06.01.2015 Views

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

TITLE MARCH 2012 - Pakistan Academy of Sciences

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Vol. 49(1), March <strong>2012</strong>


PAKISTAN ACADEMY OF SCIENCES<br />

Founded 1953<br />

President: Atta-ur-Rahman .<br />

Secretary General: G.A. Miana<br />

Treasurer: Shahzad A. Mufti<br />

Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>, published since 1964, is quarterly journal <strong>of</strong> the <strong>Academy</strong>. It publishes<br />

original research papers and reviews in basic and applied sciences. All papers are peer reviewed. Authors are not required to<br />

be Fellows or Members <strong>of</strong> the <strong>Academy</strong>, or citizens <strong>of</strong> <strong>Pakistan</strong>.<br />

Editor-in-Chief:<br />

Abdul Rashid, <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>, 3-Constitution Avenue, Islamabad, <strong>Pakistan</strong>; pas.editor@gmail.com<br />

Editors:<br />

Engineering <strong>Sciences</strong> & Technology: Abdul Raouf, 36-P, Model Town, Lahore, <strong>Pakistan</strong>; abdulraouf@umt.edu.pk<br />

Life <strong>Sciences</strong>: Kauser A. Malik . , Forman Christian College (a Chartered University), Lahore, <strong>Pakistan</strong>; kauser45@gmail.com<br />

Medical <strong>Sciences</strong>: M. Salim Akhter, 928, Shadman Colony-I, Lahore-54000, <strong>Pakistan</strong>; msakhter47@yahoo.com<br />

Physical <strong>Sciences</strong>: M. Aslam Baig, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, <strong>Pakistan</strong>;<br />

baig@qau.edu.pk<br />

Editorial Advisory Board:<br />

Syed Imtiaz Ahmad, Computer Information Systems, Eastern Michigan University, Ypsilanti, MI, USA; imtiaz@cogeco.ca<br />

Niaz Ahmed, National Textile University, Faisalabad, <strong>Pakistan</strong>; rector@ntu.edu.pk<br />

M.W. Akhter, University <strong>of</strong> Massachusetts Medical School, Boston, MA, USA; wakhter@hotmail.com<br />

M. Arslan, Institute <strong>of</strong> Molecular Biology & Biotechnology, The University <strong>of</strong> Lahore, <strong>Pakistan</strong>; arslan_m2000@yahoo.com<br />

Khalid Aziz, King Edward Medical University, Lahore, <strong>Pakistan</strong>; drkhalidaziz@hotmail.com<br />

Roger N. Beachy, Donald Danforth Plant Science Center, St. Louis, MO, USA; rnbeachy@danforthcenter.org<br />

Arshad Saleem Bhatti, CIIT, Islamabad, <strong>Pakistan</strong>; asbhatti@comsats.edu.pk<br />

Zafar Ullah Chaudry, College <strong>of</strong> Physicians and Surgeons <strong>of</strong> <strong>Pakistan</strong>, Karachi, <strong>Pakistan</strong>; publications@cpsp.edu.pk<br />

John William Christman, Dept. Medicine and Pharmacology, University <strong>of</strong> Illinois, Chicago, IL, USA; jwc@uic.edu<br />

Uri Elkayam, Heart Failure Program, University <strong>of</strong> Southern California School <strong>of</strong> Medicine, LA, CA, USA; elkayam@usc.edu<br />

E.A. Elsayed, School <strong>of</strong> Engineering, Busch Campus, Rutgers University, Piscataway, NJ, USA; elsayed@rci.rutgers.edu<br />

Tasawar Hayat, Quaid-i-Azam University, Islamabad, <strong>Pakistan</strong>; t_pensy@hotmail.com<br />

Ann Hirsch, Dept <strong>of</strong> Molecular, Cell & Developmental Biology, University <strong>of</strong> California, Los Angeles, CA, USA; ahirsch@ucla.edu<br />

Josef Hormes, Canadian Light Source, Saskatoon, Saskatchewan, Canada; josef.hormes@lightsource.ca<br />

Fazal Ahmed Khalid, Pro-Rector Academics, GIKI, TOPI, <strong>Pakistan</strong>; khalid@giki.edu.pk<br />

Abdul Khaliq, Chairman, Computer Engineering, CASE, Islamabad, <strong>Pakistan</strong>; chair-ece@case.edu.pk<br />

Iqrar Ahmad Khan, University <strong>of</strong> Agriculture, Faisalabad, <strong>Pakistan</strong>; mehtab89@yahoo.com<br />

Asad Aslam Khan, King Edward Medical University, Lahore, <strong>Pakistan</strong>; kemcol@brain.net.pk<br />

Autar Mattoo, Beltsville Agricultural Research Center, Beltsville, MD, USA; autar.mattoo@ars.usda.gov<br />

Anwar Nasim, House 237, Street 23, F-11/2, Islamabad, <strong>Pakistan</strong>; anwar_nasim@yahoo.com<br />

M. Abdur Rahim, Faculty <strong>of</strong> Business Administration, University <strong>of</strong> New Burnswick, Fredericton, Canada; rahim@unb.ca<br />

M. Yasin A. Raja, University <strong>of</strong> North Carolina, Charlotte, NC, USA; raja@uncc.edu<br />

Martin C. Richardson, University <strong>of</strong> Central Florida, Orlando, FL, USA; mcr@creol.ucf.edu<br />

Hamid Saleem, National Centre for Physics, Islamabad, <strong>Pakistan</strong>; hamid.saleem@ncp.edu.pk<br />

Annual Subscription for <strong>2012</strong>: <strong>Pakistan</strong>: Institutions, Rupees 2000/- ; Individuals, Rupees 1000/-<br />

Other Countries: US$ 100.00 (includes air-lifted overseas delivery)<br />

© <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>. Reproduction <strong>of</strong> paper abstracts is permitted provided the source is acknowledged.<br />

Permission to reproduce any other material may be obtained in writing from the Editor-in-Chief.<br />

The data and opinions published in the Proceedings are <strong>of</strong> the author(s) only. The <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> and the<br />

Editors accept no responsibility whatsoever in this regard.<br />

HEC Recognized, Category X<br />

Published by <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>, 3 Constitution Avenue, G-5/2, Islamabad, <strong>Pakistan</strong><br />

Tel: 92-5 1-9207140 & 9215478; Fax: 92-51-9206770; Website: www.paspk.org<br />

Printed at PanGraphics (Pvt) Ltd., No. 1, I & T Centre, G-7/l, Islamabad, <strong>Pakistan</strong><br />

Tel: 92-51-2202272, 2202449 Fax: 92-51-2202450 E-mail: pangraph@isb.comsats.net.pk


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 1-8 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

On Regions <strong>of</strong> Variability <strong>of</strong> Some Differential Operators<br />

Implying Starlikeness<br />

Sukhwinder Singh Billing*<br />

Department <strong>of</strong> Applied <strong>Sciences</strong><br />

Baba Banda Singh Bahadur Engineering College<br />

Fatehgarh Sahib-140 407, Punjab, India<br />

Abstract: In this paper, we prove a subordination theorem and use it to extend the regions <strong>of</strong> variability <strong>of</strong><br />

some differential operators implying starlikeness <strong>of</strong> normalized analytic functions. Mathematica 7.0 is<br />

used to show the extended regions <strong>of</strong> the complex plane.<br />

Keywords: Analytic functions, Starlike functions, Differential subordination.<br />

2000 Mathematical Subject Classification: Primary 30C80, Secondary 30C45.<br />

1. INTRODUCTION AND<br />

PRELIMINARIES<br />

Let be the class <strong>of</strong> functions f , analytic in the<br />

open unit disk E { z:| z| 1} and normalized by<br />

the conditions f(0) f(0) 1 0 . Denote by<br />

* ( ), the class <strong>of</strong> starlike functions <strong>of</strong> order <br />

which is analytically defined as follows:<br />

<br />

* zf ()<br />

z <br />

<br />

( ) f<br />

: <br />

, zE, 0 1 .<br />

f()<br />

z <br />

<br />

*<br />

We write <br />

* (0) , the class <strong>of</strong> univalent<br />

starlike functions w.r.t. the origin. Obtaining<br />

different criteria for starlikeness <strong>of</strong> an analytic<br />

function has always been a subject <strong>of</strong> interest. A<br />

number <strong>of</strong> criteria for starlikeness <strong>of</strong> analytic<br />

functions have been developed. We state below<br />

some <strong>of</strong> them.<br />

Miller et al [4] studied the class <strong>of</strong> -convex<br />

functions and proved the following result.<br />

Theorem 1.1. If a function f satisfies the<br />

differential inequality<br />

zf ( z) zf ( z)<br />

<br />

(1 ) <br />

1 0, z E,<br />

f ( z) f ( z)<br />

<br />

where is any real number, then f is starlike in<br />

E.<br />

Later on, Fukui [1] proved the more general<br />

result given below for the class <strong>of</strong> -convex<br />

functions.<br />

Theorem 1.2. Let , 0 be a given real<br />

number. For all z E , let a function f <br />

satisfy<br />

zf ( z) zf ( z)<br />

<br />

(1 ) 1 <br />

f ( z) f ( z)<br />

<br />

<br />

,0 1/ 2,<br />

2(1 )<br />

<br />

(1 ) ,1/ 2 1.<br />

2<br />

Then<br />

f * ( )<br />

.<br />

Lewandowski et al [2] proved the following<br />

result.<br />

_____________________<br />

Received, February 2011; Accepted, March <strong>2012</strong><br />

*Email: ssbilling@gmail.com


2 Variability <strong>of</strong> Some Differential Operators Implying Starlikeness<br />

Theorem 1.3. For a function f , the<br />

differential inequality<br />

zf ( z) zf ( z)<br />

<br />

1 0, z E,<br />

f ( z) f ( z)<br />

<br />

ensures the membership for f in the class<br />

In 2002, Li and Owa [3] proved the following<br />

two results:<br />

Theorem 1.4. If f satisfies<br />

zf ( z) zf ( z)<br />

<br />

<br />

<br />

1 <br />

, z E,<br />

f ( z) f ( z) <br />

2<br />

for some , 0 , then<br />

*<br />

f .<br />

Theorem 1.5. If f satisfies<br />

2<br />

zf ( z) zf ( z) <br />

(1 )<br />

<br />

1 <br />

, z E,<br />

f ( z) f ( z) <br />

4<br />

for some , 0 <br />

2 , then<br />

f * ( / 2) .<br />

Later on Ravichandran et al. [10] proved the<br />

following result:<br />

Theorem 1.6. If f satisfies<br />

zf ( z) zf ( z)<br />

<br />

1<br />

<br />

f ( z) f ( z)<br />

<br />

1 <br />

, z E,<br />

2<br />

2<br />

for some , , 0 , 1, then<br />

* .<br />

f * ( )<br />

.<br />

For more such results, we refer the readers to<br />

[5, 7, 9]. Recently, Singh et al [11] proved the<br />

following more general result for starlikeness<br />

which unifies all the above mentioned results.<br />

Theorem 1.7. Let , 0, ,0 1, and<br />

,0 <br />

1, be given real numbers. Let<br />

M ( , , ) [1 (1 )] <br />

<br />

(1 )(1 ) (1 )<br />

2 2<br />

2<br />

(1 ) ,<br />

and<br />

N( , , ) [1 (1 )] <br />

2 (1 )(1 )<br />

(1 ) <br />

2<br />

<br />

[2 (1 2 )(1 )(3 2 )<br />

<br />

2(1 )<br />

2<br />

<br />

(1 )(3 2 )].<br />

(i) For 0 <br />

1/ 2 , let a function f A,<br />

f( z)<br />

0 in E, satisfy<br />

z<br />

(a)<br />

zf ( z) zf ( z)<br />

<br />

1<br />

<br />

<br />

f ( z) f ( z)<br />

<br />

<br />

<br />

<br />

M<br />

( , , ),<br />

zf ( z) zf ( z)<br />

<br />

<br />

1<br />

1<br />

<br />

<br />

f ( z) f ( z)<br />

<br />

whenever<br />

3 4 3<br />

(2 13 2 ) (3 2 ) 0, and<br />

(b)<br />

zf ( z) zf ( z)<br />

<br />

1<br />

<br />

<br />

f ( z) f ( z)<br />

<br />

<br />

<br />

<br />

N( , , ),<br />

zf ( z) zf ( z)<br />

<br />

<br />

1<br />

1<br />

<br />

<br />

f ( z) f ( z)<br />

<br />

whenever<br />

<br />

3 4 3<br />

(2 13 2 ) (3 2 ) 0.<br />

Then<br />

f * ( )<br />

.<br />

(ii) For 1/ 2 <br />

1, if a function f A,<br />

f( z)<br />

0 in E, satisfies<br />

z<br />

zf ( z) zf ( z)<br />

<br />

1<br />

<br />

<br />

f ( z) f ( z)<br />

<br />

<br />

<br />

<br />

M<br />

( , , ),<br />

zf ( z) zf ( z)<br />

<br />

<br />

1<br />

1<br />

<br />

<br />

f ( z) f ( z)<br />

<br />

then<br />

f * ( )<br />

.<br />

The main objective <strong>of</strong> this paper is to extend<br />

the region <strong>of</strong> variability <strong>of</strong> above mentioned<br />

differential operators implying starlikeness. The<br />

extended regions are shown pictorially using<br />

Mathematica 7.0.


Sukhwinder Singh Billing 3<br />

To prove our main results, we use the<br />

technique <strong>of</strong> differential subordination and need<br />

the following lemma <strong>of</strong> Miller and Mocanu [6].<br />

For two analytic functions f and g in the<br />

unit disk E, we say that a function f is<br />

subordinate to a function g in E and write f g<br />

if there exists a Schwarz function w analytic in E<br />

with w(0) 0 and | w( z) | 1, z E such that<br />

f ( z) g( w( z)), z E. In case the function g is<br />

univalent, the above subordination is equivalent to<br />

f(0) g(0)<br />

and f(E) g(E).<br />

Let :CC C be an analytic function,<br />

p be an analytic function in E, with<br />

p( z), zp( z)<br />

C C for all z E and let h be<br />

<br />

<br />

univalent in E, then the function p is said to<br />

satisfy first order differential subordination if<br />

( p( z), zp( z)) h( z), ( p(0),0) h(0).<br />

(1)<br />

A univalent function q is called a dominant <strong>of</strong><br />

the differential subordination (1) if p(0) q(0)<br />

and p q for all p satisfying (1). A dominant q<br />

that satisfies q q for each dominant q <strong>of</strong> (1), is<br />

said to be the best dominant <strong>of</strong> (1).<br />

Lemma 1.1. ([6], p.132, Theorem 3.4 h) Let q be<br />

univalent in E and let and be analytic in a<br />

domain D containing q ( E)<br />

, with ( w) 0 ,<br />

|when w q( E)<br />

. Set Q( z) zq( z) [ q( z)]<br />

,<br />

h( z) [ q( z)] Q( z)<br />

and suppose that either<br />

(i) h is convex, or<br />

(ii) Q is starlike.<br />

In addition, assume that<br />

zh()<br />

z<br />

(iii) 0, z E .<br />

Qz ()<br />

If p is analytic in E, with<br />

p(0) q(0), p(E) D and<br />

[ p( z)] zp( z) [ p( z)] [ q( z)] zq( z) [ q( z)],<br />

then p( z) q( z ) and q is the best dominant.<br />

2. MAIN RESULTS<br />

Theorem 2.1. Let a , b , c and d be complex<br />

numbers such that c and d are not simultaneously<br />

zero. Let qq , ( E) D,<br />

be a univalent function in<br />

E such that<br />

zq ( z) zq( z) czq( z)<br />

<br />

( i) 1 <br />

0,<br />

q( z) q( z) cq( z)<br />

d <br />

and<br />

zq( z) zq( z) czq( z)<br />

<br />

1 <br />

q( z) q( z) cq( z)<br />

d<br />

<br />

( ii) <br />

0.<br />

( a 2 bq( z)) q( z)<br />

<br />

<br />

cq( z)<br />

d<br />

<br />

<br />

<br />

If p, p( z) 0, z E , satisfies the differential<br />

subordination<br />

d <br />

ap z b p z c zp<br />

z<br />

pz ( ) <br />

2<br />

( ) ( ( )) ( )<br />

d <br />

aq z b q z c zq<br />

z<br />

qz ( ) <br />

2<br />

( ) ( ( )) ( ),<br />

then p( z) q( z ) and q is the best dominant.<br />

(2)<br />

Pro<strong>of</strong>. Let us define the functions and as<br />

follows:<br />

2<br />

d<br />

( w) aw bw , and ( w) c<br />

.<br />

w<br />

Obviously, the functions and are analytic<br />

d <br />

in domain D C <br />

<br />

c and ( w)<br />

0 in D.<br />

Now, define the functions Q and h as<br />

follows:<br />

d <br />

Q( z) zq( z) ( q( z)) c zq( z),<br />

and<br />

qz () <br />

d <br />

h z aq z b q z c zq<br />

z<br />

qz () <br />

2<br />

( ) ( ) ( ( )) ( ).<br />

Now Q is starlike in E in view <strong>of</strong> condition<br />

(i) and the condition (ii) implies that<br />

z h()<br />

z<br />

0, z E. Also by (2), we have<br />

Qz ()


4 Variability <strong>of</strong> Some Differential Operators Implying Starlikeness<br />

[ p( z)] zp( z) [ p( z)]<br />

[ q( z)] zq( z) [ q( z)].<br />

Therefore, the pro<strong>of</strong>, now, follows from<br />

Lemma 1.1.<br />

zf ()<br />

z<br />

Setting pz () in Theorem 2.1, we<br />

f()<br />

z<br />

have the following result.<br />

Theorem 2.2. Let q, q( z) 0, be a univalent<br />

function in E and satisfy the conditions (i) and (ii)<br />

zf ()<br />

z<br />

<strong>of</strong> Theorem 2.1. If f , 0, z E ,<br />

f()<br />

z<br />

satisfies the differential subordination<br />

zf ( z) f ( z)<br />

<br />

a b c d <br />

zf ( z)<br />

f ( z) zf ( z)<br />

<br />

f( z) <br />

zf ( z) zf ( z)<br />

<br />

1<br />

<br />

<br />

f ( z) f ( z)<br />

<br />

2 d <br />

aq( z) b( q( z)) c zq( z),<br />

qz () <br />

where a , b , c and d are complex numbers,<br />

zf ()<br />

z<br />

then qz () and q is the best dominant.<br />

f()<br />

z<br />

If we restrict the constants a , b , c and d to<br />

real numbers. By selecting a 1 (1 ),<br />

b(1 ), c(1 ) and d in<br />

Theorem 2.2, we obtain the following result.<br />

Theorem 2.3. Let q, q( z) 0, be a univalent<br />

function in E and satisfy the conditions<br />

(i)<br />

(ii)<br />

zq( z) zq( z)<br />

<br />

1 <br />

q( z) q( z)<br />

<br />

<br />

0,<br />

and<br />

(1 ) zq( z)<br />

<br />

<br />

(1 ) qz ( ) <br />

<br />

<br />

zq ( z) zq( z) (1 ) zq( z)<br />

1 <br />

q( z) q( z) (1 ) q( z)<br />

<br />

[(1 (1 )) 2 (1 ) q( z)] q( z)<br />

<br />

<br />

0.<br />

(1 ) qz ( ) <br />

<br />

zf ()<br />

z<br />

If f , 0, z E, satisfies the<br />

f()<br />

z<br />

differential subordination<br />

zf ( z ) ( ) ( ) ( )<br />

1 <br />

zf z <br />

1 zf z <br />

1<br />

zf z <br />

<br />

f ( z) f ( z) f ( z) f ( z)<br />

<br />

[1 (1 )] ( ) (1 )( ( ))<br />

2<br />

q z q z <br />

<br />

1 <br />

zq( z),<br />

qz () <br />

where and are real numbers, then<br />

zf ()<br />

z<br />

qz () and q is the best dominant.<br />

f()<br />

z<br />

3. APPLICATIONS TO STARLIKE<br />

FUNCTIONS<br />

Throughout this section, we restrict the constants<br />

a , b , c and d to real numbers.<br />

Remark 3.1. When we select<br />

1 (1 2 )<br />

z<br />

qz ( ) , 0 1. Then<br />

1<br />

z<br />

zq ( z) zq( z) z (1 2 )<br />

z<br />

1 1 .<br />

q( z) q( z) 1 z 1 (1 2 )<br />

z<br />

Thus,<br />

zq<br />

( z) zq( z)<br />

<br />

1 <br />

0.<br />

q( z) q( z)<br />

<br />

Also<br />

zq( z) zq( z) 1 z<br />

1 qz ( ) 1 <br />

q( z) q( z) 1<br />

z<br />

(1 2 ) z 1 1 (1 2 ) z<br />

<br />

.<br />

1 (1 2 ) z 1<br />

z<br />

For 0, we have<br />

zq<br />

( z) zq( z) 1 <br />

1 qz ( ) <br />

0.<br />

q( z) q( z)<br />

<br />

Therefore, qz () satisfies the conditions <strong>of</strong><br />

Theorem 2.2 in case where a 1, b 0, c 0 and<br />

d <br />

, 0 and we get the following result.


