<br />

New Jersey: John Wiley and Sons Inc., 2003.<br />

Microhardness Pr<strong>of</strong>ile


<strong>Mechanical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Welds</strong><br />

5<br />

Problem<br />

One <strong>of</strong> the easiest ways to get the mechanical<br />

properties <strong>of</strong> a material is from uniaxial tensile testing<br />

This is a problem for welds since the mechanical<br />

properties <strong>of</strong> welded samples from tensile testing is<br />

limited to the instability <strong>of</strong> the weakest region <strong>of</strong> the<br />

welded joint<br />

How can we measure mechanical properties<br />

<strong>of</strong> each region <strong>of</strong> the weld


<strong>Mechanical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Welds</strong><br />

6<br />

Solution:<br />

1) Gleeble/thermal<br />

treatment apparatus<br />

costly<br />

time consuming<br />

Sensitive to variation <strong>of</strong><br />

welding conditions<br />

2) novel shear test; tensile<br />

testing combined with DIC<br />

modified ASTM B831 shear<br />

samples<br />

<strong>Mechanical</strong> behaviour up to<br />

large strains from shear test<br />

Gleeble 3180 Dynamic Systems Inc.<br />

http://www.gleeble.com/index.php/products/productsoverview.html<br />

(Accessed Feb 2012)


Modified Shear Samples<br />

7<br />

<br />

<br />

Machined using wire and sink EDM (Electric Discharge Machining)<br />

Pulled in a tensile testing machine


8<br />

Digital Image Correlation (DIC):<br />

ARAMIS System<br />

<br />

<br />

<br />

<br />

Spray paint test sample to get<br />

random speckle pattern and<br />

using a CCD camera to take<br />

snapshots during testing.<br />

ARAMIS calculates<br />

displacement between each<br />

snapshot and a reference<br />

picture to get strain<br />

able to calculate strain within<br />

the shear zone and also<br />

localized strain during tensile<br />

test (i.e. strain in weld; HAZ<br />

and BM regions)<br />

Relate stress to strain by time.<br />

Facets in the undeformed and deformed state<br />

(Aramis v5.3 manual, GOM mbH, Braunschweig, Germany (2004))


Shear Test: Kang et al [1]<br />

9<br />

<br />

<br />

<br />

These modified samples first<br />

used on DC and CC 5754 sheet<br />

materials<br />

This geometry prevents end<br />

rotation <strong>of</strong> the shear zone as<br />

compared to the ASTM B831<br />

samples<br />

Compared shear test to uniaxial<br />

tension tests<br />

They concluded that effective<br />

stress and strain for shear test<br />

only matched tensile results when<br />

using the Barlat-Lian yield<br />

function which incorporates<br />

planar anisotropy.<br />

[1] J. Kang et al, Journal <strong>of</strong> Engineering Materials and Technology, 031004-1-5, 2008.


