06.01.2015 Views

Mechanical Properties of Aluminum Welds - Course Notes

Mechanical Properties of Aluminum Welds - Course Notes

Mechanical Properties of Aluminum Welds - Course Notes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

MECHANICAL PROPERTIES OF<br />

ALUMINUM WELDS FOR<br />

AUTOMOTIVE STRUCTURAL<br />

APPLICATIONS<br />

Jennifer Hyde<br />

Supervisor: Dr. McDermid<br />

MATLS 701 Seminar<br />

Feb 17, 2012


Outline<br />

2<br />

Motivation<br />

Background/Literature Review<br />

Project Outline<br />

Experimental Procedure<br />

Preliminary Results<br />

Summary<br />

Future Work<br />

Acknowledgements


Motivation<br />

3<br />

<br />

Increased use <strong>of</strong> aluminum for light weighting <strong>of</strong><br />

vehicles due to its relatively high strength to weight<br />

ratio<br />

The <strong>Aluminum</strong> Association. <strong>Aluminum</strong> in Transportation<br />

http://aluminumintransportation.org/main/commercial-vehicle/commercial-vehicle (Accessed Feb 2012)


Background: GMAW<br />

4<br />

Gas Metal Arc Welding<br />

(GMAW)→ two metals are joined<br />

by heating from an arc between<br />

the metal and continuously fed<br />

filler wire electrode. This process<br />

uses a shielding gas (argon or<br />

helium) to protect the molten<br />

weld pool from oxidation.<br />

<br />

<br />

Popular welding technique for Al<br />

alloys<br />

Results in 3 distinct regions:<br />

weld; HAZ; base material<br />

S. Kou, Welding Metallurgy, 2 nd ed., Hoboken,<br />

New Jersey: John Wiley and Sons Inc., 2003.<br />

Microhardness Pr<strong>of</strong>ile


<strong>Mechanical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Welds</strong><br />

5<br />

Problem<br />

One <strong>of</strong> the easiest ways to get the mechanical<br />

properties <strong>of</strong> a material is from uniaxial tensile testing<br />

This is a problem for welds since the mechanical<br />

properties <strong>of</strong> welded samples from tensile testing is<br />

limited to the instability <strong>of</strong> the weakest region <strong>of</strong> the<br />

welded joint<br />

How can we measure mechanical properties<br />

<strong>of</strong> each region <strong>of</strong> the weld


<strong>Mechanical</strong> <strong>Properties</strong> <strong>of</strong> <strong>Welds</strong><br />

6<br />

Solution:<br />

1) Gleeble/thermal<br />

treatment apparatus<br />

costly<br />

time consuming<br />

Sensitive to variation <strong>of</strong><br />

welding conditions<br />

2) novel shear test; tensile<br />

testing combined with DIC<br />

modified ASTM B831 shear<br />

samples<br />

<strong>Mechanical</strong> behaviour up to<br />

large strains from shear test<br />

Gleeble 3180 Dynamic Systems Inc.<br />

http://www.gleeble.com/index.php/products/productsoverview.html<br />

(Accessed Feb 2012)


Modified Shear Samples<br />

7<br />

<br />

<br />

Machined using wire and sink EDM (Electric Discharge Machining)<br />

Pulled in a tensile testing machine


8<br />

Digital Image Correlation (DIC):<br />

ARAMIS System<br />

<br />

<br />

<br />

<br />

Spray paint test sample to get<br />

random speckle pattern and<br />

using a CCD camera to take<br />

snapshots during testing.<br />

ARAMIS calculates<br />

displacement between each<br />

snapshot and a reference<br />

picture to get strain<br />

able to calculate strain within<br />

the shear zone and also<br />

localized strain during tensile<br />

test (i.e. strain in weld; HAZ<br />

and BM regions)<br />

Relate stress to strain by time.<br />

Facets in the undeformed and deformed state<br />

(Aramis v5.3 manual, GOM mbH, Braunschweig, Germany (2004))


Shear Test: Kang et al [1]<br />

9<br />

<br />

<br />

<br />

These modified samples first<br />

used on DC and CC 5754 sheet<br />

materials<br />

This geometry prevents end<br />

rotation <strong>of</strong> the shear zone as<br />

compared to the ASTM B831<br />

samples<br />

Compared shear test to uniaxial<br />

tension tests<br />

They concluded that effective<br />

stress and strain for shear test<br />

only matched tensile results when<br />

using the Barlat-Lian yield<br />

function which incorporates<br />

planar anisotropy.<br />

[1] J. Kang et al, Journal <strong>of</strong> Engineering Materials and Technology, 031004-1-5, 2008.