Sukhwinder Singh Billing 5<br />

Corollary 3.1. Let be a real number with<br />

zf ()<br />

z<br />

0 . If f , 0, zE<br />

, satisfies the<br />

f()<br />

z<br />

differential subordination<br />

zf ( z) zf ( z)<br />

<br />

(1 ) 1<br />

<br />

f ( z) f ( z)<br />

<br />

1 (1 2 ) z 2 (1 )<br />

z<br />

<br />

,<br />

1 z (1 z)(1 (1 2 ) z)<br />

can vary over the portion <strong>of</strong> the plane right to the<br />

curve h () 1<br />

z for the same conclusion. Thus our<br />

result extends the region <strong>of</strong> variability <strong>of</strong> this<br />

operator for the same implication and the region<br />

bounded by the dashing line and the curve is the<br />

claimed extension as shown in Fig. 1.<br />

then<br />

f<br />

* ( )<br />

.<br />

1 3<br />

Remark 3.2. For and , Corollary<br />

2 4<br />

3.1 reduces to the following result.<br />

zf ()<br />

z<br />

If f , 0, zE<br />

, satisfies the<br />

f()<br />

z<br />

condition<br />

zf ( z) zf ( z) 2 z z<br />

1 h1<br />

( z),<br />

f ( z) f ( z) 1 z (1 z)(2 z)<br />

then<br />

f * (3/ 4) .<br />

Fig. 1.<br />

Substituting the same values <strong>of</strong> and in<br />

the result <strong>of</strong> Fukui [1] stated in Theorem 1.2, we<br />

obtain the following result:<br />

If f <br />

, satisfies the condition<br />

zf ( z) zf ( z) 4<br />

1 , z E,<br />

f ( z) f ( z) 3<br />

then<br />

f * (3/ 4) .<br />

To compare both the results, we plot h ( ) 1<br />

4<br />

and the line ( z)<br />

in Fig. 1.<br />

3<br />

We see that according to the result <strong>of</strong> Fukui<br />

[1], for the starlikeness <strong>of</strong> order 3/ 4 <strong>of</strong> f()<br />

z ,<br />

zf ( z) zf ( z)<br />

the differential operator 1<br />

can<br />

f ( z) f ( z)<br />

vary in the complex plane on the right side <strong>of</strong> the<br />

4<br />

line ( z)<br />

shown with dashes in Fig. 1<br />

3<br />

whereas according to our result, the same operator<br />

Remark 3.3. When we select<br />

1 (1 2 )<br />

z<br />

qz ( ) , 0 1. Then<br />

1<br />

z<br />

zq<br />

( z) 1 z zq<br />

( z)<br />

<br />

1 , i.e. 1 0,<br />

q<br />

<br />

( z) 1 z q( z)<br />

<br />

and<br />

zq( z) 1<br />

1z<br />

1 2 qz ( ) <br />

q( z) 1<br />

z<br />

1 (1 2 ) z 1<br />

2 .<br />

1<br />

z <br />

Therefore for 0 <br />

1, we have<br />

zq( z) 1<br />

<br />

1 2 qz ( ) <br />

0.<br />

q()<br />

z


6 Variability <strong>of</strong> Some Differential Operators Implying Starlikeness<br />

Therefore, qz () satisfies the conditions <strong>of</strong><br />

Theorem 2.2 for a 1 , b ,<br />

c and<br />

d 0 and we obtain the following result.<br />

Corollary 3.2. Let be a real number<br />

zf ()<br />

z<br />

0<br />

1. If f , 0,<br />

z E , satisfies<br />

f(<br />

z)<br />

the differential subordination<br />

zf ( z) zf ( z)<br />

<br />

1<br />

<br />

f ( z) f ( z)<br />

<br />

1 (1 2 ) z 1 (1 2 )<br />

z<br />

1<br />

<br />

1z<br />

<br />

1z<br />

2 (1 )<br />

z <br />

<br />

,<br />

(1 z)[1 (1 2 ) z]<br />

<br />

then<br />

f * (1/ 2) .<br />

then<br />

f<br />

* ( )<br />

.<br />

Fig 2.<br />

Note that for 1 and 0 in above<br />

corollary, we get Theorem 1 <strong>of</strong> Nunokawa et al<br />

[8].<br />

Remark 3.4. For 1 and<br />

reduces to the following result.<br />

1<br />

, Corollary 3.2<br />

2<br />

zf ()<br />

z<br />

f , 0,<br />

z E , satisfying the condition<br />

f(<br />

z)<br />

zf ( z) zf ( z)<br />

<br />

1<br />

<br />

f ( z) f ( z)<br />

<br />

1<br />

z<br />

h z f <br />

2<br />

(1 z)<br />

*<br />

2( ), (1/ 2).<br />

Substituting the same values <strong>of</strong> and in<br />

the result <strong>of</strong> Ravichandran [10] stated in Theorem<br />

1.6, we obtain the following result.<br />

If f <br />

, satisfies the condition<br />

zf ( z) zf ( z)<br />

<br />

1 0, z E,<br />

f ( z) f (<br />

z)<br />

<br />

To compare both the results, we plot h ( E)<br />

in 2<br />

Fig. 2 and we see that according to the result <strong>of</strong><br />

Ravichandran, for the starlikeness <strong>of</strong> order 1/ 2 <strong>of</strong><br />

f()<br />

z , the differential operator<br />

zf ( z ) ( )<br />

1<br />

zf z <br />

can vary in the right half<br />

f ( z) f ( z)<br />

<br />

complex plane whereas according to our result, the<br />

same operator can vary over the portion <strong>of</strong> the<br />

plane bounded by the curve h () 2<br />

z (entire shaded<br />

regiom) for the same conclusion. Thus shaded<br />

portion in the left half plane as shown in Fig. 2, is<br />

the extension <strong>of</strong> the region <strong>of</strong> variability <strong>of</strong> this<br />

operator for the same implication.<br />

1<br />

Remark 3.5. When we select qz () 1 z<br />

. Then<br />

zq( z) zq( z) zq( z)<br />

<br />

1 <br />

q( z) q( z) q( z) 1<br />

2<br />

2 z <br />

<br />

0,<br />

(1 z)(2 z)<br />

<br />

and


Sukhwinder Singh Billing 7<br />

zq( z) zq( z) zq( z) (1 2 q( z)) q( z)<br />

<br />

1 <br />

q( z) q( z) q( z) 1 q( z) 1<br />

<br />

2<br />

5 zz<br />

<br />

<br />

0.<br />

(1 z)(2 z)<br />

<br />

region <strong>of</strong> variability <strong>of</strong> this operator for the same<br />

implication.<br />

Therefore, qz () satisfies the conditions <strong>of</strong><br />

1<br />

Theorem 2.3 for 1 and and we obtain<br />

2<br />

the following result:<br />

zf ()<br />

z<br />

Corollary 3.3. If f , 0, z E ,<br />

f()<br />

z<br />

satisfies the differential subordination<br />

2<br />

zf ( z) zf ( z) 2 z z<br />

1 1 h<br />

2 3( z),<br />

f ( z) f ( z) (1 z)<br />

zf ( z) 1<br />

then<br />

, z E, i.e.<br />

f ( z) 1<br />

z<br />

f * (1/ 2) .<br />

1<br />

Remark 3.6. When we replace 1 and ,<br />

2<br />

Theorem 1.7 <strong>of</strong> Singh et al [11], we obtain the<br />

following result.<br />

If f <br />

, satisfies the condition<br />

zf ( z) zf ( z)<br />

<br />

1 1 0, z E,<br />

f ( z) f (<br />

z)<br />

<br />

then<br />

f * (1/ 2) .<br />

To compare this result with Corollary 3.3, we<br />

plot h (E) 3<br />

in Fig. 3 and we see that according to<br />

the result <strong>of</strong> Singh et al [11], for the starlikeness <strong>of</strong><br />

order 1/ 2 <strong>of</strong> f()<br />

z , the differential operator<br />

zf ( z) zf ( z)<br />

<br />

1<br />

1<br />

can vary in the right<br />

f ( z) f ( z)<br />

<br />

half complex plane whereas according to the result<br />

in Corollary 3.3, the same operator can vary over<br />

the portion <strong>of</strong> the plane bounded by the curve<br />

h () 3<br />

z (whole shaded region) for the same<br />

conclusion. Thus shaded portion in the left half<br />

plane as shown in Fig. 3, is the extension <strong>of</strong> the<br />

Fig. 3.<br />

4. REFERENCES<br />

1. Fukui, S. On -convex functions <strong>of</strong> order β.<br />

Internat. J. Math. & Math. Sci. 20 (4): 769–772<br />

(1997).<br />

2. Lewandowski, Z., S.S. Miller & E. Zlotkiewicz.<br />

Generating functions for some classes <strong>of</strong> univalent<br />

functions. Proc. Amer. Math. Soc. 56: 111–117<br />

(1976).<br />

3. Li, J.-L. & S. Owa. Sufficient conditions for<br />

starlikeness, Indian J. Pure Appl. Math. 33: 313–<br />

318 (2002).<br />

4. Miller, S.S., P.T. Mocanu & M.O. Reade. All -<br />

convex functions are univalent and starlike. Proc.<br />

Amer. Math. Soc. 37: 553–554 (1973).<br />

5. Miller, S.S., P.T. Mocanu, & M.O. Reade.<br />

Bazilevic functions and generalized convexity.<br />

Rev. Roumaine Math. Pures Appl. 19: 213–224<br />

(1974).<br />

6. Miller, S.S. & P.T. Mocanu. Differential<br />

Suordinations: Theory and Applications. Series on<br />

Monographs and Textbooks in Pure and Applied<br />

Mathematics (No. 225). Marcel Dekker, New York<br />

(2000).<br />

7. Mocanu, P.T. Alpha-convex integral operators and<br />

strongly starlike functions. Studia Univ. Babes-<br />

Bolyai Math. 34 (2): 18–24 (1989).<br />

8. Nunokawa, M., N.E. Cho, O.S. Kwon, S. Owa, &<br />

S. Saitoh. Differential inequalities for certain<br />

analytic functions. Compt. Math. Appl. 56: 2908–<br />

2914 (2008).


8 Variability <strong>of</strong> Some Differential Operators Implying Starlikeness<br />

9. Padmanabhan, K.S. On sufficient conditions for<br />

starlikeness. Indian J. Pure Appl. Math. 32 (4):<br />

543–550 (2001).<br />

10. Ravichandran, V., C. Selvaraj & R. Rajalakshmi.<br />

Sufficient conditions for starlike functions <strong>of</strong> order<br />

. J. Inequal. Pure and Appl. Math. 3 (5): Art. 81:<br />

1–6 (2002).<br />

11. Singh, S., S. Gupta, & S. Singh. Starlikeness <strong>of</strong><br />

analytic maps satisfying a differential inequality.<br />

General Mathematics 18 (3): 51–58 (2010).


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 9-17 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

Some New s-Hermite-Hadamard Type Inequalities for<br />

Differentiable Functions and Their Applications<br />

Muhammad Muddassar*, Muhammad I. Bhatti and Muhammad Iqbal<br />

Department <strong>of</strong> Mathematics, University <strong>of</strong> Engineering & Technology,<br />

Lahore, <strong>Pakistan</strong><br />

Abstract: In this paper, we establish several inequalities for some differentiable mappings that are<br />

connected with the celebrate Hermit - Hadamard integral inequality for s-convex functions. Also a parallel<br />

development is made base on concavity. Applications to some special means <strong>of</strong> real numbers are found.<br />

Also applications to numerical integration are provided.<br />

Keywords and Phrases: Hermite-Hadamard type inequality, s-Convex function, p-logarithmic mean,<br />

H lder’s inequality, Trapezoidal formula, special means.<br />

(AMS SUBJECT CLASSFICATION: 26D15, 39A10 and 26A51)<br />

1. INTRODUCTION<br />

Let a function defined as<br />

is<br />

said to be convex if the following inequality holds<br />

For all x, y and t [0, 1]. Geometrically,<br />

this means that if P, Q and R are three distinct<br />

points on graph <strong>of</strong> f(x) with Q between P and R,<br />

Then Q is on or below chord PR. There are many<br />

result associated with convex function in the area<br />

<strong>of</strong> inequalities, but one <strong>of</strong> those is the classical<br />

Hermite Hadamard inequality.<br />

for .<br />

(1.1)<br />

Hudzik and Maligranda [3] considered, among<br />

others, the class <strong>of</strong> functions which are s-convex<br />

in the second sense. This is defining as follows.<br />

A function is said to be s-<br />

convex in the second sense if<br />

_____________________<br />

(1.2)<br />

Received, December 2010; Accepted, March <strong>2012</strong><br />

*Corresponding author: Muhammad Muddassar; Email: malik.muddassar@gmail.com<br />

holds for all<br />

and for some<br />

fixed s that every 1-<br />

convex function is convex. In the same Paper [3]<br />

H. Hudzik and L. Maligranda discussed a few<br />

result connecting with s-convex function in second<br />

sense and some new result about Hadamard<br />

inequality for s-convex function is discussed in [2,<br />

7]. On the hand, there are many important<br />

inequalities connecting with 1-convex (Convex)<br />

function [2], but one <strong>of</strong> these is (1.1).<br />

Dragomir et al [7], proved a variant <strong>of</strong> Hermit-<br />

Hadamard inequality for s-convex function in<br />

second sense.<br />

Theorem 1. Suppose that is s-<br />

convex function in the second sense. Where<br />

and let<br />

then the following inequality holds.<br />

(1.3)<br />

The constant is the best possible in<br />

the second inequality in (1.3). The inequality in<br />

(1.3) becomes reverse when the function is


10 Muhammad Muddassar et al<br />

concave. The result in (1.3) was improved by<br />

Jagers [4] who gave both the upper and lower<br />

bounds for the constant c(s) in the inequality<br />

2. MAIN RESULTS<br />

Theorem 2. Let<br />

be differentiable<br />

function on , with If<br />

if the mapping is s-convex on<br />

[a, b], then<br />

He proved that<br />

Dragomir et al [2] discussed inequality for<br />

differentiable and twice differentiable function<br />

connecting with the Hermite – Hadamard (H-H)<br />

Inequality in the basis <strong>of</strong> the following Lemmas.<br />

Pro<strong>of</strong>. From Lemma 1,<br />

(2.6)<br />

Lemma 1. Let<br />

be differentiable<br />

function on (interior <strong>of</strong> ,<br />

(1.4)<br />

Dragomir and Agarwal [1] established the<br />

following result connected with the right part <strong>of</strong><br />

(1.4) as well as to apply them for some elementary<br />

inequalities for real numbers and numerical<br />

integration.<br />

Where<br />

is s-convex on [a, b] for t<br />

(2.7)<br />

Lemma 2. Let<br />

be differentiable<br />

function on , with If<br />

By (2.8) and (2.7), we get (2.6).<br />

(2.8)<br />

(1.5)<br />

This paper is organized as follows: after<br />

Introduction, we discuss some new s-Hermite<br />

Hadamard type inequalities for differentiable<br />

function in section 2, and in section 3 we<br />

give some applications <strong>of</strong> the results from section<br />

2 for some special means <strong>of</strong> real numbers. In<br />

section 4, we give some application, to trapezoidal<br />

formula.<br />

Theorem 3. Let the assumptions <strong>of</strong> Theorem 2 are<br />

satisfied with p > 1 such that . If the<br />

mapping<br />

is concave on [a, b] then,<br />

. (2.9)<br />

Pro<strong>of</strong>. From Lemma 1,


Inequalities for Differentiable Functions 11<br />

(2.10)<br />

And<br />

By applying H lder’s inequality on right side <strong>of</strong><br />

(2.10). We have;<br />

(2.17)<br />

Here<br />

(2.11)<br />

(2.12)<br />

By (2.16) and (2.17), we get (2.14).<br />

Corollary 5. From theorem 4, the assumptions <strong>of</strong><br />

theorem 2 are satisfied with p > 1 such that<br />

. If the mapping is -convex<br />

on<br />

then<br />

Since is concave, by applying Jensen’s<br />

Integral Inequality on the second integral <strong>of</strong><br />

R.H.S. <strong>of</strong> (2.11). We have<br />

By (2.10), (2.12) and (2.13).We get (2.14).<br />

(2.13)<br />

Theorem 4. Let the assumptions <strong>of</strong> theorem 2 are<br />

satisfied with p > 1 such that . If the<br />

mapping is -convex on then<br />

Pro<strong>of</strong>. The above inequality is obtained by using<br />

the fact<br />

for ) with<br />

Theorem 6. Let the assumptions <strong>of</strong> theorem 2 are<br />

satisfied with p > 1 such that . If the<br />

mapping is s-concave on then<br />

Pro<strong>of</strong>. From Lemma 1,<br />

(2.14)<br />

(2.15)<br />

(2.18)<br />

Pro<strong>of</strong>. We proceed similarly as in theorem 4.<br />

By <strong>of</strong> we obtain<br />

. (2.19)<br />

Now (2.18) immediately follows from theorem 1.<br />

By applying H lder’s inequality on right side <strong>of</strong><br />

(2.15). We get<br />

Theorem 7. Let the assumptions <strong>of</strong> theorem 4 are<br />

satisfied, we have another result:<br />

(2.16)<br />

Since is s-convex on [a, b] for t , then<br />

(2.20)


12 Muhammad Muddassar et al<br />

Pro<strong>of</strong>. From Lemma 1,<br />

Pro<strong>of</strong>. The pro<strong>of</strong> is similar to that <strong>of</strong> corollary 5.<br />