10<br />

Yield Functions:<br />

For simple shear:<br />

Von Mises:<br />

Barlat-Lian:<br />

M=8 for FCC materials


Barlat-Lian Yield Function:<br />

r= plastic strain ratio<br />

Equal to 1 for an isotropic<br />

material<br />

11


Effective stress, MPa<br />

[2] Kang J, McDermid , J.R., Bruhis, M., SAE Paper, 2012-01-0181 (2012)<br />

Resistance Spot <strong>Welds</strong><br />

12<br />

<br />

More recently this modified<br />

shear sample geometry has<br />

been extended to the<br />

investigation <strong>of</strong> AA5754-O<br />

RSW welds and AA6022 T4<br />

RSW welds [2]<br />

350<br />

300<br />

250<br />

200<br />

<br />

Used Barlat-Lian equation<br />

on base materials to match<br />

tensile and shear effective<br />

stress-strain curves<br />

150<br />

100<br />

50<br />

AA5754 Uniaxial tension<br />

AA6022-T4 Uniaxial tension<br />

AA5754 von Mises<br />

AA6022-T4 von Mises<br />

AA5754 Barlat-Lian<br />

AA6022-T4 Barlat-Lian<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

Effective strain<br />

Uniaxial Tension and Shear effective stressstrain<br />

curves for the base materials: 5754 and<br />

6022 T4


True stress, MPa<br />

RSW welds graph<br />

13<br />

350<br />

300<br />

s = 487.24e 0.2194<br />

R² = 0.99<br />

s= 479.83e 0.2941<br />

R 2 = 0.9898<br />

s= 321.97e 0.1409<br />

R 2 = 0.9813<br />

250<br />

s= 226.33e 0.1497<br />

200<br />

R 2 = 0.9542<br />

150<br />

AA5754-O<br />

100<br />

50<br />

0<br />

6022-T4<br />

Case 8 Tensile<br />

Case 6 Tensile<br />

Case 8 Shear<br />

Case 6 Shear<br />

Case 6 Shear<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45<br />

True strain<br />

Case 6: RSW 6022 T4 Case 8: RSW 5754-O


Research Objective<br />

14<br />

GM currently cannot accurately predict the failure<br />

location <strong>of</strong> gas metal arc welded aluminum<br />

structural components<br />

This research meant to provide the necessary<br />

mechanical property information for both the weld<br />

region and the HAZ so that their FE models are<br />

accurate


Project Outline<br />

15<br />

Weld Cases<br />

Case Material 1 Thickness Material 2 Thickness Weld wire<br />

1 Aural 2 T7 3mm 6063 T4 4mm 4043<br />

2 Aural 2 T7 3mm 6063 T6 4mm 4043<br />

3 5754-O 3mm 6063 T4 4mm 4043<br />

4 5754-O 3mm 6063 T6 4mm 4043<br />

9 5754-O 3mm 5754-O 3mm 4043<br />

<br />

<br />

These are in a butt joint configuration for testing purposes<br />

Also testing base materials mechanical properties


Base Materials<br />

16<br />

AA 5754-O<br />

Main alloying element is Mg<br />

Non-heat treatable<br />

O temper → fully annealed<br />

<br />

AA 6063 T4 and T6<br />

Mg and Si are the main alloying elements<br />

heat treatable→ strengthening from metastable β'' precipitates (Mg 2 Si)<br />

T4 → naturally aged; T6 → optimally aged<br />

<br />

Aural-2 ® T7<br />

Mg, Si and Mn are the main alloying elements<br />

die cast<br />

T7 → stabilized


Weld Configuration<br />

17<br />

(A)<br />

(B)<br />

RD<br />

RD<br />

RD<br />

RD<br />

Cases 1 and 2<br />

(C)<br />

Case 1<br />

RD<br />

RD<br />

5754<br />

Cases 3 and 4


Paint Bake Cycle<br />

18<br />

Al alloys used for automotive applications undergo<br />

a paint bake cycle which may have an effect on<br />

the material’s properties given that many Al alloys<br />

are artificially aged around this temperature<br />

Baking Conditions:<br />

180°C for 20 mins then air cool, reheat to 180°C for 30 mins<br />

All base material samples with the exception <strong>of</strong><br />

5754-O tested in this condition<br />

All welds were tested in this condition which is<br />

meant to simulate the paint bake cycle.


Experimental Procedure<br />

19<br />

<strong>Mechanical</strong> Testing<br />

Tensile Tests<br />

Base Materials<br />

<strong>Welds</strong><br />

Shear Tests<br />

Base Materials<br />

<strong>Welds</strong><br />

HAZ<br />

Locating the HAZ to place<br />

shear zones<br />

Microhardness Pr<strong>of</strong>iles<br />

Microstructure<br />

OM (Electrolytic etching using<br />

Barker’s and viewing under cross<br />

polarized light)<br />

Fractography<br />

SEM on fracture surfaces


Tensile Tests<br />

20<br />

<br />

Base Material:<br />

Tensile samples cut parallel (0°), 45° and 90° to RD<br />

Extensometer as well as ARAMIS (DIC) for strain measurements<br />

Strain rate: 6.7 x 10 -4 /s<br />

<br />

<strong>Welds</strong>:<br />

Weld in middle <strong>of</strong> tensile sample<br />

ARAMIS used for strain measurements<br />

Strain rate: 2.8 x 10 -4 /s<br />

<br />

10 KN Instron Testing Machine


6063 T4 Stress-Strain Curves<br />

21<br />

6063 T4 AR 6063 T4 B


Tensile Test <strong>of</strong> <strong>Welds</strong>: 1A:6063 T4 and Aural-2 T7<br />

22<br />

1A AR<br />

1A B


Shear Test samples: welds<br />

23<br />

Welded Plate<br />

Shear Sample


24<br />

Locating the HAZ for Shear Test


Shear Tests- Base Materials<br />

25<br />

<br />

Same machine as tensile test<br />

Testing base material samples parallel and transverse to<br />

RD (0° and 90°)<br />

Strain rate: 2.6 x 10 -3 /s<br />

Using Aramis/DIC to directly measure shear angle<br />

at each stage<br />

<br />

Shear stress and strain converted to effective stress and<br />

strain using von Mises criterion


Aural-2 T7 Shear Curves<br />

26


Summary<br />

27<br />

<br />

<br />

<br />

<br />

Tensile tests on base materials were completed with general<br />

agreement between samples and some differences in<br />

sample orientation (i.e. 0°, 45°, 90° wrt RD)<br />

Tensile test on welds using ARAMIS (DIC) were able to show<br />

strain locally; in both the weld region and region where<br />

fracture occurs<br />

It has been found that only 6063 T6 has a noticeable HAZ<br />

Shear tests on base materials were completed. The effective<br />

stress-strain curves show differences for shear and tension.


Future Work<br />

28<br />

Locate the fusion zone <strong>of</strong> 6063 T4, 5754-O,<br />

Aural 2 T7 and then place the shear zone<br />

beside this region<br />

Shear tests on welds and HAZ<br />

SEM <strong>of</strong> fracture surfaces<br />

Possibly use Barlat-Lian yield function to<br />

incorporate material anisotropy


Acknowledgements<br />

29<br />

General Motors <strong>of</strong> Canada Ltd for financial<br />

support and experimental materials<br />

Initiative for Automotive Manufacturing Innovation<br />

(IAMI) for financial support<br />

Supervisor: Dr. McDermid<br />

Technical assistance: Jidong Kang; Mike Bruhis;<br />

and Doug Culley


QUESTIONS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!