10<br />

Yield Functions:<br />

For simple shear:<br />

Von Mises:<br />

Barlat-Lian:<br />

M=8 for FCC materials


Barlat-Lian Yield Function:<br />

r= plastic strain ratio<br />

Equal to 1 for an isotropic<br />

material<br />

11


Effective stress, MPa<br />

[2] Kang J, McDermid , J.R., Bruhis, M., SAE Paper, 2012-01-0181 (2012)<br />

Resistance Spot <strong>Welds</strong><br />

12<br />

<br />

More recently this modified<br />

shear sample geometry has<br />

been extended to the<br />

investigation <strong>of</strong> AA5754-O<br />

RSW welds and AA6022 T4<br />

RSW welds [2]<br />

350<br />

300<br />

250<br />

200<br />

<br />

Used Barlat-Lian equation<br />

on base materials to match<br />

tensile and shear effective<br />

stress-strain curves<br />

150<br />

100<br />

50<br />

AA5754 Uniaxial tension<br />

AA6022-T4 Uniaxial tension<br />

AA5754 von Mises<br />

AA6022-T4 von Mises<br />

AA5754 Barlat-Lian<br />

AA6022-T4 Barlat-Lian<br />

0<br />

0 0.2 0.4 0.6 0.8<br />

Effective strain<br />

Uniaxial Tension and Shear effective stressstrain<br />

curves for the base materials: 5754 and<br />

6022 T4


True stress, MPa<br />

RSW welds graph<br />

13<br />

350<br />

300<br />

s = 487.24e 0.2194<br />

R² = 0.99<br />

s= 479.83e 0.2941<br />

R 2 = 0.9898<br />

s= 321.97e 0.1409<br />

R 2 = 0.9813<br />

250<br />

s= 226.33e 0.1497<br />

200<br />

R 2 = 0.9542<br />

150<br />

AA5754-O<br />

100<br />

50<br />

0<br />

6022-T4<br />

Case 8 Tensile<br />

Case 6 Tensile<br />

Case 8 Shear<br />

Case 6 Shear<br />

Case 6 Shear<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45<br />

True strain<br />

Case 6: RSW 6022 T4 Case 8: RSW 5754-O


Research Objective<br />

14<br />

GM currently cannot accurately predict the failure<br />

location <strong>of</strong> gas metal arc welded aluminum<br />

structural components<br />

This research meant to provide the necessary<br />

mechanical property information for both the weld<br />

region and the HAZ so that their FE models are<br />

accurate


Project Outline<br />

15<br />

Weld Cases<br />

Case Material 1 Thickness Material 2 Thickness Weld wire<br />

1 Aural 2 T7 3mm 6063 T4 4mm 4043<br />

2 Aural 2 T7 3mm 6063 T6 4mm 4043<br />

3 5754-O 3mm 6063 T4 4mm 4043<br />

4 5754-O 3mm 6063 T6 4mm 4043<br />

9 5754-O 3mm 5754-O 3mm 4043<br />

<br />

<br />

These are in a butt joint configuration for testing purposes<br />

Also testing base materials mechanical properties


Base Materials<br />

16<br />

AA 5754-O<br />

Main alloying element is Mg<br />

Non-heat treatable<br />

O temper → fully annealed<br />

<br />

AA 6063 T4 and T6<br />

Mg and Si are the main alloying elements<br />

heat treatable→ strengthening from metastable β'' precipitates (Mg 2 Si)<br />

T4 → naturally aged; T6 → optimally aged<br />

<br />

Aural-2 ® T7<br />

Mg, Si and Mn are the main alloying elements<br />

die cast<br />

T7 → stabilized


Weld Configuration<br />

17<br />

(A)<br />

(B)<br />

RD<br />

RD<br />

RD<br />

RD<br />

Cases 1 and 2<br />

(C)<br />

Case 1<br />

RD<br />

RD<br />

5754<br />

Cases 3 and 4


Paint Bake Cycle<br />

18<br />

Al alloys used for automotive applications undergo<br />

a paint bake cycle which may have an effect on<br />

the material’s properties given that many Al alloys<br />