(2.21)<br />

By applying H lder’s inequality on (2.21) for q ><br />

1, we have<br />

Theorem 9. Let the assumptions <strong>of</strong> theorem 2 are<br />

satisfied with p > 1 such that . If the<br />

mapping<br />

is s-concave on [a, b], then<br />

(2.22)<br />

By s-convexity <strong>of</strong> on [a, b] for all .<br />

(2.22) can be written as:<br />

Pro<strong>of</strong>. We proceed similarly as in theorem 6.<br />

By <strong>of</strong> we obtain<br />

(2.25)<br />

(2.26)<br />

Now (2.25) immediately follows from theorem 1.<br />

Here,<br />

(2.23)<br />

Theorem 10. Let the assumptions <strong>of</strong> theorem 2<br />

are satisfied, then<br />

(2.24)<br />

By (2.23) and (2.24) in (2.21), we get (2.20).<br />

Pro<strong>of</strong>. From Lemma 2.<br />

(2.27)<br />

Corollary 8. From theorem 7, the assumptions <strong>of</strong><br />

theorem 4 are satisfied with p > 1 such that<br />

. If the mapping is -convex on<br />

then


Inequalities for Differentiable Functions 13<br />

(2.32)<br />

(2.28)<br />

By applying H lder Inequality in (2.32), we have<br />

By using s-convexity <strong>of</strong> on [a, b] for all<br />

on right side <strong>of</strong> (2.28), we have<br />

(2.33)<br />

(2.29)<br />

But<br />

But<br />

(2.30)<br />

By (2.29) and (2.30) we get (2.27).<br />

Theorem 11. Let the assumptions <strong>of</strong> Theorem 2<br />

are satisfied. Furthermore, if the mapping is<br />

concave on [a, b] for q > 1, then<br />

(2.34)<br />

Since is concave on [a, b] so by using<br />

Jensen’s Integral Inequality on first integral in<br />

R.H.S., we have<br />

Pro<strong>of</strong>. From Lemma 2, we have<br />

(2.31)<br />

= (2.35)<br />

Hence (2.33), (2.34) and (2.35) together imply<br />

(2.31).<br />

Theorem 12. Let the assumptions <strong>of</strong> Theorem 2<br />

are satisfied. Furthermore, if the mapping is<br />

s-convex on [a, b] for then


14 Muhammad Muddassar et al<br />

And<br />

(2.41)<br />

Pro<strong>of</strong>. From Lemma 2, we have<br />

By (2.39), (2.40) and (2.41), we have (2.36).<br />

Corollary 13. From theorem 12, Let the<br />

assumptions <strong>of</strong> Theorem 2 are satisfied.<br />

Furthermore, if the mapping is s-convex on<br />

[a, b] for then<br />

Pro<strong>of</strong>. The pro<strong>of</strong> is similar to that <strong>of</strong> corollary 5.<br />

By applying H lder Inequality, (2.37) becomes<br />

(2.37)<br />

Theorem 14. Let the assumptions <strong>of</strong> Theorem 2<br />

are satisfied. Furthermore, if the mapping is<br />

s-concave on for then<br />

By s-convexity <strong>of</strong> on for<br />

we have<br />

(2.38)<br />

(2.42)<br />

Pro<strong>of</strong>. We proceed in a similar way as in theorem<br />

10.<br />

By s-concavity <strong>of</strong> | f’ | q we obtain<br />

(2.43)<br />

Now (2.42) immediately follows from Theorem 1.<br />

But<br />

(2.39)<br />

Theorem 15. Let<br />

be differentiable<br />

function <strong>of</strong> , a, b, with a < b, and<br />

if the mapping is s-convex on<br />

then<br />

(2.40)


Inequalities for Differentiable Functions 15<br />

By solving (2.48), we have<br />

Pro<strong>of</strong>. From Lemma 2, we have<br />

(2.44)<br />

(2.49)<br />

Relations (2.46), (2.47), and (2.49) together imply<br />

(2.44).<br />

Corollary 16. From theorem 15, Let<br />

be differentiable function <strong>of</strong> , a, b, with a<br />

< b, and if the mapping is s-<br />

convex on for then<br />

(2.45)<br />

By applying H lder inequality on (2.45), we<br />

follow as<br />

Pro<strong>of</strong>. The pro<strong>of</strong> is similar to that <strong>of</strong> corollary 5.<br />

Theorem 17. Let<br />

be differentiable<br />

function on , a , b with a < b, and<br />

If the mapping is s-concave<br />

on for then<br />

Here<br />

And<br />

(2.46)<br />

(2.47)<br />

(2.50)<br />

Pro<strong>of</strong>. We proceed in a similar way as in theorem<br />

12.<br />

By<br />

, we obtain<br />

Since<br />

(2.48)<br />

(2.51)<br />

Now (2.50) immediately follows from theorem 1.


16 Muhammad Muddassar et al<br />

3. APPLICATION TO SOME SPECIAL<br />

MEANS<br />

Let us recall the following means for any two<br />

positive numbers a and b.<br />

(1) The Arithmetic mean<br />

(2) The Harmonic mean<br />

(3) The p- Logarithmic mean<br />

Proposition 2. Let p > 1, 0 < a < b and q ,<br />

then<br />

Pro<strong>of</strong>. Following by Theorem 12, setting<br />

for<br />

Another result which is connected with p-<br />

Logarithmic mean is the following one.<br />

Proposition 3. Let p > 1, 0 < a < b and ,<br />

then<br />

(4). The Identric mean<br />

Pro<strong>of</strong>. Following by Theorem 15, setting<br />

and for<br />

(5). The Logarithmic mean<br />

The following inequality is well known in the<br />

literature in [3]:<br />

It is also known that<br />

over<br />

.<br />

monotonically increasing<br />

Now here we find some new applications for<br />

special means <strong>of</strong> real numbers by using the results<br />

<strong>of</strong> Section 2.<br />

Proposition 1. Let p > 1, 0 < a < b and .<br />

Then one has the inequality.<br />

(3.52)<br />

Pro<strong>of</strong>. By theorem 10 applied for the mapping<br />

for we have the above inequality<br />

(3.52).<br />

4. APPLICATION TO QUADRATURE<br />

FORMULAE<br />

Let be a division<br />

<strong>of</strong> the interval [a, b] and<br />

consider the quadrature formula<br />

where, for the trapezoidal version<br />

and the connected error term<br />

trapezoidal version<br />

is<br />

(4.53)<br />

for the<br />

Proposition 4. Let be<br />

differentiable function on such that<br />

, where with s-<br />

convex on [a, b], for every division D <strong>of</strong> [a, b], the<br />

trapezoidal error estimate satisfies<br />

(4.54)


Inequalities for Differentiable Functions 17<br />

Where<br />

Pro<strong>of</strong>. On applying Corollary 8 on the subinterval<br />

[ ] <strong>of</strong> the division D <strong>of</strong> [a, b] for<br />

, we have<br />

(4.55)<br />

Taking sum over from . And using<br />

s- convexity <strong>of</strong> , we get,<br />

Using (4.55) and (4.56), we get (4.54).<br />

(4.56)<br />

Proposition 5. Let<br />

be differentiable<br />

function on such that , where<br />

with s- convex on [a, b]<br />

, for every division D <strong>of</strong> [a, b], the trapezoidal<br />

error estimate satisfies<br />

Where<br />

Pro<strong>of</strong>. The pro<strong>of</strong> is similar to that <strong>of</strong> Proposition 4<br />

and using Corollary 16.<br />

5. CONCLUSIONS<br />

By selecting some other convex function, and<br />

applying the results given in section 2, we can find<br />

out some new relations connecting to some special<br />

means. For example, choosing different convex<br />

function like and<br />

for different values <strong>of</strong> s<br />

from (0, 1] in s-convexity (concavity), we get new<br />

relation relating to some special means.<br />

6. REFERENCES<br />

1. Dragomir, S.S. & R.P. Agarwal. Two inequalities<br />

for differentiable mappings and applications to<br />

special means <strong>of</strong> real numbers and trapezoidal<br />

formula. Applied Mathematics Letter 11 (5): 91–95<br />

(1998).<br />

2. Dragomir, S.S. & C.E.M. Pierce. Selected Topics<br />

on Hermite-Hadamard Inequalities and<br />

Applications. RGMIA, Monographs, Victoria<br />

University. (online: http://ajmaa.org/ RGMIA/<br />

monographs.php/) (2000).<br />

3. Hudzik, H. & L. Maligranda. Some remarks on s-<br />

convex functions. Aequationes Mathematicae 48:<br />

100–111 (1994).<br />

4. Jagers, B. On a hadamard-type inequality for s-<br />

convex functions. http://wwwhome.cs.utwente.nl/<br />

jagersaa/alphaframes/Alpha.pdf.<br />

5. Kavurmaci, H., M. Avci & M.E. Özdemir. New<br />

inequalities <strong>of</strong> Hermite-Hadamard type for convex<br />

functions with applications. Journal <strong>of</strong> Inequalities<br />

and Applications, Art No. 86 doi:10.1186/ 1029-<br />

242X-2011-86 (2011).<br />

6. Kurmaci, U.S. Inequalities for differentiable<br />

mappings and applications to special means <strong>of</strong> real<br />

numbers and to midpoint formula. Applied<br />

Mathematics Computation 147 (1): 137–146<br />

(2004).<br />

7. Kurmaci , U.S. & M.E. Özdemir. On some<br />

inequalities for differentiable mappings and<br />

applications to special means <strong>of</strong> real numbers and<br />

to midpoint formula. Applied Mathematics<br />

Computation 153 (2): 361–368 (2004).<br />

8. Avci, M., H. Kavurmaci & M.E. Özdemir. New<br />

inequalities <strong>of</strong> Hermite–Hadamard type via s-<br />

convex functions in the second sense with<br />

applications. Applied Mathematics Computation<br />

217 (12): 5171–5176 (2011).<br />

9. Pearce, C.E.M. & J. Pěcarić. Inequalities for<br />

differentiable mappings with application to special<br />

means and quadrature formulae. Applied<br />

Mathematics Letter 13 (2): 51–55 (2000).<br />

10. Pěcarić, J., F. Proschan & Y.L. Tong. Convex<br />

Functions, Partial Ordering and Statistical<br />

Applications. Academic Press, New York (1991).


18 Muhammad Muddassar et al


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 19-23 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

Supra β-connectedness on Topological Spaces<br />

O.R. Sayed*<br />

Department <strong>of</strong> Mathematics, Faculty <strong>of</strong> Science,<br />

Assiut University, Assiut 71516, Egypt<br />

Abstract. In this paper, supra β-connectedness are researched by means <strong>of</strong> a supra β- separated sets.<br />

Keywords and Phrases: Supra β -separated, supra β -connectedness and supra topological space.<br />

2000 Mathematics Subject Classification: 54D05.<br />

1. INTRODUCTION<br />

Some types <strong>of</strong> sets play an important role in the<br />

study <strong>of</strong> various properties in topological spaces.<br />

Many authors introduced and studied various<br />

generalized properties and conditions containing<br />

some forms <strong>of</strong> sets in topological spaces. In 1983,<br />

Mashhour et al [2] developed the supra topological<br />

spaces and studied S-continuous maps and<br />

S * −continuous maps. We will use the term supracontinuous<br />

maps instead <strong>of</strong> S-continuous maps. In<br />

2008, Devi et al [1] introduced and studied a class<br />

<strong>of</strong> sets and maps between topological spaces<br />

called supra α−open sets and supra α−continuous<br />

maps, respectively. In 2010, Sayed and Noiri [4]<br />

introduced the concepts <strong>of</strong> supra b-open sets, supra<br />

b-continuity, supra b-open maps and supra b-<br />

closed maps and studied some <strong>of</strong> their properties.<br />

In [3] the concepts <strong>of</strong> supra β-open sets, supra β-<br />

continuity, supra β-open maps and supra β-closed<br />

maps were introduced and some <strong>of</strong> their properties<br />

were investigated. The purpose <strong>of</strong> this paper is to<br />

introduce the concept <strong>of</strong> supra β-connectedness<br />

based on supra β-separated sets. We prove that<br />

supra β-connectedness is preserved by supra β-<br />

continuous bijections.<br />

Throughout this paper, (X, τ ) , (Y, σ) and (Z,<br />

υ) (or simply, X , Y and Z) denote topological<br />

spaces on which no separation axioms are<br />

assumed unless explicitly stated. All sets are<br />

assumed to be subsets <strong>of</strong> topological spaces. The<br />

closure and the interior <strong>of</strong> a set A are denoted by<br />

_____________________<br />

Cl(A) and Int(A), respectively. A sub collection μ<br />

2 X is called a supra topology [2] on X if X μ<br />

and μ is closed under arbitrary union. (X, μ) is<br />

called supra topological space. The elements <strong>of</strong> μ<br />

are said to be supra open in (X, μ) and the<br />

complement <strong>of</strong> a supra open set is called supra<br />

closed. The supra closure <strong>of</strong> a set A, denoted by<br />

Cl μ (A), is the intersection <strong>of</strong> supra closed sets<br />

including A. The supra interior <strong>of</strong> a set A, denoted<br />

by Int μ (A), is the union <strong>of</strong> supra open sets included<br />

in A. The supra topology μ on X is associated<br />

with the topology τ if τ μ. A set A is supra β-<br />

open [3] if A Cl μ (Int μ (Cl μ (A))). The complement<br />

<strong>of</strong> a supra β-open set is called supra β-closed. Thus<br />

A is supra β-closed if and only if<br />

Intμ(Clμ(Intμ(A))) A. The supra β-closure <strong>of</strong> a set<br />

<br />

A [3], denoted by Cl (A), is the intersection <strong>of</strong> the<br />

supra β-closed sets including A. The supra β-<br />

<br />

interior <strong>of</strong> a set A [3],denoted by Int (A), is the<br />

union <strong>of</strong> the supra β-open sets included in A. Let<br />

(X, τ ) and (Y, σ) be two topological spaces and μ<br />

be an associated supra topology with τ . A map f :<br />

X → Y is called a supra β-continuous map [3] if<br />

the inverse image <strong>of</strong> each open set in Y is a supra<br />

β-open set in X.<br />

The following theorem was given by Ravi et<br />

al [3]:<br />

Theorem 1.1. Let (X, τ ) and (Y, σ) be two<br />

topological spaces and μ be an associated supra<br />

<br />

Received, June 2011; Accepted, March <strong>2012</strong><br />

*Email: o_r_sayed@yahoo.com


20 O.R. Sayed<br />

topology with τ . Let f be a map from X into Y.<br />

Then the following are equivalent:<br />

(1) f is a supra β-continuous map;<br />

(2) The inverse image <strong>of</strong> each closed set in Y is<br />

a supra β-closed set in X;<br />

(3) f -1 (A)) f -1 (Cl(A)) for every set A in Y;<br />

(4) f( A)) Cl(f(A)) for every set A in X;<br />

(5) f -1 (Int(B)) (f -1 (B)) for every B in Y .<br />

2. SUPRA -SEPARATED SETS<br />

In this section, we shall research supra β-separated<br />

sets in topological spaces.<br />

Definition 2.1. Let (X, τ ) be a topological space<br />

and A,B be two non-empty subsets <strong>of</strong> X. Then A<br />

and B are said to be supra β-separated if A ∩<br />

B) = ϕ and A) ∩ B = ϕ.<br />

The following result is immediate from the<br />

above definition:<br />

Theorem 2.1. Let C and D are two non-empty<br />

subsets <strong>of</strong> the supra β- separated sets A and B,<br />

respectively. Then C and D are also supra β-<br />

separated in X.<br />

Theorem 2.2. Let A,B be two non-empty subsets <strong>of</strong><br />

X such that A ∩ B = ϕ and A,B are either they<br />

both are supra β-open or they both are supra β-<br />

closed. Then A and B are supra β-separated.<br />

Pro<strong>of</strong>. If both A and B are supra β-closed sets and<br />

A ∩ B = ϕ, then A and B are supra β-separated. Let<br />

A and B be supra β-open and A ∩ B = ϕ. Then A<br />

X −B. So A) X − B) = X – (B) =<br />

X − B. Hence<br />

A) ∩ B = ϕ. Similarly, A ∩<br />

B) = ϕ. Thus A and B are supra β- separated.<br />

Theorem 2.3. Suppose that A and B are two nonempty<br />

subsets <strong>of</strong> X such that either they both are<br />

supra β-open or they both are supra β-closed. If C<br />

= A∩(X−B) and D = B∩(X−A),then C and D are<br />

supra β-separated, provided they are non-empty.<br />

Pro<strong>of</strong>. First suppose A and B are both supra β-<br />

open. Now, D = B ∩ (X − A) implies D X − A.<br />

Then D) X − A) = X – (A) = X −<br />

A. Hence A ∩ D) = ϕ. Therefore C ∩ D)<br />

= ϕ. Similarly, C) ∩D = ϕ. Thus C and D are<br />

supra β- separated.<br />

Next, suppose that A and B are both supra β-<br />

closed sets. Then C = A ∩ (X − B), implies C A.<br />

Hence C) A) = A. Therefore C) ∩<br />

D = ϕ. Similarly, C) ∩ D = ϕ. Thus C and D<br />

are supra β- separated.<br />

Theorem 2.4. Two non-empty subsets A and B <strong>of</strong><br />

X are supra β- separated if and only if there exists<br />

two supra β-open sets U and V such that A U, B<br />

V, A ∩ V = ϕ, B ∩ U = ϕ.<br />

Pro<strong>of</strong>. Suppose that A and B are two supra β-<br />

separated. Now, A ∩ B) = ϕ and A) ∩ B<br />

= ϕ. Then A X − B) = U (say); and B X −<br />

A) = V (say). Since both A) and B)<br />

are supra β-closed, then both U and V are supra β-<br />

open. Therefore A (A) = X − V and B <br />

B) = X − U. Hence A ∩ V = ϕ and B ∩ U = ϕ.<br />

Conversely, let U and V be supra β-open such<br />

that A U, B V, A ∩ V = ϕ and B ∩ U = ϕ.<br />

Then X − U and X − V are supra β-closed. Also,<br />

A ∩ V = ϕ implies A X − V. Thus A)<br />

X −V ) = X −V. Hence A) ∩ V = ϕ.<br />

Similarly, U ∩<br />

supra β-separated.<br />

B) = ϕ. Thus A and B are<br />

3. SUPRA -CONNECTEDNESS<br />

In this section, we research supra β-connectedness<br />

by means <strong>of</strong> supra β-separated.<br />

Definition 3.1. A subset A <strong>of</strong> X is supra β-<br />

connected if it can't be represented as a union <strong>of</strong><br />

two non-empty supra β-separated sets. When A =<br />

X is supra β-connected, then X is called supra β-<br />

connected space.<br />

Theorem 3.1. A non-empty subset C <strong>of</strong> X is supra<br />

β-connected if and only if for every pair <strong>of</strong> supra<br />

β-separated sets A and B in X with C AB,<br />

exactly one <strong>of</strong> the following possibilities holds:<br />

(a) C A and C ∩ B = ϕ,<br />

(b) C B and C ∩ A = ϕ.


Supra β-connectedness on Topological Spaces 21<br />

Pro<strong>of</strong>. Let C be supra β-connected. Since C A <br />

B, then both C ∩ A = ϕ and C ∩ B = ϕcan not<br />

hold simultaneously. If C ∩ A ϕ and C ∩ B ϕ,<br />

then by Theorem 2.1 they are also supra β-<br />

separated and C = (C ∩ A) (C ∩ B) which goes<br />

against the supra β-connectedness <strong>of</strong> C. Now, if<br />

C ∩ A = ϕ, then C B, while C A holds if<br />

C ∩ B = ϕ.<br />

Conversely, suppose that the given condition<br />

holds. Assume by contrary that C is not supra β-<br />

connected. Then there exist two non-empty supra<br />

β-separated sets A and B in X such that C = A B.<br />

By hypothesis, either C ∩ A = ϕ or C ∩ B = ϕ. So,<br />

either A = ϕ or B = ϕ, none <strong>of</strong> which is true. Thus<br />

C is supra β-connected.<br />

Theorem 3.2. The following are equivalent:<br />

(1) A space X is not supra β-connected.<br />

(2) There exist two non-empty supra β-closed<br />

sets A and B such that A B = X and A∩B<br />

= ϕ.<br />

(3) There exist two non-empty supra β-open sets<br />

A and B such that A B = X and A∩B = ϕ.<br />

Pro<strong>of</strong>. (1) (2): Suppose that X is not supra β-<br />

connected. Then there exist two non-empty<br />

subsets A and B such that Cl μ β(A) ∩ B = A ∩<br />

Cl μ β(B) = ϕ and A B = X. It follows that A)<br />

= A) ∩ (AB) = ( A) ∩ A) ( A) ∩ B)<br />

= Aϕ = A. Hence A is supra β-closed set.<br />

Similarly, B is supra β-closed. Thus (2) is held.(2)<br />

(3) and (2) (1): Obvious.<br />

Corollary 3.1. The following are equivalent:<br />

(1) A space X is supra β-connected.<br />

(2) If A and B are supra β-open sets, A B = X<br />

and A ∩ B = ϕ, then ϕ {A,B}.<br />

(3) If A and B are supra β-closed sets, A B =<br />

X and A ∩ B = ϕ, then ϕ {A,B}.<br />

Theorem 3.3. For a subset G <strong>of</strong> X, the following<br />

conditions are equivalent:<br />

(1) G is supra β-connected.<br />

(2) There does not exist two supra β-closed sets<br />

A and B such that A∩G ϕ, B ∩G ϕ,G <br />

A B and A ∩ B ∩ G = ϕ.<br />

(3) There does not exist two supra β-closed sets<br />

A and B such that G A, G B, G A B<br />

and A ∩ B ∩ G = ϕ.<br />

Pro<strong>of</strong>. (1) (2): Suppose that G is supra β-<br />

connected and there exist two supra β-closed sets<br />

A and B such that A ∩ G ϕ, B ∩ G ϕ, G A <br />

B and A ∩ B ∩ G = ϕ. Then (A ∩ G) ( B ∩ G) =<br />

(A B) ∩ G = G. Also, A ∩ G) ∩ ( B ∩ G) <br />

A) ∩ (B ∩G) = A∩B ∩G = ϕ. Similarly,<br />

(A∩G)∩ B ∩G) = ϕ. This shows that G is not<br />

supra β-connected, which is a contradiction.<br />

(2) (3): Suppose by opposite that there exist<br />

two supra β-closed sets A and B such that G A,<br />

G B, G A B and A ∩ B ∩ G = ϕ. Then A ∩<br />

G ϕ and B ∩ G ϕ. This is a contradiction.<br />

(3) (1): Suppose that (3) is satisfied and G is<br />

not supra β-connected. Then there exist two nonempty<br />

supra β-separated sets C and D such that G<br />

= C D. Thus C) ∩ D =C ∩ D) = ϕ.<br />

Assume that<br />

A = C) and B = D). Hence G A B<br />

and C) ∩ D) ∩ (C D) = ( C) ∩<br />

D) ∩ C) ( C) ∩ D) ∩ D) =<br />

( D)∩C) ( C)∩D) = ϕ ϕ = ϕ. Now we<br />

prove that G A and G B. In fact, if G A,<br />

then D) ∩ G = B ∩ G = B ∩ (G ∩ A) = ϕ, a<br />

contradiction. Thus G A. Analogously we have<br />

G B. This contradicts (3). Therefore G is supra<br />

β-connected.<br />

Corollary 3.2. A space X is supra β-connected if<br />

and only if there does not exist two non-empty<br />

supra β-closed sets A and B such that A B = X<br />

and A ∩ B = ϕ.<br />

Theorem 3.4. For a subset G <strong>of</strong> X, the following<br />

conditions are equivalent:<br />

(1) G is supra β-connected.<br />

(2) For any two supra β-separated sets A and B<br />

with G A B, we have G ∩ A = ϕ or G ∩<br />

B = ϕ.<br />

(3) For any two supra β-separated sets A and B<br />

with G A B, we have G A or G B.


22 O.R. Sayed<br />

Pro<strong>of</strong>. (1) (2): Suppose that A and B are supra<br />

β-separated and G A B. Then by Theorem 2.1<br />

we have G ∩ A and G ∩ B are also supra β-<br />

separated. Since G is supra β-connected and G = G<br />

∩ (A B) = (G ∩ A) (G ∩ B), then G ∩ A = ϕ<br />

or G ∩ B = ϕ.<br />

(2) (3): If G ∩ A = ϕ, then G = G ∩ (A B) =<br />

(G ∩ A) (G ∩ B) = G ∩ B. So, G B. Similarly,<br />

G ∩ B = ϕ implies G A.<br />

(3) (1): Suppose that A and B are supra β-<br />

separated and G = A B. Then by (3) either G A<br />

or G B.<br />

If G A, then B = B ∩ G B ∩ A B ∩ A)<br />

= ϕ. Similarly, if G B, then A = ϕ. So G can't be<br />

represented as a union <strong>of</strong> two non-empty supra β-<br />

separated sets. Therefore G is supra β-connected.<br />

Theorem 3.5. Let G be a supra β-connected<br />

subsets <strong>of</strong> X. If G H G), then H is also<br />

supra β-connected.<br />

Pro<strong>of</strong>. Suppose that H is not supra β-connected.<br />

By Theorem 3.3 there exist two supra β-closed<br />

sets A and B such that H A, H B, H A B<br />

and A∩B ∩H = ϕ. Since G H, then G A B<br />

and A ∩B ∩G = ϕ. Now we prove that G A and<br />

G B. In fact, if G A, then G) A) =<br />

A. Therefore by hypothesis H A which is a<br />

contradiction. Hence,G A. Similarly, G B. This<br />

contradicts that G is supra β-connected.<br />

Theorem 3.6. Let G and H be supra β-connected.<br />

If G and H are not supra β-separated, then G H<br />

is supra β-connected.<br />

Pro<strong>of</strong>. Suppose that G H is not supra β-<br />

connected. By Theorem 3.3 there exist two supra<br />

β-closed A and B such that G H A,G H <br />

B,G H A B and (G H)∩(A∩B) = ϕ. So,<br />

either G A or H A. Assume G A. Then G B<br />

because G is supra β-connected. Hence H B and<br />

H A. Thus A∩G A∩B∩(G∩H) = ϕ. Therefore<br />

H)∩G A)∩G =A ∩ G = ϕ. Similarly,<br />

H ∩ G) = ϕ. This shows that G and H are<br />

supra β-separated, a contradiction.<br />

Theorem 3.7. Let be a family <strong>of</strong> supra<br />

β-connected subsets <strong>of</strong> X. If there is j I such that<br />

and are not supra β-separated for each i j,<br />

then is supra β-connected.<br />

Pro<strong>of</strong>. Suppose that is not supra β-<br />

connected. Then there exist two non-empty supra<br />

β-separated subsets A and B <strong>of</strong> X such that<br />

= A B. For each i I, is supra β-connected<br />

and A B. Then by Theorem 3.1 either <br />

A and ∩ B = ϕ, or else B and ∩A = ϕ.<br />

If possible, let for some r, s I with r s, A<br />

and B. Then , being non-empty <strong>of</strong> supra<br />

β-separated sets which is not the case. Thus either<br />

A with ∩ B = ϕ for each i I or else <br />

B with ∩ A = ϕ for each i I . In the first case<br />

B = ϕ (since B ) and in the second case A<br />

= ϕ. Non <strong>of</strong> which is true. Thus is supra β-<br />

connected.<br />

Corollary 3.3. Let be a family <strong>of</strong> supra<br />

β-connected sets. If ϕ, then is<br />

supra β-connected.<br />

Theorem 3.8. A non-empty subset G <strong>of</strong> X is supra<br />

β-connected if and only if for any two elements x<br />

and y in G there exists a supra β-connected set H<br />

such that x, y H G.<br />

Pro<strong>of</strong>. The necessity is obvious. Now we prove<br />

the sufficiency. Suppose by contrary that G is not<br />

supra β-connected. Then there exist two nonempty<br />

supra β-separated P,Q in X such that G = P<br />

Q. Choose x P and y O. So, x, y G and<br />

hence by hypothesis there exists a supra β-<br />

connected set H such that x, y H G. Thus H ∩<br />

P and H ∩Q are non-empty supra β-separated sets<br />

with H = (P ∩ H) (Q ∩ H), a contradict to the<br />

supra β−connectedness <strong>of</strong> H.<br />

Theorem 3.9. If f : X → Y is a supra β-continuous<br />

surjective map and C, D are supra β-separated<br />

sets in Y, then f -1 (C), f -1 (D) are supra β-<br />

separated in X.<br />

Pro<strong>of</strong>. Since f is surjective, then f -1 (C) and f -1 (D)<br />

are non-empty sets in X. Suppose by contrary that<br />

f -1 (C) and f -1 (D) are not supra β-separated sets in<br />

X. Then f -1 (C) ∩ f -1 (D)) ϕ. Since f is a<br />

supra β-continuous map, then by Theorem 1.1 we<br />

have f -1 (C)∩ f -1 (Cl(D)) ϕ. Thus C ∩ Cl(D) ϕ.<br />

Therefore C ∩ D) ϕ. Similarly, (C) ∩D<br />

ϕ. Thus C and D are not supra β-separated in Y ,


Supra β-connectedness on Topological Spaces 23<br />

a contradiction. Hence f -1 (C) and f -1 (D) are supra<br />

β-separated in X.<br />

Theorem 3.10. If f : X→ Y is supra β-continuous<br />

bijective and A is supra β-connected in X, then<br />

f(A) is supra β-connected in Y .<br />

Pro<strong>of</strong>. Suppose by contrary that f(A) is not supra<br />

β-connected in Y . Then f(A) = C D, where C<br />

and D are two non-empty supra β-separated in Y .<br />

By Theorem 3.9, we have f -1 (C) and f -1 (D) are<br />

not supra β-separated in X. Since f is bijective,<br />

then A = f -1 (f(A)) = f -1 (C) f -1 (D).<br />

Hence A is not supra β-connected in X, a<br />

contradiction. Thus f(A) is supra β-connected in Y .<br />

REFERENCES<br />

1. Devi, R., S. Sampathkumar & M. Caldas. On supra<br />

α-open sets and sα-continuous maps. General<br />

Mathematics 16 (2): 77-84 (2008).<br />

2. Mashhour, A.S., A.A. Allam, F.S. Mahmoud &<br />

F.H. Khedr. On supra topological spaces, Indian J.<br />

Pure and Appl. Math. 14 (4): 502-510 (1983).<br />

3. Ravi, O., G. Ramkumar & M. Kamaraj. On Supra<br />

β-open Sets and Supra β-continuity on Topological<br />

Spaces. Proceedings <strong>of</strong> UGC Sponsored National<br />

Seminar on Recent Developments in Pure and<br />

Applied Mathematics, 20-21 January 2011,<br />

Sivakasi, India.<br />

4. O.R. Sayed & T. Noiri. On supra b-open sets and<br />

supra b-continuity. Eur. J. Appl. Math. 3 (2): 295-<br />

302 (2010).


24 O.R. Sayed


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1) 25-31 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

A Study on Subordination Results for Certain Subclasses <strong>of</strong><br />

Analytic Functions defined by Convolution<br />

M.K. Aouf*, A.A. Shamandy, A.O. Mostafa and A.K. Wagdy<br />

Department <strong>of</strong> Mathematics, Faculty <strong>of</strong> Science,<br />

Mansoura University, Mansoura 35516, Egypt<br />

Abstract: In this paper, we drive several interesting subordination results <strong>of</strong> certain classes <strong>of</strong> analytic<br />

functions defined by convolution.<br />

Keywords and phrases: Analytic function, Hadamard product, subordination, factor sequence.<br />

2000 Mathematics Subject Classification: 30C45<br />

1. INTRODUCTION<br />

Let A denote the class <strong>of</strong> functions <strong>of</strong> the form:<br />

∞<br />

f(z) = z + a k z k ,<br />

k=2<br />

(1.1)<br />

which are analytic in the open unit disc U =<br />

{z ∈ C: |z| < 1}. Let φ ∈ A be given by<br />

∞<br />

φ(z) = z + c k z k . (1.2)<br />

k=2<br />

Definition 1. (Hadamard product or convolution).<br />

Given two functions f and φ in the class A,<br />

where f(z) is given by (1.1) and φ(z) is given by<br />

(1.2) the Hadamard product (or convolution)<br />

f ∗ φ <strong>of</strong> f and φ is defined (as usual) by<br />

∞<br />

(f ∗ φ)(z) = z + a k c k z k = (φ ∗ f)(z). (1.3<br />

k=2<br />

We also denote by K the class <strong>of</strong> functions<br />

f(z) ∈ A that are convex in U.<br />

Let M(β) be the subclass <strong>of</strong> A consisting <strong>of</strong><br />

_____________________<br />

functions f(z) which satisfy the inequality:<br />

Re zf′ (z)<br />

< β (z ∈ U), (1.4<br />

f(z)<br />

for some β > 1. Also let N(β) denote the<br />

subclasse <strong>of</strong> A consisting <strong>of</strong> functions f(z) which<br />

satisfy the inequality:<br />

Re 1 + zf′′(z) < β (z ∈ U), (1.5)<br />

f′(z)<br />

for some β > 1 ( see [7], [8], [9] and [10] ). For<br />

1 < β ≤ 4 , the classes M(β) and N(β) were<br />

3<br />

investigated earlier by Uralegaddi et al. [14] ( see<br />

also [12] and [13]).<br />

It follows from (1.4) and (1.5) that<br />

f(z) ∈ N(β) ⇔ zf ′ (z) ∈ M(β). (1.6)<br />

For 0 ≤ λ < 1, β > 1 and for all z ∈ U, let<br />

T(g, λ, β) be the subclass <strong>of</strong> A consisting <strong>of</strong><br />

functions f(z) <strong>of</strong> the form (1.1) and functions<br />

g(z) given by:<br />

∞<br />

g(z) = z + ∑k=2 b k z k (b k > 0), (1.7)<br />

which satisfying the analytic criterion:<br />

Received, September 2011; Accepted, March <strong>2012</strong><br />

*Corresponding author, M.K. Aouf; Email: mkaouf127@yahoo.com


26 Subordination Results for Certain Subclasses <strong>of</strong> Analytic Functions<br />

z(f ∗ g)′(z)<br />

Re <br />

< β. (1.8)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z)<br />

We note that:<br />

(i) T( z<br />

z<br />

, 0, β) = M(β) and T( , 0, β)<br />

1−z (1−z)²<br />

= N(β) (β > 1) (see [7] );<br />

(ii) T(g, 0, β) = M(g, β)(β > 1)(see [1]).<br />

Also we note that:<br />

(i) T z , λ, β = T 1−z M(λ, β)<br />

zf′(z)<br />

= f ∈ A: Re <br />

(1 − λ)f(z) + λzf′(z) <br />

< β (0 ≤ λ < 1, β > 1, z ∈ U) ;<br />

z<br />

(ii) T , λ, β = T (1−z)²<br />

N(λ, β)<br />

= ∈ A: Re f′ (z) + zf ′′ (z)<br />

f ′ (z) + λzf ′′ (z) <br />

< β (0 ≤ λ < 1, β > 1, z ∈ U) ;<br />

∞<br />

(iii) T z+ Γ k (α₁)z k<br />

k=2<br />

, λ, β = T q,s (α₁, λ, β)<br />

⎧ ⎧<br />

⎪ ⎪ z(Hq,s (α 1 , β 1 )f (z))′ ⎪ ⎫ ⎫<br />

⎪<br />

= ∈ A: Re<br />

< ,<br />

⎨ ⎨(1 − λ)H q,s (α 1 , β 1 )f (z) +<br />

⎪ ⎪<br />

⎩ ⎩ λz(H q,s (α 1 , β 1 )f (z))′ ⎭<br />

β⎭<br />

⎪⎬ ⎬<br />

⎪<br />

where Γ k (α 1 ) is defined by<br />

Γ k (α 1 ) =<br />

(α 1 ) k−1 … . α q k−1<br />

(β 1 ) k−1 … . (β s ) k−1 (1) k−1<br />

(1.9)<br />

α i > 0, i = 1, . . . , q; β j > 0, j = 1, . . . , s; q<br />

≤ s + 1, q, s ∈ N 0 , N 0<br />

= N ∪ {0}, N = {1,2, . . }),<br />

and the operator H q,s (α 1 , β 1 ) was introduced and<br />

studied by Dziok and Srivastava ([4] and [5]),<br />

which is a generalization <strong>of</strong> many other linear<br />

operators considered earlier;<br />

∞<br />

(iv)T z+ l+1+μ(k−1) m<br />

z k<br />

l+1<br />

k=2<br />

, λ, β = T(m, μ, l, λ, β)<br />

⎧ ⎧ z(I m ⎫ ⎫<br />

(μ, l)f(z))′<br />

= ∈ A: Re<br />

⎨ ⎨(1 − λ)I m < β ,<br />

(μ, l)f(z) + ⎬ ⎬<br />

⎩ ⎩ λz(I m (μ, l)f(z))′ ⎭ ⎭<br />

where m ∈ N 0 , μ, l ≥ 0, z ∈ U and the<br />

operator I m (μ, l) was defined by Cătaş et al. [3],<br />

which is a generalization <strong>of</strong> many other linear<br />

operators considered earlier;<br />

∞<br />

(v)T z+ C k (b,μ)z k<br />

k=2<br />

, λ, β = T(μ, b, λ, β)<br />

z(J μ<br />

= f ∈ A: Re <br />

b<br />

f(z))′<br />

(1 − λ)J μ b f(z) + λz(J μ b f(z))′ <br />

Where C k (b, μ) is defined by<br />

< β (0 ≤ λ < 1, β > 1, z ∈ U),<br />

C k (b, μ) = 1 + b<br />

k + b μ<br />

(μ ∈ C, b ∈ C {Z₀−}, Z₀− = Z\N), (1.10)<br />

and the operator J b<br />

μ was introduced by Srivastava<br />

and Attiya [11], which is a generalization <strong>of</strong> many<br />

other linear operators considered earlier.<br />

Definition 2. (Subordination principle). For two<br />

functions f and φ, analytic in U, we say that the<br />

function f(z) is subordinate to φ(z) in U,<br />

written f (z) ≺ φ(z), if there exists a Schwarz<br />

function w (z), which (by definition) is analytic in<br />

U with w (0) = 0 and |w(z)| < 1, such that<br />

f(z) = φ(w(z)). Indeed it is known that<br />

f(z) ≺ φ(z) ⇒ f(0)<br />

= φ(0) and f(U) ⊂ φ(U ).<br />

Furthermore, if the function φ is univalent in U,<br />

then we have the following equivalence ( see [2]<br />

and [6] ):<br />

f(z) ≺ φ(z) ⇔ f(0)<br />

= φ(0)and f(U) ⊂ φ(U ). (1.11)<br />

Definition 3. ( Subordinating factor sequence )<br />

[15]. A sequence {d k } ∞<br />

k=1 <strong>of</strong> complex numbers is<br />

said to be a subordinating factor sequence if,<br />

whenever f <strong>of</strong> the form (1.1) is analytic, univalent


M.K. Aouf et al 27<br />

∞<br />

∑ k=2(1 − λ)(k − 1) b k |a k |<br />

and convex in U, we have<br />

<<br />

2(β − 1) − ∑<br />

∞<br />

k=2<br />

|k − (2β − 1)[1 + λ(k − 1)]| b k |a k | < 1.<br />

∞<br />

d k a k z k This completes the pro<strong>of</strong> <strong>of</strong> Lemma 2.<br />