are artificially aged around this temperature<br />

Baking Conditions:<br />

180°C for 20 mins then air cool, reheat to 180°C for 30 mins<br />

All base material samples with the exception <strong>of</strong><br />

5754-O tested in this condition<br />

All welds were tested in this condition which is<br />

meant to simulate the paint bake cycle.


Experimental Procedure<br />

19<br />

<strong>Mechanical</strong> Testing<br />

Tensile Tests<br />

Base Materials<br />

<strong>Welds</strong><br />

Shear Tests<br />

Base Materials<br />

<strong>Welds</strong><br />

HAZ<br />

Locating the HAZ to place<br />

shear zones<br />

Microhardness Pr<strong>of</strong>iles<br />

Microstructure<br />

OM (Electrolytic etching using<br />

Barker’s and viewing under cross<br />

polarized light)<br />

Fractography<br />

SEM on fracture surfaces


Tensile Tests<br />

20<br />

<br />

Base Material:<br />

Tensile samples cut parallel (0°), 45° and 90° to RD<br />

Extensometer as well as ARAMIS (DIC) for strain measurements<br />

Strain rate: 6.7 x 10 -4 /s<br />

<br />

<strong>Welds</strong>:<br />

Weld in middle <strong>of</strong> tensile sample<br />

ARAMIS used for strain measurements<br />

Strain rate: 2.8 x 10 -4 /s<br />

<br />

10 KN Instron Testing Machine


6063 T4 Stress-Strain Curves<br />

21<br />

6063 T4 AR 6063 T4 B


Tensile Test <strong>of</strong> <strong>Welds</strong>: 1A:6063 T4 and Aural-2 T7<br />

22<br />

1A AR<br />

1A B


Shear Test samples: welds<br />

23<br />

Welded Plate<br />

Shear Sample


24<br />

Locating the HAZ for Shear Test


Shear Tests- Base Materials<br />

25<br />

<br />

Same machine as tensile test<br />

Testing base material samples parallel and transverse to<br />

RD (0° and 90°)<br />

Strain rate: 2.6 x 10 -3 /s<br />

Using Aramis/DIC to directly measure shear angle<br />

at each stage<br />

<br />

Shear stress and strain converted to effective stress and<br />

strain using von Mises criterion


Aural-2 T7 Shear Curves<br />

26


Summary<br />

27<br />

<br />

<br />

<br />

<br />

Tensile tests on base materials were completed with general<br />

agreement between samples and some differences in<br />

sample orientation (i.e. 0°, 45°, 90° wrt RD)<br />

Tensile test on welds using ARAMIS (DIC) were able to show<br />

strain locally; in both the weld region and region where<br />

fracture occurs<br />

It has been found that only 6063 T6 has a noticeable HAZ<br />

Shear tests on base materials were completed. The effective<br />

stress-strain curves show differences for shear and tension.


Future Work<br />

28<br />

Locate the fusion zone <strong>of</strong> 6063 T4, 5754-O,<br />

Aural 2 T7 and then place the shear zone<br />

beside this region<br />

Shear tests on welds and HAZ<br />

SEM <strong>of</strong> fracture surfaces<br />

Possibly use Barlat-Lian yield function to<br />

incorporate material anisotropy


Acknowledgements<br />

29<br />

General Motors <strong>of</strong> Canada Ltd for financial<br />

support and experimental materials<br />

Initiative for Automotive Manufacturing Innovation<br />

(IAMI) for financial support<br />

Supervisor: Dr. McDermid<br />

Technical assistance: Jidong Kang; Mike Bruhis;<br />

and Doug Culley


QUESTIONS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!