≺ f(z) (a 1 = 1; z ∈ U ).<br />

k=2<br />

Corollary 1. Let the function f(z) defined by<br />

(1.1) be in the class T(g; λ, β), then<br />

2. MAIN RESULTS<br />

2(β − 1)<br />

|a k | ≤<br />

.<br />

{(1 − λ)(k − 1) + |k − (2β − 1)[1 + λ(k − 1)]|}b<br />

Unless otherwise mentioned, we assume<br />

k<br />

(2.3)<br />

throughout this paper that 0 ≤ λ < 1, β > 1, z ∈<br />

U and g(z) is given by (1.7) with b k+1 ≥ The result is sharp for the function<br />

b k (k ≥ 2).<br />

2(β − 1)<br />

f(z) = z +<br />

.<br />

{(1 − λ)(k − 1) + |k − (2β − 1)[1 + λ(k − 1)]|}b<br />

To prove our main result we need the following<br />

k<br />

lemmas.<br />

(2.4)<br />

∞<br />

Lemma 1. [15]. The sequence {d k } k=1 is a<br />

Let T ∗ (g; λ, β) denote the subclass <strong>of</strong> functions<br />

subordinating factor sequence if and only if<br />

f(z) ∈ A whose coefficients satisfy the condition<br />

∞<br />

(2.2). We note that T ∗ (g; λ, β) ⊆ T(g, λ, β).<br />

Re 1 + 2 d k z k > 0. (2.1)<br />

Thereom 1. Let f(z) ∈ T ∗ (g; λ, β). Then<br />

k=1<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

Now, we prove the following lemma which gives<br />

(f ∗ h)(z) ≺ h(z),<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

a sufficient condition for functions belonging to<br />

(2.5)<br />

the class T(g, λ, β):<br />

for every function h ∈ K, and<br />

Lemma 2. A function f(z) <strong>of</strong> the form (1.1) is Re{f(z)} > − {2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

.<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b<br />

said to be in the class T(g, λ, β) if<br />

2<br />

(2.6)<br />

(1 − λ)(k − 1)<br />

[1−λ+|3−2β−λ(2β−1)|]b<br />

∞<br />

∑k=2 k − (2β − 1)<br />

+ <br />

[1 + λ(k − 1)] b k |a k | ≤ 2(β − 1). (2.2)<br />

The constant factor<br />

2<br />

2{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]b 2 }<br />

in the subordination result (2.5) is the best<br />

estimate.<br />

Pro<strong>of</strong>. Assume that the inequality (2.2) holds true.<br />

Then it suffices to show that<br />

Pro<strong>of</strong>. Let f(z) ∈ T ∗ (g; λ, β) and suppose that<br />

∞<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − 1<br />

h(z) = z + ∑k=2 h k z k ∈ K, then<br />

<br />

< 1.<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − (2β − 1) 2<br />

(f ∗ h)(z)<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

∞<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

We have<br />

=<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } z + h k a k z k .<br />

k=2<br />

(2.7)<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − 1 Thus, by using Definition 3, the subordination<br />

<br />

result holds true if<br />

z(f ∗ g)′(z)<br />

(1 − λ)(f ∗ g)(z) + λz(f ∗ g)′(z) − (2β − 1) ∞<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b<br />

∞<br />

∑ k=2(1 − λ)(k − 1) b k |a k ||z| k−1<br />

2 } a k <br />

k=1<br />

≤<br />

2(β − 1) − ∑<br />

∞<br />

k=2<br />

|k − (2β − 1)[1 + λ(k − 1)]| b k |a k ||z| k−1


28 Subordination Results for Certain Subclasses <strong>of</strong> Analytic Functions<br />

is a subordinating factor sequence, with a 1 = 1.<br />

In view <strong>of</strong> Lemma 1, this is equivalent to the<br />

following inequality:<br />

∞<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

Re 1 + <br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } a k z k > 0.<br />

k=1<br />

Now, since<br />

Ψ(k) = {(1 − λ)(k − 1) + |k<br />

−(2β − 1)[1 + λ(k − 1)]|}b k<br />

(2.8)<br />

is an increasing function <strong>of</strong> k (k ≥ 2), we have<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

Re 1 +<br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } a k z k <br />

∞<br />

k=1<br />

[1−λ+|3−2β−λ(2β−1)|]b<br />

= Re 1 +<br />

2<br />

{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]b 2 } z<br />

+ ∑ ∞ k=2 [1−λ+|3−2β−λ(2β−1)|]b 2a k z k<br />

<br />

{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]b 2 }<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

≥ 1 −<br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } r<br />

1<br />

−<br />

[1<br />

{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]b 2 }<br />

k=2<br />

− λ + |3 − 2β − λ(2β − 1)|]b 2 |a k |r k<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

≥ 1 −<br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } r<br />

−<br />

1<br />

{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]b 2 } ∙<br />

∞<br />

∙ {(1 − λ)(k − 1)<br />

k=2<br />

+ |k − (2β − 1)[1 + λ(k − 1)]|} b k |a k |r k<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

≥ 1 −<br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } r<br />

2(β − 1)<br />

−<br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } r<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

≥ 1 −<br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

2(β − 1)<br />

−<br />

{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 }<br />

> 0 (|z| = r < 1),<br />

where we have also made use <strong>of</strong> assertion (2.2) <strong>of</strong><br />

Lemma 2. Thus (2.8) holds true in U. This proves<br />

the inequality (2.5). The inequality (2.6) follows<br />

from (2.5) by taking the convex function<br />

z<br />

h(z) = = z + ∑∞<br />

1−z k=2 zk ∈ K. (2.9)<br />

To prove the sharpness <strong>of</strong> the constant<br />

∞<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } ,<br />

we consider the function f 0 (z) ∈ T ∗ (g; λ, β)<br />

given by<br />

2(β − 1)<br />

f 0 (z) = z −<br />

z 2 .<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

Thus from (2.5), we have<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } f 0 (z) ≺ z<br />

1 − z<br />

It is easily verified that<br />

min Re [1 − λ + |3 − 2β − λ(2β − 1)|]b 2<br />

|z|≤r 2{2(β − 1) + [1 − λ + |3 − 2β − λ(2β − 1)|]b 2 } f 0 (z)<br />

= − 1 2 .<br />

This show that the constant<br />

[1−λ+|3−2β−λ(2β−1)|]b 2<br />

is the best<br />

2{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]b 2 }<br />

possible. This completes the pro<strong>of</strong> <strong>of</strong> Theorem 1.<br />

Remark. (i) Taking g(z) =<br />

z and λ = 0 in<br />

1−z<br />

Lemma 2 and Theorem 1, we obtain the result<br />

obtained by Srivastava and Attiya [10, Corollary<br />

2] and Nishiwaki and Owa [7, Theorem 2.1];<br />

(ii) Taking g(z) =<br />

z<br />

(1−z)<br />

2<br />

and λ = 0 in Lemma<br />

2 and Theorem 1, we obtain the result obtained by<br />

Srivastava and Attiya [10, Corollary 4] and<br />

Nishiwaki and Owa [7, Corollary 2.2].<br />

Also, we establish subordination results for the<br />

associated subclasses, M ∗ (g, β), T ∗ M (λ, β),<br />

T ∗ N (λ, β), T ∗ q,s (α 1 , λ, β), T ∗ (m, μ, l, λ, β) and<br />

T ∗ (μ, b, λ, β), whose coefficients satisfy the<br />

condition (2.2) in the special cases as mentioned<br />

in the introduction.<br />

By taking λ = 0 in Lemma 2 and Theorem 1, we<br />

obtain the following corollary:<br />

Corollary 2. Let the function f(z) defined by<br />

(1.1) be in the class M ∗ (g, β) and satisfy the<br />

condition<br />

∞<br />

{k − 1 + |k − (2β − 1)|} b k |a k | ≤ 2(β − 1). (2.11)<br />

k=2<br />

Then for every function h ∈ K, we have:


M.K. Aouf et al 29<br />

[1 + |3 − 2β|]b 2<br />

(f ∗ h)(z) ≺ h(z)<br />

2{2(β − 1) + (1 + |3 − 2β|)b 2 }<br />

(2.12)<br />

and<br />

Re{f(z)} > − {2(β − 1) + (1 + |3 − 2β|)b 2 }<br />

[1 + |3 − 2β|]b 2<br />

.<br />

(2.13)<br />

[1+|3−2β|]b<br />

The constant factor<br />

2<br />

in the<br />

2{2(β−1)+(1+|3−2β|)b 2 }<br />

subordination result (2.12) can not be replaced by<br />

a larger one and the function<br />

f 0 (z) = z −<br />

gives the sharpness.<br />

2(β − 1)<br />

[1 + |3 − 2β|]b 2<br />

z 2 (2.14)<br />

By taking g(z) =<br />

z in Lemma 2 and Theorem<br />

1−z<br />

1, we obtain the following corollary:<br />

Corollary 3. Let the function f(z) defined by<br />

(1.1) be in the class T M ∗ (λ, β) and satisfy the<br />

condition<br />

∞<br />

(1 − λ)(k − 1) +<br />

<br />

|k − (2β − 1)[1 + λ(k − 1)]| |a k | ≤ 2(β − 1).<br />

k=2<br />

Then for every function h ∈ K, we have:<br />

(2.15)<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]<br />

(f ∗ h)(z) ≺ h(z)<br />

2[2β − 1 − λ + |3 − 2β − λ(2β − 1)|]<br />

(2.16)<br />

and<br />

Re{f(z)} > −<br />

The constant factor<br />

[2β − 1 − λ + |3 − 2β − λ(2β − 1)|]<br />

.<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]<br />

(2.17)<br />

[1−λ+|3−2β−λ(2β−1)|]<br />

2[2β−1−λ+|3−2β−λ(2β−1)|] in<br />

the subordination result (2.16) can not be<br />

replaced by a larger one and the function<br />

2(β − 1)<br />

f 0 (z) = z −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|] z2<br />

gives the sharpness.<br />

(2.18)<br />

z<br />

(1−z)<br />

By taking g(z) = in Lemma 2 and<br />

2<br />

Theorem 1, we obtain the following corollary:<br />

Corollary 4. Let the function f(z) defined by<br />

(1.1) be in the class T N ∗ (λ, β) and satisfy the<br />

condition<br />

∞<br />

(1 − λ)(k − 1) +<br />

k <br />

|k − (2β − 1)[1 + λ(k − 1)]| |a k | ≤ 2(β − 1).<br />

k=2<br />

Then for every function h ∈ K, we have:<br />

(2.19)<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]<br />

(f ∗ h)(z) ≺ h(z)<br />

2[β − λ + |3 − 2β − λ(2β − 1)|]<br />

(2.20)<br />

and<br />

[β − λ + |3 − 2β − λ(2β − 1)|]<br />

Re{f(z)} > −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|] .<br />

(2.21)<br />

The constant factor [1−λ+|3−2β−λ(2β−1)|]<br />

in the<br />

2[β−λ+|3−2β−λ(2β−1)|]<br />

subordination result (2.20) can not be replaced by<br />

a larger one and the function<br />

β − 1<br />

f 0 (z) = z −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|] z2<br />

gives the sharpness.<br />

(2.22)<br />

By taking b k = Γ k (α 1 ) , where Γ k (α 1 ) defined<br />

by (1.9), in Lemma 2 and Theorem 1, we obtain<br />

the following corollary:<br />

Corollary 5. Let the function f(z) defined by<br />

(1.1) be in the class T ∗ q,s (α 1 , λ, β) and satisfy the<br />

condition<br />

∞ (1 − λ)(k − 1)<br />

k − (2β − 1)<br />

+ <br />

[1 + λ(k − 1)] Γ k (α 1 )|a k | ≤ 2(β − 1).<br />

k=2<br />

Then for every function h ∈ K, we have:<br />

(2.23)<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]Γ 2 (α 1 )<br />

(f ∗ h)(z) ≺ h(z)<br />

2(β − 1)<br />

2 <br />

+[1 − λ + |3 − 2β − λ(2β − 1)|]Γ 2 (α 1 ) <br />

(2.24)


30 Subordination Results for Certain Subclasses <strong>of</strong> Analytic Functions<br />

and<br />

2(β − 1)<br />

<br />

+ 1 − λ + 3 − 2β −<br />

λ(2β − 1) Γ 2(α 1 ) <br />

Re{f(z)} > −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]Γ 2 (α 1 ) .<br />

The constant factor<br />

[1−λ+|3−2β−λ(2β−1)|]Γ 2 (α 1 )<br />

2{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]Γ 2 (α 1 )}<br />

in the<br />

(2.25)<br />

subordination result (2.24) can not be replaced by<br />

a larger one and the function<br />

2(β − 1)<br />

f 0 (z) = z −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]Γ 2 (α 1 ) z2<br />

gives the sharpness.<br />

(2.26)<br />

By taking b k = l+1+μ(k−1)<br />

m (m ∈ N<br />

l+1<br />

0 , μ, l ≥<br />

0) in Lemma 2 and Theorem 1, we obtain the<br />

following corollary:<br />

Corollary 6. Let the function f(z) defined by<br />

(1.1) be in the class T ∗ (m, μ, l, λ, β) and satisfy<br />

the condition<br />

∞ (1 − λ)(k − 1)<br />

l + 1 + μ(k − 1)<br />

k − (2β − 1)<br />

+ <br />

[1 + λ(k − 1)] <br />

l + 1<br />

k=2<br />

Then for every function h ∈ K, we have:<br />

m<br />

|a k | ≤ 2(β − 1).<br />

(2.27)<br />

[1 − λ + |3 − 2β − λ(2β − 1)|](l + 1 + μ) m<br />

(f ∗ h)(z) ≺ h(z)<br />

2(l + 1) m (β − 1)<br />

2 <br />

+ 1 − λ + 3 − 2β −<br />

λ(2β − 1) (l + 1 + μ)m<br />

and<br />

(2.28)<br />

2(l + 1) m (β − 1)<br />

<br />

3 − 2β<br />

+ 1 − λ + <br />

(l + 1 + μ)m<br />

−λ(2β − 1)<br />

Re{f(z)} > −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|](l + 1 + μ) m.<br />

(2.29)<br />

The constant factor<br />

[1−λ+|3−2β−λ(2β−1)|](l+1+μ) m<br />

2{2(l+1) m (β−1)+[1−λ+|3−2β−λ(2β−1)|](l+1+μ) m }<br />

in the subordination result (2.28) can not be<br />

replaced by a larger one and the function<br />

2(β − 1)(l + 1) m<br />

f 0 (z) = z −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|](l + 1 + μ) m z2<br />

(2.30)<br />

gives the sharpness.<br />

By taking b k = C k (b, μ), where C k (b, μ)<br />

defined by (1.10), in Lemma 2 and Theorem 1, we<br />

obtain the following corollary:<br />

Corollary 7. Let the function f(z) defined by<br />

(1.1) be in the class T ∗ (μ, b, λ, β) and satisfy the<br />

condition<br />

∞ (1 − λ)(k − 1)<br />

k − (2β − 1)<br />

+ <br />

[1 + λ(k − 1)] C k (b, μ)|a k | ≤ 2(β − 1).<br />

k=2<br />

Then for every function h ∈ K, we have:<br />

(2.31)<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]C 2 (b, μ)<br />

(f ∗ h)(z) ≺ h(z)<br />

2(β − 1)<br />

2 <br />

3 − 2β<br />

+ 1 − λ + <br />

−λ(2β − 1) C 2 (b, μ)<br />

and<br />

(2.32)<br />

2(β − 1)<br />

<br />

3 − 2β<br />

+ 1 − λ + <br />

−λ(2β − 1) C 2(b, μ) <br />

Re{f(z)} > −<br />

1 − λ + 3 − 2β −<br />

.<br />

λ(2β − 1) C 2(b, μ)<br />

The constant factor<br />

[1−λ+|3−2β−λ(2β−1)|]C 2 (b,μ)<br />

2{2(β−1)+[1−λ+|3−2β−λ(2β−1)|]C 2 (b,μ)}<br />

in the<br />

(2.33)<br />

subordination result (2.32) can not be replaced by<br />

a larger one and the function<br />

2(β − 1)<br />

f 0 (z) = z −<br />

[1 − λ + |3 − 2β − λ(2β − 1)|]C 2 (b, μ) z2<br />

gives the sharpness.<br />

3. ACKNOWLEDGEMENTS<br />

(2.34)<br />

The authors thank the anonymous referees <strong>of</strong> the paper<br />

for their helpful suggestions.<br />

4. REFERENCES<br />

1. Aouf, M.K., A.A.. Shamandy, A.O. Mostafa &<br />

E.A. Adwan. Subordination results for certain<br />

class <strong>of</strong> analytic functions defined by convolution.


M.K. Aouf et al 31<br />

Rend. del Circolo Math. di Palermo (in press).<br />

2. Bulboaca, T. Differential Subordinations and<br />

Superordinations, Recent Results. House <strong>of</strong><br />

Scientific Book Publ., Cluj-Napoca (2005).<br />

3. A Cătaş, G.I. Oros & G. Oros. Differential<br />

subordinations associated with multiplier<br />

transformations. Abstract Appl. Anal. ID845724:<br />

1-11 (2008).<br />

4. Dziok, J. & H.M. Srivastava. Classes <strong>of</strong> analytic<br />

functions with the generalized hypergeometric<br />

function. Appl. Math. Comput. 103: 1-13 (1999).<br />

5. Dziok, J. & , H.M. Srivastava. Certain subclasses<br />

<strong>of</strong> analytic functions associated with the<br />

generalized hypergeometric function. Integral<br />

Transform. Spec. Funct. 14: 7-18 (2003).<br />

6. Miller, S.S. & P.T. Mocanu. Differential<br />

Subordinations Theory and Applications. In: Series<br />

on Monographs and Textbooks in Pure and<br />

Applied Mathematics 255. Marcel Dekker, New<br />

York (2000).<br />

7. Nishiwaki, J. & S Owa.. Coefficient inequalities<br />

for certain analytic functions, Internat. J. Math.<br />

Math. Sci. 29 (5): 285-290 (2002).<br />

8. Owa, S. & J. Nishiwaki. Coeffocient estimates for<br />

certain classes <strong>of</strong> analytic functions. J. Inequal.<br />

Pure Appl. Math. 3 (5), Art. 72: 1-12 (2002).<br />

9. Owa, S. & H.M. Srivastava. Some generalized<br />

convolution properties associated with certain<br />

subclasses <strong>of</strong> analytic functions. J. Inequal. Pure<br />

Appl. Math. 3 (3), Art. 42: 1-27 (2002).<br />

10. Srivastava, H.M. & A.A Attiya. Some<br />

subordination results associated with certain<br />

subclasses <strong>of</strong> analytic functions. J. Inequal. Pure<br />

Appl. Math. 5 (4), Art. 82: 1-14 (2004).<br />

11. Srivastava, H.M. & A.A Attiya.. An integral<br />

operator associated with the Hurwitz-Lerch Zeta<br />

function and differential subordination. Integral<br />

Transform. Spec. Funct. 18: 207-216 (2007).<br />

12. Srivastava, H.M. & S. Owa. Current Topics in<br />

Analytic Function Theory. World Scientific<br />

Publishing Company, Singapore (1992).<br />

13. Uralegaddi, BA. & A.R. Desa. Convolutions <strong>of</strong><br />

univalent functions with positive coefficients.<br />

Tamkang J. Math. 29: 279-285 (1998).<br />

14. Uralegaddi, B.A., M.D. Ganigi & S.M Sarangi.<br />

Univalent functions with positive coefficients.<br />

Tamkang J. Math. 25: 225-230 (1994).<br />

15. Wilf, S. Subordinating factor sequence for convex<br />

maps <strong>of</strong> the unit circle. Proc. Amer. Math. Soc. 12:<br />

689-693 (1961).


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 33-37 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

Existence and Uniqueness for Solution <strong>of</strong> Differential Equation<br />

with Mixture <strong>of</strong> Integer and Fractional Derivative<br />

Shayma Adil Murad 1 , Rabha W. Ibrahim 2,* and Samir B. Hadid 3<br />

1 Department <strong>of</strong> Mathematics, Faculty <strong>of</strong> Science, Duhok University, Kurdistan, Iraq<br />

2 Institute <strong>of</strong> Mathematical <strong>Sciences</strong>, University Malaya, 50603, Malaysia<br />

3 Department <strong>of</strong> Mathematics and Basic <strong>Sciences</strong>, College <strong>of</strong> Education and Basic<br />

<strong>Sciences</strong>, Ajman University <strong>of</strong> Science and Technology, UAE<br />

Abstract: By employing the Krasnosel’ski˘ıfixed point theorem, we establish the existence <strong>of</strong> solutions for<br />

mixed differential equation (ordinary and fractional ). Moreover, we suggest the uniqueness <strong>of</strong> solution<br />

and we examine our abstract results by applications.<br />

Keywords: Fractional calculus, Fractional differential equation, Integral boundary condition,<br />

Krasnosel’skiĭ Fixed Point Theorem<br />

1. INTRODUCTION<br />

In recent years, fractional equations have gained<br />

considerable interest due to their applications in<br />

various fields <strong>of</strong> the science such as physics,<br />

mechanics, chemistry, biology, engineering and<br />

computer sciences. Significant development has<br />

been made in ordinary and partial differential<br />

equations involving fractional derivatives [1, 2].<br />

The class <strong>of</strong> fractional differential equations <strong>of</strong><br />

various types plays an important role not only in<br />

mathematics but also in physics, control systems,<br />

diffusion, dynamical systems and engineering to<br />

create the mathematical modeling <strong>of</strong> many<br />

physical phenomena.<br />

The existence <strong>of</strong> positive solution and multipositive<br />

solutions for nonlinear fractional.<br />

Moreover, by using the concepts <strong>of</strong> the<br />

subordination and superordination <strong>of</strong> analytic<br />

functions, the existence <strong>of</strong> analytic solutions for<br />

fractional differential equations in complex<br />

domain are posed in [3, 4]. About the development<br />

<strong>of</strong> existence theorems for fractional functional<br />

differential equations.<br />

Many papers on fractional differential<br />

equations are devoted to existence and uniqueness<br />

<strong>of</strong> solutions such a type <strong>of</strong> equations (e.g., [5, 6]).<br />

In this paper we investigate the existence <strong>of</strong><br />

solution <strong>of</strong> differential equation with mixture <strong>of</strong><br />

integer and fractional derivative. Our result is an<br />

application <strong>of</strong> Krasnosel’skiĭ fixed point theorem.<br />

Such differential equation plays a very important<br />

rule in applications in sciences and engineering<br />

problems [7].<br />

2. PRELIMINARIES<br />

Recall the following basic definitions and results:<br />

Definition 2.1. For a function f given on the<br />

interval [a,b], the Caputo fractional order<br />

derivative <strong>of</strong>f is defined by<br />

where and denote the integer part<br />

<strong>of</strong><br />

_____________________<br />

Received, October 2011; Accepted, March <strong>2012</strong><br />

*Corresponding author: Rabha W. Ibrahim, E-mail: rabhaibrahim@yahoo.com


34 Shayma Adil Murad et al<br />

Lemma 2.2. Let<br />

0, then<br />

for somec i<br />

R , i=0,1,..,n-1 , n [ ] 1<br />

Definition 2.3. Let f be a function which is<br />

defined almost everywhere on [a,b] , for 0 ,<br />

we define<br />

b<br />

a<br />

b<br />

1<br />

1<br />

( ) ( ) ( )<br />

<br />

I f t b f d<br />

( )<br />

<br />

a<br />

provided that the integral (Lebesgue) exists.<br />

Theorem 2.4. [8] (Krasnosel’skiĭ Theorem)<br />

Let M be a closed convex bounded nonempty<br />

subset <strong>of</strong> a Banach space X. Let A and B be<br />

two operators such that:<br />

i)Ax+By=M, whenever x, y M ;<br />

ii) A is compact and continuous ;<br />

iii) B is a contraction mapping .<br />

Then, there exists<br />

such thatz =Az+Bz.<br />

Let R be a Banach space with the norm .<br />

Let<br />

, be Banach space <strong>of</strong> all<br />

continuous functions , with<br />

supermum norm<br />

.<br />

Consider the extraordinary differential<br />

equation with initial conditions , which has the<br />

form<br />

Pro<strong>of</strong>. we reduce the problem (2.1) to an<br />

equivalent integral equation<br />

c<br />

(2.3)<br />

Operate both side <strong>of</strong> equation (2.3) by the operator<br />

, we get<br />

c<br />

<br />

In view <strong>of</strong> the relations<br />

, for , and by<br />

Lemma (2.2), we obtain<br />

c<br />

<br />

c<br />

<br />

c<br />

<br />

By applying the condition (2.2), we get<br />

and<br />

c<br />

<br />

c<br />

<br />

(2.4)<br />

Then by substitute and in equation (2.4) , we<br />

get<br />

(2.1)<br />

and<br />

(2.2)<br />

Where is the Caputo fractional derivative and<br />

the nonlinear functions<br />

is<br />

continuous .<br />

c<br />

<br />

c<br />

<br />

The equation (2.5) will become <strong>of</strong> the form<br />

(2.5)<br />

Lemma 2.5. Let and<br />

be a continuous function, then the solution <strong>of</strong><br />

fractional differential equation (2.1) with the<br />

initial condition (2.2) is :<br />

which completes the pro<strong>of</strong>.


Existence and Uniqueness for Solution <strong>of</strong> Differential Equation 35<br />

To prove the main results, we need the following<br />

assumptions:<br />

(H1) There exists<br />

such that<br />

for and .<br />

(H2)There exists constants<br />

such that<br />

, .<br />

(H3)<br />

, for all<br />

and<br />

For convenience,let us set<br />

(2.6)<br />

3. MAIN RESULTS<br />

Theorem 3.1. Assume that<br />

is a<br />

continuous function and satisfies the assumption<br />

(H1).Then the boundary value problem(2.1) has a<br />

unique solution.<br />

Pro<strong>of</strong>. Consider the operator T:C C by<br />

Setting<br />

For y<br />

, we show that<br />

, where .<br />

, we have<br />

Where<br />

, we obtain:<br />

Now, for and for each ,we<br />

obtain:


36 Shayma Adil Murad et al<br />

where<br />

As , therefore is a contraction. Thus, the<br />

conclusion <strong>of</strong> the theorem follows by the<br />

contraction mapping principle (Banach fixed point<br />

theorem).<br />

Theorem 3.2. Let ∶ [0,b] × R → R be a<br />

continuous function mapping bounded subsets<br />

<strong>of</strong> [0,b] × R into relatively compact subsets <strong>of</strong> R,<br />

and the assumptions ( H2) and ( H3) hold. Then<br />

the boundary value problem (2.1) has at least one<br />

solution on [0,b].<br />

It is clear that is contraction mapping,<br />

Continuity <strong>of</strong> implies that the operator is<br />

continuous. Also, is uniformly bounded on<br />

as<br />

Now we prove the compactness <strong>of</strong> the operator .<br />

We define ,<br />

And consequently we have<br />

Pro<strong>of</strong>. Letting and<br />

consider<br />

. We define the<br />

operators and s<br />

for<br />

, we find that<br />

Which is independent <strong>of</strong> x. Thus, is<br />

equicontinuous. Using the fact that maps<br />

bounded subset into relatively compact subsets, so<br />

is relatively compact on . Hence, by the<br />

Arzelá-Ascoli Theorem, is compact on . Thus<br />

all the assumptions <strong>of</strong> Theorem 3.2 aresatisfied.<br />

So the conclusion <strong>of</strong> Theorem 3.2 implies that the<br />

initial value problem (2.1) has at least one solution<br />

on [0, b].<br />

4. REFERENCES<br />

Now prove that<br />

is contraction mapping<br />

1. Kilbas, A.A., H.M. Srivastava & J.J. Trujillo.<br />

Theory and Applications <strong>of</strong> Fractional<br />

Differential Equations. North-Holland<br />

Mathematics Studies Vol. 204. Elsevier Science<br />

B.V., Amsterdam, The Netherlands, p. 347-463<br />

(2006).<br />

2. Podlubny, I. Fractional Differential Equations,<br />

Vol. 198 <strong>of</strong> Mathematics in Science and<br />

Engineering. Academic Press, San Diego, CA,<br />

USA, p. 261-307 (1999).


Existence and Uniqueness for Solution <strong>of</strong> Differential Equation 37<br />

3. Ibrahim, R.W. & M. Darus. Subordinati-on and<br />

superordination for analytic functions involving<br />

fractional integral operator. Complex Variables<br />

and Elliptic Equations 53: 1021-1031 (2008).<br />

4. Ibrahim, R.W. & M. Darus. Subordi-nation and<br />

superordination for univalent solutions for<br />

fractional differential equations. J. Math. Anal.<br />

Appl. 345: 871-879 (2008).<br />

5. Hadid S.B. Local and global existence theorems<br />

on differential equations <strong>of</strong> non-integer order. J.<br />

Fractional Calculus 7: 101-105 (1995).<br />

6. Murad, S.M. & H.J. Zekri & S. Hadid. Existence<br />

and uniqueness theorem <strong>of</strong> fractional mixed<br />

Volterra-Fredholm integro-differential equation<br />

with integral boundary conditions. International<br />

Journal <strong>of</strong> Differential Equations 2011: 1-15<br />

(2011).<br />

7. Cieielski, M. & J.S. Leszczynski. Numerical<br />

solution to boundary value problem for<br />

anomalous diffusion equation with Riesz-Feller<br />

fractional operator. J. Theo. and Appl. Mech. 44:<br />

393-403 (2006).<br />

8. Krasnosel’skiĭ, M.A. Two remarks on the method<br />

<strong>of</strong> successive Approximati-ons. Uspekhi<br />

Matematicheskikh Nauk 63: 123–127 (1955).


34 Shayma Adil Murad et al


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 39-43 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

On Stability <strong>of</strong> a Class <strong>of</strong> Fractional Differential Equations<br />

Rabha W. Ibrahim*<br />

Institute <strong>of</strong> Mathematical <strong>Sciences</strong>, University Malaya,<br />

Kuala Lumpur 50603, Malaysia<br />

Abstract: In this paper, we consider the Hyers-Ulam stability for fractional differential equations <strong>of</strong> the<br />

<br />

form: D z<br />

f ( z)<br />

= G(<br />

f ( z),<br />

zf (<br />

z);<br />

z),<br />

1< 2 in a complex Banach space. Furthermore,<br />

applications are illustrated.<br />

Keywords: Analytic function; Unit disk; Hyers-Ulam stability; Admissible functions; Fractional calculus;<br />

Fractional differential equation<br />

1. INTRODUCTION<br />

A classical problem in the theory <strong>of</strong> functional<br />

equations is that: If a function f approximately<br />

satisfies functional equation E when does there<br />

exists an exact solution <strong>of</strong> E which f<br />

approximates. In 1940, Ulam [1] imposed the<br />

question <strong>of</strong> the stability <strong>of</strong> Cauchy equation and<br />

in 1941, D. H. Hyers solved it [2]. In 1978,<br />

Rassias [3] provided a generalization <strong>of</strong> Hyers,<br />

theorem by proving the existence <strong>of</strong> unique linear<br />

mappings near approximate additive mappings.<br />

The problem has been considered for many<br />

different types <strong>of</strong> spaces [4-6]. Recently, Li and<br />

Hua [7] discussed and proved the Hyers-Ulam<br />

stability <strong>of</strong> spacial type <strong>of</strong> finite polynomial<br />

equation, and Bidkham, Mezerji and Gordji [8]<br />

introduced the Hyers-Ulam stability <strong>of</strong><br />

generalized finite polynomial equation. Finally,<br />

Rassias [9] imposed a Cauchy type additive<br />

functional equation and investigated the<br />

generalised Hyers-Ulam “product-sum” stability<br />

<strong>of</strong> this equation.<br />

The class <strong>of</strong> fractional differential equations<br />

<strong>of</strong> various types plays important roles and tools<br />

not only in mathematics but also in physics,<br />

control systems, dynamical systems and<br />

engineering to create the mathematical modeling<br />

<strong>of</strong> many physical phenomena. Naturally, such<br />

_____________________<br />

equations required to be solved. Many studies on<br />

fractional calculus and fractional differential<br />

equations, involving different operators such as<br />

Riemann-Liouville operators [10], Erdélyi-Kober<br />

operators [11], Weyl-Riesz operators [12],<br />

Caputo operators [13] and Grünwald-Letnikov<br />

operators [14], have appeared during the past<br />

three decades. The existence <strong>of</strong> positive solution<br />

and multi-positive solutions for nonlinear<br />

fractional differential equation are established<br />

and studied [15]. Moreover, by using the<br />

concepts <strong>of</strong> the subordination and superordination<br />

<strong>of</strong> analytic functions, the existence <strong>of</strong> analytic<br />

solutions for fractional differential equations in<br />

complex domain are suggested and posed [16-<br />

18].<br />

Srivastava and Owa [19] gave definitions for<br />

fractional operators (derivative and integral) in<br />

the complex z-plane C as follows:<br />

1.1. Definition: The fractional derivative <strong>of</strong> order<br />

is defined, for a function f (z)<br />

by<br />

D<br />

<br />

z<br />

1 d<br />

f ( z) :=<br />

(1)<br />

dz<br />

<br />

0<br />

z<br />

f ( )<br />

( z <br />

)<br />

<br />

d<br />

,<br />

where the function f (z)<br />

is analytic in simplyconnected<br />

region <strong>of</strong> the complex z-plane C<br />

containing the origin and the multiplicity <strong>of</strong><br />

Received, December 2011; Accepted, March <strong>2012</strong><br />

*Email: rabhaibrahim@yahoo.com


40 Rabha W. Ibrahim<br />

(z )<br />

is removed by requiring ( z <br />

)<br />

be real when ( z ) > 0.<br />

log to<br />

1.2. Definition: The fractional integral <strong>of</strong> order<br />

> 0 is defined, for a function f (z),<br />

by<br />

I<br />

<br />

z<br />

1 z<br />

f ( z) := f ( )( z <br />

)<br />

(<br />

)<br />

0<br />

1<br />

d<br />

; > 0,<br />

where the function f (z)<br />

is analytic in simplyconnected<br />

region <strong>of</strong> the complex z-plane (C)<br />

containing the origin and the multiplicity <strong>of</strong><br />

1<br />

( z <br />

) is removed by requiring log ( z <br />

)<br />

to be real when ( z ) > 0.<br />

1.1. Remark:<br />

<br />

D z<br />

and<br />

<br />

I z<br />

z<br />

z<br />

<br />

<br />

(<br />

1)<br />

<br />

= z , > 1<br />

(<br />

<br />

1)<br />

(<br />

1)<br />

<br />

= z , > 1.<br />

(<br />

<br />

1)<br />

In [17], it was shown the relation<br />

I<br />

<br />

z<br />

D<br />

<br />

z<br />

<br />

f ( z)<br />

= D I f ( z)<br />

= f ( z).<br />

z<br />

z<br />

Let U := { z C:|<br />

z |< 1} be the open unit<br />

disk in the complex plane C and H denote the<br />

space <strong>of</strong> all analytic functions on U . Here we<br />

suppose that H as a topological vector space<br />

endowed with the topology <strong>of</strong> uniform<br />

convergence over compact subsets <strong>of</strong> U . Also<br />

for a C<br />

and m N, let H [ a,<br />

m]<br />

be the<br />

subspace <strong>of</strong> H consisting <strong>of</strong> functions <strong>of</strong> the<br />

form<br />

f ( z)<br />

= a a z<br />

m<br />

m<br />

a<br />

m1<br />

1z<br />

, z U.<br />

m <br />

Definition 1.3. Let p be a real number. We say<br />

that<br />

<br />

a z<br />

n <br />

n<br />

= f ( z)<br />

(1)<br />

n=0<br />

has the generalized Hyers-Ulam stability if there<br />

exists a constant K > 0 with the following<br />

property:<br />

<br />

for every > 0, wU<br />

= U U,<br />

if<br />

p<br />

| an<br />

|<br />

| | ( ),<br />

2<br />

pn ( 1)<br />

<br />

<br />

n<br />

aw<br />

n<br />

<br />

n=0 n=0<br />

p (0,1)<br />

then there exists some<br />

equation (1) such that<br />

i i<br />

| z w | K,<br />

( z , w U,<br />

i N).<br />

z U that satisfies<br />

In the present paper, we study the generalized<br />

Hyers-Ulam stability for holomorphic solutions<br />

<strong>of</strong> the fractional differential equation in complex<br />

Banach spaces X and Y<br />

<br />

D z<br />

f ( z)<br />

= G(<br />

f ( z),<br />

zf (<br />

z);<br />

z),<br />

1 < 2, (2)<br />

2<br />

where G : X U<br />

Y<br />

and f : U X are<br />

holomorphic functions such that f (0) = ( <br />

is the zero vector in X ).<br />

Recently, the authors studied the ulam<br />

stability for different types <strong>of</strong> fractional<br />

differential equations [20-22].<br />

2. RESULTS<br />

In this section we present extensions <strong>of</strong> the<br />

generalized Hyers-Ulam stability to holomorphic<br />

vector-valued functions. Let X , Y represent<br />

complex Banach space. The class <strong>of</strong> admissible<br />

functions G ( X , Y),<br />

consists <strong>of</strong> those functions<br />

2<br />

g : X U<br />

Y<br />

that satisfy the admissibility<br />

conditions:<br />

g( r, ks; z) 1,<br />

when r = 1, s = 1,<br />

( z U,<br />

k 1).<br />

We need the following results:<br />

(3)<br />

2.1. Lemma: [23] Let g G( X,<br />

Y).<br />

If<br />

f : U X is the holomorphic vector-valued<br />

functions defined in the unit disk U with<br />

f (0) = ,<br />

then


On Stability <strong>of</strong> a Class <strong>of</strong> Fractional Differential Equations 41<br />

<br />

g( f ( z), zf ( z); z) < 1<br />

f( z) < 1.<br />

(4)<br />

2.1. Theorem: In Eq. (2), if G G( X,<br />

Y)<br />

is the<br />

holomorphic vector-valued function defined in<br />

the unit disk U then<br />

<br />

G( f ( z), zf ( z); z)


42 Rabha W. Ibrahim<br />

G( r, ks; z) = a( r k s )<br />

b z a k b z <br />

2 n 2<br />

| | = (1 ) | | 1,<br />

when r = s =1, z U.<br />

Hence by<br />

Theorem 2.1, we have : If a 0.5, b 0 and<br />

f : U X is a holomorphic vector-valued<br />

function defined in U , with f (0) = ,<br />

then<br />

a( f ( z) zf ( z) )<br />

b z<br />

2<br />

| | < 1 f ( z) < 1.<br />

Consequently, I G( f ( z), zf ( z); z) 0,<br />

(<br />

z)<br />

for every z U.<br />

Consider the function<br />

G : X<br />

2 Y<br />

by<br />

s<br />

G(<br />

r,<br />

s;<br />

z)<br />

= r ,<br />

(<br />

z)<br />

with G ( ,<br />

)<br />

= .<br />

Now for r = s =1,<br />

we have<br />

k<br />

G( r, ks; z) =|1 | 1,<br />

()<br />

z<br />

k 1<br />

and thus G G( X,<br />

Y).<br />

If f : U X is a<br />

holomorphic vector-valued function defined in<br />

U , with f (0) = ,<br />

then<br />

<br />

zf ( z)<br />

f( z) < 1<br />

( z)<br />

f( z) < 1.<br />

Hence, according to Theorem 2.2, f has the<br />

generalized Hyers-Ulam stability.


On Stability <strong>of</strong> a Class <strong>of</strong> Fractional Differential Equations 43<br />

4. REFERENCES<br />

1. Ulam, S.M. A Collection <strong>of</strong> Mathematical<br />

Problems. Interscience Publ. New York, 1961.<br />

Problems in Modern Mathematics. Wiley, New<br />

York (1964).<br />

2. Hyers, D.H. On the stability <strong>of</strong> linear functional<br />

equation. Proc. Nat. Acad. Sci. 27: 222-224<br />

(1941).<br />

3. Rassias, Th.M. On the stability <strong>of</strong> the linear<br />

mapping in Banach space. Proc. Amer. Math. Soc.<br />

72: 297-300 (1978).<br />

4. Hyers, D.H. The stability <strong>of</strong> homomorphisms and<br />

related topics, in Global Analysis-Analysis on<br />

Manifolds. Teubner-Texte Math. 75: 140-153<br />

(1983).<br />

5. Hyers, D.H. & Th.M. Rassias. Approximate<br />

homomorphisms. Aequationes Math. 44: 125-153<br />

(1992).<br />

6. Hyers, D.H., G. I. Isac & Th.M. Rassias. Stability<br />

<strong>of</strong> Functional Equations in Several Variables.<br />

Birkhauser, Basel (1998).<br />

7. Li, Y. & L. Hua. Hyers-Ulam stability <strong>of</strong> a<br />

polynomial equation. Banach J. Math. Anal. 3:<br />

86-90 (2009).<br />

8. Bidkham, M. & H.A. Mezerji & M.E. Gordji.<br />

Hyers-Ulam stability <strong>of</strong> polynomial equations.<br />

Abstract and Applied Analysis doi:10.1155/2010/<br />

754120 (2010).<br />

9. Rassias, M.J. Generalised Hyers-Ulam “productsum”<br />

stability <strong>of</strong> a Cauchy type additive<br />

functional equation. European J. Pure and Appl.<br />

Math. 4: 50-58 (2011).<br />

10. Diethelm, K. & N. Ford. Analysis <strong>of</strong> fractional<br />

differential equations. J. Math. Anal. Appl. 265:<br />

229-248 (2002).<br />

11. Ibrahim, R.W. & S. Momani. On the existence<br />

and uniqueness <strong>of</strong> solutions <strong>of</strong> a class <strong>of</strong> fractional<br />

differential equations. J. Math. Anal. Appl. 334: 1-<br />

10 (2007).<br />

12. Momani, S.M. & R.W. Ibrahim. On a fractional<br />

integral equation <strong>of</strong> periodic functions involving<br />

Weyl-Riesz operator in Banach algebras. J. Math.<br />

Anal. Appl. 339: 1210-1219 (2008).<br />

13. Bonilla, B., M. Rivero & J.J. Trujillo. On systems<br />

<strong>of</strong> linear fractional differential equations with<br />

constant coefficients. App. Math. Comp. 187: 68-<br />

78 (2007).<br />

14. Podlubny, I. Fractional Differential Equations.<br />

Academic Press, London, (1999).<br />

15. Zhang, S. The existence <strong>of</strong> a positive solution for<br />

a nonlinear fractional differential equation. J.<br />

Math. Anal. Appl. 252: 804-812 (2000).<br />

16. Ibrahim, R.W. & M. Darus. Subordination and<br />

superordination for analytic functions involving<br />

fractional integral operator. Complex Variables<br />

and Elliptic Equations 53:1021-1031 (2008).<br />

17. Ibrahim, R.W. & M. Darus. Subordination and<br />

superordination for univalent solutions for<br />

fractional differential equations. J. Math. Anal.<br />

Appl. 345: 871-879 (2008).<br />

18 Ibrahim, R.W. Existence and uniqueness <strong>of</strong><br />

holomorphic solutions for fractional Cauchy<br />

problem. J. Math. Anal. Appl. 380: 232-240<br />

(2011).<br />

19 Srivastava, H.M. & S. Owa. Univalent Functions,<br />

Fractional Calculus, and Their Applications.<br />

Halsted Press, John Wiley and Sons, New York<br />

(1989).<br />

20. Ibrahim, R.W. Generalized Ulam–Hyers stability<br />

for fractional differential equations. International<br />

Journal <strong>of</strong> Mathematics 23: 1-9 (<strong>2012</strong>).<br />

21. Ibrahim, R.W. On generalized Hyers-Ulam<br />

stability <strong>of</strong> admissible functions. Abstract and<br />

Applied Analysis (in press).<br />

22. Ibrahim, R.W. Approximate solutions for<br />

fractional differential equation in the unit disk.<br />

Electronic Journal <strong>of</strong> Qualitative Theory <strong>of</strong><br />

Differential Equations 64: 1-11 (2011).<br />

23 Miller, S.S. & P.T. Mocanu. Differential<br />

Subordinantions: Theory and Applications. Pure<br />

and Applied Mathematics No. 225. Dekker, New<br />

York (2000).


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 45-52 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

Some Inclusion Properties <strong>of</strong> p-Valent Meromorphic Functions<br />

defined by the Wright Generalized Hypergeometric Function<br />

M.K. Aouf, A.O. Mostafa, A.M. Shahin and S.M. Madian*<br />

Department <strong>of</strong> Mathematics, Faculty <strong>of</strong> Science,<br />

Mansoura University, Mansoura 35516, Egypt<br />

Abstract: In this paper, using the Wright generalized hypergeometric function we define a new operator<br />

and some classes <strong>of</strong> meromorphic functions associated to it and investigate several inclusion properties <strong>of</strong><br />

these classes. Some applications involving integral operator are also considered.<br />

Keywords and phrases: p-Valent meromorphic functions, Hadamard product, Wright generalized hypergeaometric<br />

hypergeaometric function, inclusion relationships<br />

2000 Mathematics Subject Classification : 30C45<br />

1. INTRODUCTION<br />

Let<br />

<br />

p<br />

denote the class <strong>of</strong> functions <strong>of</strong> the form:<br />

<br />

fz z p <br />

k1p<br />

a k z k p 1,2,..., 1.1<br />

(1.1)<br />

which are analytic and p-valent in the punctured<br />

unit disc U z : z and 0 | z| 1} U \{0}<br />

. For two analytic functions f and g in U , f<br />

is said to be subordinate to g, written f g or<br />

fz gz , if there exists an analytic function<br />

wz in U , with w0 0 and |wz| 1<br />

such that fz gwz . If gz is univalent<br />

function, then f g if and only if (see [8] and<br />

[16])<br />

<br />

f 0 g 0 and f U g U .<br />

For functions fz p given by (1.1) and<br />

gz p defined by<br />

<br />

gz z p <br />

k1p<br />

b k z k p , 1.2<br />

(1.2)<br />

the Hadamard product (or convolution) <strong>of</strong> fz<br />

and gz is given by<br />

( f g)( z)<br />

z<br />

<br />

k<br />

a b z ( g f )( z).<br />

k<br />

1 p<br />

k<br />

k<br />

p<br />

(1.3)<br />

For 0 , p, let MS ,p, MK,p,<br />

MC,,p<br />

<br />

and MC ( , , p),<br />

be the<br />

subclasses <strong>of</strong> p consisting <strong>of</strong> all meromorphic<br />

functions which are, respectively, starlike <strong>of</strong> order<br />

, convex <strong>of</strong> order , close-to-convex <strong>of</strong> order<br />

and type and quasi-convex functions <strong>of</strong><br />

order and type in U . Let S be the class<br />

<strong>of</strong> all functions which are analytic and<br />

univalent in U and for which U is convex<br />

with 0 1 and Rez 0 z U.<br />

Making use <strong>of</strong> the principle <strong>of</strong> subordination<br />

between analytic functions, let the subclasses<br />

<br />

MS<br />

p( ; ), MK<br />

p( ; ), MC<br />

p( , ; , ) and<br />

<br />

MC ( , ; , )<br />

p<br />

<strong>of</strong> the class for<br />

p<br />

_____________________<br />

Received, December 2011; Accepted, March <strong>2012</strong><br />

*Corresponding author, S.M. Madian; Email: samar_math@yahoo.com


46 M.K. Aouf et al<br />

0 , p and , S , be defined as<br />

follows:<br />

z<br />

<br />

<br />

1 zf <br />

<br />

MS p( ; ) f p : z z U<br />

,<br />

<br />

p f z <br />

<br />

<br />

1 <br />

f p<br />

:<br />

<br />

<br />

p <br />

<br />

MK p ( ; ) <br />

,<br />

<br />

<br />

<br />

zf z <br />

1 <br />

<br />

z z U<br />

<br />

<br />

<br />

f z <br />

<br />

<br />

<br />

f : ( ; ) <br />

p g MS p <br />

<br />

<br />

MCp<br />

( , ; , ) 1 zf z<br />

<br />

<br />

s. t.<br />

<br />

<br />

<br />

z z U<br />

<br />

p g z <br />

<br />

and<br />

<br />

<br />

f : ( ; )s. t. <br />

p g MS p <br />

<br />

<br />

<br />

<br />

MC ( , ; , ) <br />

1 <br />

<br />

p zf z<br />

.<br />

<br />

z z U<br />

<br />

p g z<br />

<br />

<br />

<br />

<br />

<br />

From these defnitions, we can obtain some<br />

well-known subclasses <strong>of</strong> p by special choices<br />

<strong>of</strong> the functions and as well as special<br />

choices <strong>of</strong> and see ([6], [13] and [22]).<br />

Let 1 ,A 1 ,..., q ,A q and 1 ,B 1 ,..., s ,B s<br />

q,s be positive and real parameters such<br />

that<br />

s<br />

1 <br />

j1<br />

q<br />

B j A j 0.<br />

j1<br />

The Wright generalized hypergeometric<br />

function [23] (see also [25]<br />

<br />

, A ,..., , A ; , B ,..., , B ; z<br />

<br />

<br />

q s 1 1 q q 1 1 s s<br />

<br />

q <br />

s i , Ai ; , ; ,<br />

1, q i Bi<br />

z<br />

<br />

1, s <br />

is defined by<br />

<br />

, A ; , B ; z<br />

<br />

<br />

q s i i 1, q i i 1, s<br />

<br />

q<br />

<br />

i 1<br />

<br />

s<br />

k 0<br />

i1<br />

<br />

<br />

<br />

i<br />

kAi<br />

z<br />

k<br />

. zU.<br />

k!<br />

kB<br />

i<br />

i<br />

<br />

If A i 1i 1,...,q and B i 1i 1,...,s,<br />

we have the relationship:<br />

<br />

<br />

q <br />

s i ,1 ; ,1 ;<br />

1, q i z<br />

<br />

1, s <br />

F ,..., ; ,..., ; z ,<br />

q s 1 q s<br />

1<br />

where qF s 1 ,..., q ; 1<br />

,..., s ;z is the generalized<br />

hypergeometric function see for details 20<br />

<br />

and 24 and<br />

s<br />

i1<br />

<br />

i<br />

i1<br />

<br />

q<br />

<br />

<br />

i<br />

<br />

<br />

.<br />

<br />

(1.4)<br />

Consider the following linear operator due to<br />

Dziok and Raina [10] (see also [3] and [11]):<br />

p,q,s i ,A i 1,q<br />

; i ,B i 1,s<br />

: p p ,<br />

defined by the convolution<br />

<br />

p, q, s i , Ai ; ,<br />

1, q i B <br />

i f z<br />

<br />

1, s<br />

<br />

A B z<br />

f z<br />

<br />

p, q, s i , i ; , ; ,<br />

1, q i i <br />

<br />

1, s <br />

where <br />

<br />

<br />

, A ; , B ; z <br />

p, q, s<br />

<br />

i i 1, q i i 1, s <br />

defined by Bansal et al. [7] as follows:<br />

<br />

<br />

<br />

was<br />

<br />

p, q, s i, Ai ;<br />

1, i, Bi<br />

; z<br />

<br />

q<br />

1, s <br />

(1.5)<br />

p<br />

<br />

z<br />

q <br />

s i, Ai ; <br />

, ;<br />

1, i<br />

Bi<br />

z<br />

1,<br />

z U<br />

.<br />

<br />

q<br />

s <br />

We observe that, for a function fz <strong>of</strong> the<br />

form 1.1, we have<br />

<br />

p, q, s<br />

i, Ai ; ,<br />

1, q i<br />

B <br />

i<br />

f z<br />

<br />

1, s<br />

z<br />

p<br />

<br />

<br />

<br />

k<br />

1 p<br />

<br />

k, p 1 1 1<br />

<br />

k<br />

, A , B a z ,<br />

k<br />

(1.6)<br />

where is given by 1.4 and k,p 1 ,A 1 ,B 1 <br />

is defined by<br />

1 A1<br />

k p...<br />

q<br />

Aq k p<br />

k, p1 A1 B1<br />

1 B1<br />

k p... s<br />

Bsk pk p!<br />

, , .<br />

Corresponding to the function <br />

<br />

<br />

, A ; , B ; z <br />

p, q, s<br />

<br />

i i 1, q i i 1, s <br />

defined by (1.5), we introduce a function


Inclusion Properties <strong>of</strong> p-Valent Meromorphic Functions 47<br />

<br />

<br />

<br />

<br />

, A ; , B ; z <br />

<br />

by<br />

, A ; , B ; z<br />

<br />

p, q, s i i 1, q i i 1, s<br />

<br />

<br />

p, q, s i i 1, q i i 1, s<br />

<br />

<br />

<br />

<br />

p, q, s i , Ai ; , ;<br />

1, i B<br />

q i z<br />

<br />

1, s <br />

1<br />

<br />

0. <br />

p <br />

z 1<br />

z<br />

<br />

<br />

p, q, s<br />

<br />

i i 1, q i i 1, s<br />

defined by (1.6), we define the linear operator<br />

<br />

<br />

, , , ; , :<br />

p q s<br />

i Ai <br />

1, q i<br />

B <br />

i<br />

<br />

1, s p<br />

as follows:<br />

<br />

<br />

p<br />

<br />

<br />

p, q, s i , Ai ; <br />

, ( )<br />

1, i B <br />

i f z<br />

<br />

q 1, s<br />

<br />

<br />

p, q, s i , Ai ; , ; ( )<br />

1, q i Bi<br />

z<br />

f z<br />

<br />

1, s <br />

s<br />

q<br />

k p i<br />

k p<br />

Bi i (1.8)<br />

z<br />

Analogous to , A ; <br />

, B <br />

<br />

k<br />

1 p<br />

<br />

p<br />

i1 i1<br />

q<br />

s<br />

i k<br />

p<br />

Ai i<br />

<br />

i1 i1<br />

f p ; 0;z U .<br />

For convenience, we write<br />

<br />

1, A1 ,..., q, A ;<br />

<br />

<br />

<br />

q<br />

p, q, s 1, A1 , B1 f z<br />

p, q,<br />

s<br />

<br />

f z.<br />

<br />

1, B1 ,..., s,<br />

Bs<br />

<br />

<br />

One can easily verify from 1.8 that<br />

<br />

1, , <br />

<br />

1 p, q, s 1 1 1<br />

zA A B f z<br />

<br />

<br />

, A , B f z<br />

<br />

1 p, q, s 1 1 1<br />

( pA ) <br />

<br />

1 1 p, q,<br />

s<br />

<br />

<br />

and<br />

<br />

<br />

<br />

1, A , B f z ( A 0)<br />

1 1 1 1<br />

a z<br />

<br />

<br />

<br />

1<br />

p, q, s<br />

1, 1, 1<br />

<br />

p, q, s 1, 1,<br />

1 <br />

z A B f z A B f z<br />

<br />

<br />

p, q, s 1 1 1<br />

k<br />

k<br />

(1.9)<br />

( p) , A , B f z ( 0). (1.10)<br />

Specializing the parameters p, q, s, A ( i 1,..., q),<br />

B ( i 1,..., s)<br />

and in (1.8) we have:<br />

i<br />

(i) For A 1( i 1,..., q),<br />

B 1( i 1,..., s)<br />

and<br />

i<br />

p p, p , we have<br />

<br />

,1,1 f z M ( ) f ( z),<br />

<br />

p<br />

<br />

p, q, s 1 p, q, s 1<br />

<br />

where the operator M p,q,s 1 was introduced<br />

by Patel and Patil [21] and Mostafa [17];<br />

(ii) For A i = 1,…,q), B i = 1(I = 1,…,s),<br />

q 2, s 1,<br />

n p n p, p <br />

1<br />

i<br />

i<br />

and 2 1 ( 0) , we have<br />

<br />

<br />

<br />

p,2,1 n p, ; f z Inp<br />

1, <br />

f ( z),<br />

where the operator I np1, was introduced by<br />

Aouf and Xu [5] which for p 1 reduces to<br />

I n, n 1, 0 , where the operator I n,<br />

was introduced by Yuan et al. [28];<br />

(iii) For A 1( i 1,..., q), B 1( i 1,..., s),<br />

i<br />

n p n p,p N, q 2, s 1 and<br />

n<br />

p<br />

we have [1,1;1] ( )<br />

,2,1<br />

f z <br />

D<br />

1 2 1<br />

1,<br />

np1<br />

f ( z),<br />

where the operator<br />

i<br />

p<br />

n p 1<br />

D <br />

introduced by Yang [26] and Aouf ([1] and [2]);<br />

was<br />

<br />

(iv) For p 1, we have 1, qs , <br />

1, A1 , B1<br />

f z<br />

<br />

, qs ,<br />

( <br />

1, A1 , B1<br />

) f z,<br />

where the operator<br />

( , A, B)<br />

was introduced by Aouf et al.<br />

, qs , 1 1 1<br />

[4];<br />

(v) For A i 1 i 1,...,q,B i 1 i 1,...,s<br />

<br />

and p 1 , we have <br />

<br />

<br />

,1,1<br />

1, qs , 1<br />

f z <br />

H, qs ,( ) f z , where the operator H ,q,s <br />

was introduced by Cho and Kim [9], Muhamad<br />

[18] and Noor and Muhamad [19].<br />

Also, we note that:<br />

(i) For 1 , then the operator<br />

<br />

1<br />

p, q, s 1 1 1<br />

<br />

, A,<br />

B reduces to the operator<br />

p,q,s 1 ,A 1 ,B 1 , defined by:<br />

<br />

, A , B f ( z)<br />

z<br />

p, q, s 1 1 1<br />

s<br />

<br />

p<br />

k<br />

p<br />

B <br />

<br />

i i i<br />

i1 i1<br />

q<br />

s<br />

k<br />

1 p<br />

i i i<br />

i1 i1<br />

<br />

<br />

k<br />

p<br />

A <br />

q<br />

az<br />

(ii) For A i 1 i 1,...,q,B i 1 i 1,...,s<br />

1<br />

and 1 , then the operator <br />

<br />

reduces to the operator <br />

<br />

N p,q,s 1 fz z p <br />

k1p<br />

k<br />

k<br />

,<br />

,<br />

p, q, s 1<br />

p q s<br />

, , 1 ,1,1<br />

N defined by:<br />

1 kp ... s kp<br />

1 kp ... q kp<br />

a k z k


48 M.K. Aouf et al<br />

<br />

<br />

0<br />

( Z {0, 1, 2,...};<br />

i<br />

i 1,2,..., q ; p ).<br />

<br />

<br />

Next, by using the operator , A,<br />

B <br />

,<br />

p, q, s 1 1 1<br />

we introduce the following classes <strong>of</strong><br />

meromorphic functions for 0 , p, 0<br />

In this paper we investigate several properties<br />

<strong>of</strong> the classes MS p,q,s<br />

<br />

<br />

1 ,A 1 ,B 1 ,;, MK p,q,s 1 ,<br />

<br />

A 1 ,B 1 ;;, MC p,q,s 1 ,A 1 ,B 1 ;,;, and<br />

MC p,q,s 1 ,A 1 ,B 1 ;,;, associated with<br />

<br />

, A, B . Some applications<br />

the operator <br />

p, q, s 1 1 1<br />

involving integral operator are also considered.<br />

and , S :<br />

<br />

MS p, q, s 1 A1 B1<br />

<br />

<br />

<br />

( , , ; ; )<br />

<br />

<br />

p p, q, s 1 1 1<br />

p<br />

f : , A , B f MS ( ; ) ,<br />

MK<br />

<br />

<br />

p, q, s 1 A1 B1<br />

( , , ; ; )<br />

<br />

<br />

p p, q, s 1 1 1<br />

p<br />

f : , A , B f MK ( ; ) ,<br />

MC<br />

<br />

<br />

p, q, s 1 A1 B1<br />

( , , ; , ; , )<br />

<br />

<br />

p p, q, s 1 1 1<br />

p<br />

f : , A , B f MC ( , ; , )<br />

and<br />

MC<br />

<br />

<br />

p, q, s 1 A1 B1<br />

( , , ; , ; , )<br />

<br />

<br />

<br />

p p, q, s 1 1 1<br />

p<br />

f : , A , B f MC ( , ; , ) .<br />

We can easily see that:<br />

f ( z) MK ( , A , B ; ; )<br />

zf ( z)<br />

MS<br />

p<br />

and<br />

<br />

p, q, s 1 1 1<br />

<br />

<br />

p, q, s 1 1 1<br />

<br />

<br />

<br />

( , A , B ; ; )<br />

(1.11)<br />

<br />

p, q, s 1 1 1<br />

f ( z) MC ( , A , B ; , ; , )<br />

zf ( z)<br />

MC<br />

p<br />

MS<br />

( , A , B ; , ; , ).<br />

(1.12)<br />

<br />

p, q, s 1 1 1<br />

In particular, for 1 B A 1,<br />

we set<br />

1<br />

Az<br />

( , , ; ; )<br />

1 Bz<br />

<br />

p, q, s 1 A1 B1<br />

<br />

p, q, s 1 1 1<br />

MS ( , A , B ; ; A, B)<br />

and<br />

MK<br />

1<br />

Az<br />

( , , ; ; ) <br />

1<br />

Bz<br />

<br />

p, q, s 1 A1 B1<br />

<br />

p, q, s 1 1 1<br />

MK ( , A , B ; ; A, B).<br />

<br />

<br />

<br />

<br />

2. INCLUSION PROPERTIES INVOLVING<br />

<br />

<br />

THE OPERATOR <br />

, A,<br />

B<br />

p, q, s 1 1 1<br />

In order to prove our results, we need the<br />

following lemmas.<br />

Lemma 1 [12]. Let be convex univalent in U<br />

with 0 1 and Relz 0 l, .<br />

If q is analytic in U with q0 1, then<br />

qz <br />

implies<br />

qz z .<br />

zq z<br />

lqz z ,<br />

Lemma 2 [15]. Let be convex univalent in U<br />

and be analytic in U with Rez 0.<br />

If q is analytic in U and q0 0, then<br />

qz zzq z z ,<br />

implies<br />

qz z .<br />

Theorem 1. Let S with<br />

1<br />

<br />

p<br />

p<br />

A1<br />

maxRe ( ) <br />

<br />

z min ,<br />

zU<br />

p<br />

p<br />

<br />

<br />

<br />

<br />

1<br />

( , 0,0 p).<br />

A1<br />

Then<br />

MS<br />

1<br />

p, q, s 1 A1 B1<br />

( , , ; ; )<br />

<br />

p, q, s 1 A1 B1<br />

MS ( , , ; ; )<br />

<br />

p, q, s 1 A1 B1<br />

MS ( 1, , ; ; ).


Inclusion Properties <strong>of</strong> p-Valent Meromorphic Functions 49<br />

Pro<strong>of</strong>. To prove the first part, let<br />

1<br />

f MS ( , A , B ; ; )<br />

and set<br />

p, q, s 1 1 1<br />

<br />

<br />

<br />

<br />

1 z p, q, s<br />

1, A1 , B1<br />

f ( z)<br />

<br />

q( z) <br />

( z U),<br />

p <br />

A B f z <br />

<br />

<br />

<br />

<br />

<br />

<br />

p, q, s<br />

1, 1, 1<br />

( )<br />

<br />

(2.1)<br />

where q is analytic in U with q (0) 1.<br />

Applying (1.10) in (2.1), we obtain<br />

<br />

<br />

<br />

<br />

<br />

1<br />

1 z p, q, s<br />

1, A1 , B1<br />

f ( z)<br />

<br />

p <br />

A B f z<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

<br />

p, q, s<br />

1, 1, 1<br />

( )<br />

<br />

zq( z)<br />

q( z) ( z U<br />

).<br />

( p ) q( z)<br />

p <br />

Since <br />

z <br />

p<br />

maxRe ( ) , we see that<br />

zU<br />

p<br />

(2.2)<br />

Rep qz p 0 z U.<br />

Applying Lemma 1 to (2.2), it follows that<br />

<br />

q( z) ( z)<br />

, that is f ( z) MS<br />

p, q, s( 1, A1 , B1<br />

, ; )<br />

. Moreover, by using the arguments similar to<br />

those detailed above with (1.9), we can prove the<br />

second part. Therefore the pro<strong>of</strong> is completed.<br />

Theorem 2. Let S with<br />

<br />

maxRe ( z)<br />

zU<br />

<br />

1<br />

<br />

p<br />

1 1<br />

min , A p<br />

<br />

<br />

( , 0,0 p).<br />

p<br />

p<br />

<br />

A1<br />

<br />

<br />

Then<br />

MK<br />

MK<br />

1<br />

p, q, s 1 A1 B1<br />

( , , ; ; )<br />

<br />

p, q, s 1 A1 B1<br />

( , , ; ; )<br />

<br />

p, q, s 1 A1 B1<br />

MK ( 1, , ; ; ).<br />

Pro<strong>of</strong>. Applying (1.11) and using Theorem 1, we<br />

observe that<br />

1<br />

p, q, s 1 1 1<br />

f ( z) MK ( , A , B ; ; )<br />

zf ()<br />

z 1<br />

MS p, q, s ( 1, A1 , B1<br />

; ; )<br />

p<br />

zf ()<br />

z <br />

MS p, q, s ( 1, A1 , B1<br />

; ; )<br />

p<br />

<br />

p, q, s 1 1 1<br />

f ( z) MK ( , A , B ; ; ).<br />

Also<br />

<br />

p, q, s 1 1 1<br />

f ( z) MK ( , A , B ; ; )<br />

zf ()<br />

z <br />

MS p, q, s ( 1, A1 , B1<br />

; ; )<br />

p<br />

zf ()<br />

z <br />

MS p, q, s ( 1 1, A1 , B1<br />

; ; )<br />

p<br />

<br />

p, q, s 1 1 1<br />

f ( z) MK ( 1, A , B ; ; ),<br />

which evidently proves Theorem 2.<br />

Taking<br />

1<br />

Az<br />

(z) 1 B A 1 ,<br />

1<br />

Bz<br />

in Theorem 1 and Theorem 2, we have<br />

Corollary 1. Let<br />

<br />

1<br />

1<br />

p 1<br />

1<br />

min , A p<br />

A<br />

<br />

<br />

<br />

<br />

B<br />

<br />

p p<br />

1<br />

( , A<br />

0,0 <br />

p, 1 B A 1).<br />

1<br />

Then<br />

1<br />

p, q, s 1 1 1<br />

MS ( , A , B ; ; A, B)<br />

<br />

p, q, s 1 1 1<br />

MS ( , A , B ; ; A, B)<br />

<br />

p, q, s 1 1 1<br />

MS ( 1, A , B ; ; A, B),<br />

and<br />

1<br />

p, q, s 1 1 1<br />

MK ( , A , B ; ; A, B)<br />

<br />

p, q, s 1 1 1<br />

MK ( , A , B ; ; A, B)<br />

<br />

p, q, s 1 1 1<br />

MK ( 1, A , B ; ; A, B).<br />

Next, by using Lemma 2, we obtain the following<br />

<br />

inclusion relations for the class MC p,q,s 1 ,A 1 ,<br />

B 1 ;,;,.<br />

Theorem 3. Let , S with maxRe{ ( z)}<br />

<br />

<br />

1<br />

<br />

1<br />

p<br />

p<br />

min , A p<br />

MC<br />

p<br />

1<br />

p, q, s 1 A1 B1<br />

<br />

( , , ; , ; , )<br />

<br />

p, q, s 1 A1 B1<br />

MC ( , , ; , ; , )<br />

<br />

p, q, s 1 A1 B1<br />

MC ( 1, , ; , ; , ).<br />

zU<br />

1<br />

( , A<br />

0, 0 , p).<br />

1<br />

Then


50 M.K. Aouf et al<br />

Pro<strong>of</strong>. To prove the first inclusion, let<br />

fz MC 1 p,q,s 1 , A 1 ,B 1 ;,;,. Then,<br />

1<br />

from the definition <strong>of</strong> MC ( , A , B ; , ; , ),<br />

p, q, s 1 1 1<br />

there exists a function gz MS 1 p,q,s 1 ,A 1 ,B 1 ;;<br />

such that<br />

1<br />

p <br />

Let<br />

z p,q,s<br />

1 1 ,A 1 ,B 1 fz <br />

1 p,q,s 1 ,A 1 ,B 1 gz<br />

<br />

<br />

<br />

<br />

<br />

z( , A , B f ( z))<br />

<br />

q z z U<br />

<br />

z.<br />

<br />

<br />

1<br />

p, q, s 1 1 1<br />

( ) <br />

(<br />

<br />

p <br />

p, q, s<br />

1, A1 , B1<br />

g( z)<br />

<br />

),<br />

(2.3)<br />

where qz is analytic function in U with<br />

q(0) 1 . Using (1.10), we have<br />

<br />

<br />

p, q, s 1 1 1<br />

<br />

<br />

<br />

p, q, s 1 1 1<br />

[ ( p ) q( z) ] , A , B g( z)<br />

( + p) , A , B f ( z)<br />

<br />

, , ( ). (2.4)<br />

1<br />

p, q, s 1<br />

A1 B1<br />

f z<br />

Differentiating (2.4) with respect to<br />

multiplying by z , we obtain<br />

<br />

<br />

p, q, s 1 1 1<br />

( p ) zq( z) , A , B g( z)<br />

<br />

<br />

<br />

<br />

p, q, s 1 1 1<br />

[ ( p ) q( z) ] z( , A , B g( z))<br />

<br />

<br />

1<br />

p, q, s 1 1 1<br />

z( , A , B f ( z))<br />

<br />

<br />

<br />

<br />

p, q, s 1 1 1<br />

( + p) z( , A , B f ( z)) .<br />

Since<br />

1 1 1<br />

<br />

<br />

<br />

z and<br />

g( z) MS ( , A , B ; ; ) MS<br />

1<br />

<br />

p, q, s 1 1 1 p, q,<br />

s<br />

( , A, B; ; ), by Theorem 1, we set<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

p, q, s 1 1 1<br />

( z) <br />

,<br />

<br />

p <br />

p, q, s<br />

1, A1 , B1<br />

g( z)<br />

<br />

<br />

<br />

z( , A , B g( z))<br />

<br />

<br />

(2.5)<br />

where ( z) ( z)<br />

in U with the assumption<br />

S . Then, by using (2.3), (2.4) and (2.5), we<br />

have<br />

<br />

<br />

<br />

1<br />

1 <br />

<br />

z( p, q, s<br />

1, A1 , B1<br />

f ( z))<br />

<br />

<br />

<br />

1<br />

p <br />

p, q, s<br />

1, A1 , B1<br />

g( z)<br />

<br />

<br />

<br />

zq ( z)<br />

q( z) ( z).<br />

( p ) ( z)<br />

p <br />

<br />

<br />

(2.6)<br />

Since 0 and ( z) ( z)<br />

in U<br />

p<br />

with maxRe{ ( z)} , then<br />

zU<br />

p<br />

Rep z p 0 z U.<br />

Hence, by taking<br />

z 1<br />

p z p ,<br />

in (2.6) and applying Lemma 2, we have<br />

q( z) ( z)<br />

in U , so that<br />

<br />

f ( z) MC ( , A , B ; , ; , ). The second<br />

p, q, s 1 1 1<br />

inclusion can be proved by using arguments<br />

similar to those detailed above with (1.9). This<br />

compelets the pro<strong>of</strong> <strong>of</strong> Theorem 3.<br />

Theorem 4. Let , S with<br />

<br />

1<br />

1<br />

p<br />

maxRe{ ( )} min , A p<br />

z <br />

zU<br />

1<br />

( , A<br />

0, 0 , p).<br />

1<br />

Then<br />

MC<br />

1<br />

p, q, s 1 A1 B1<br />

( , , ; , ; , )<br />

<br />

p, q, s 1 A1 B1<br />

<br />

p, q, s 1 A1 B1<br />

p<br />

MC ( , , ; , ; , )<br />

MC ( 1, , ; , ; , ).<br />

<br />

p<br />

Pro<strong>of</strong>. Just as we derived Theorem 2 as a<br />

consequence <strong>of</strong> Theorem 1 by using the<br />

equivalence (1.11), we can also prove Theorem 4<br />

by using Theorem 3 in conjunction with the<br />

equivalence (1.12).<br />

3. PROPERTIES FOR THE INTEGRAL<br />

OPERATOR<br />

F , p<br />

Let F , p<br />

be the integral operator defined by (see<br />

[14] and [27]):<br />

z<br />

p1<br />

,<br />

p<br />

( )( ) <br />

( )<br />

<br />

p<br />

z<br />

<br />

0<br />

F f z t f t dt<br />

<br />

p k<br />

( z z ) f ( z)<br />

k<br />

p<br />

k<br />

1 p<br />

<br />

(3.1)


Inclusion Properties <strong>of</strong> p-Valent Meromorphic Functions 51<br />

f p ; 0;z U .<br />

From (3.1), we observe that<br />

<br />

<br />

<br />

p<br />

f z<br />

<br />

<br />

p, q, s 1 1 1 ,<br />

z( , A , B F ( f )( z))<br />

<br />

p, q, s 1 A1 B1<br />

, , ( ) <br />

<br />

p, q, s 1 1 1 ,<br />

p<br />

( p) , A , B F ( f )( z) 0 .<br />

The pro<strong>of</strong> <strong>of</strong> Theorem 5 below, is much akin<br />

to that <strong>of</strong> Theorem 1, so, we omit it.<br />

Theorem 5. Let S with<br />

p<br />

maxRe{ ( z)}<br />

( 0, 0 <br />

p).<br />

If<br />

zU<br />

p<br />

f ( z) MS ( , A , B ; ; ),<br />

then<br />

<br />

p, q, s 1 1 1<br />

F ( f )( z) MS ( , A , B ; ; ).<br />

<br />

, p<br />

<br />

p, q, s<br />

1 1 1<br />

<br />

Next, we derive an inclusion property<br />

involving F <br />

, which is obtained by applying<br />

, p<br />

(1.11) and Theorem 1.<br />

Theorem 6. Let S with maxRe{ ( z )} <br />

zU<br />

p<br />

p<br />

0, 0 p.<br />

<br />

If f ( z) MK<br />

p, q, s( 1, A1 , B1<br />

; ; ),<br />

<br />

then F<br />

, p<br />

f z MK<br />

p, q, s 1<br />

A1 B1<br />

<br />

( )( ) ( , , ; ; ).<br />

1<br />

Taking ( z) A<br />

1B<br />

( 1 B A 1) and from<br />

Theorems 5 and 6, we have<br />

Corollary 2. Let<br />

1<br />

A<br />

1B<br />

( 0, 0 <br />

p<br />

p<br />

p, 1 B A 1).<br />

Then if f z MS <br />

<br />

, ,<br />

( , A , B ; ; A, B)<br />

(or<br />

then<br />

1 1 1<br />

<br />

p, q, s 1 1 1<br />

<br />

, p<br />

p, q, s<br />

1 1 1<br />

<br />

()<br />

p q s<br />

MK ( , A , B ; ; A, B))<br />

,<br />

F ( f )( z) MS ( , A , B ; ; A, B)<br />

(or<br />

MK ( , A , B ; ; A, B)).<br />

<br />

p, q, s 1 1 1<br />

Finally, we obtain Theorems 7 and 8 below by<br />

using the same techniques as in the pro<strong>of</strong> <strong>of</strong><br />

Theorems 3 and 4.<br />

Theorem 7. Let , S with<br />

p<br />

maxRe{ ( z)}<br />

<br />

zU<br />

p<br />

0, 0 , p. If f z MC <br />

, ,<br />

() p q s<br />

<br />

1 A1 B1<br />

then<br />

, p<br />

p, q,<br />

s<br />

( , , ; , ; , ),<br />

( , A, B; , ; , ).<br />

1 1 1<br />

F ( f )( z)<br />

MC<br />

Theorem 8. Let , S with maxRe{ ( z)}<br />

p<br />

<br />

p<br />

MC<br />

zU<br />

f z <br />

<br />

0, 0 , p. If ()<br />

<br />

p, q, s ( 1 , A1 , B1<br />

; , ; , ),<br />

1 1 1<br />

then F , p ( f )( z)<br />

MC <br />

, ,<br />

( , A, B; , ; , ).<br />

p q s<br />

Remark 1. (i) If we take p 1, A n 1<br />

n 1,...,q and B n 1 n 1,...,s in<br />

the above results <strong>of</strong> this paper, we obtain the<br />

results obtained by Cho and Kim [9];<br />

(ii) If we take p 1 , 1( 1,..., ),<br />

Ai<br />

i q Bi<br />

1( i 1,..., s), q 2, s 1, n 1( n 1) and<br />

2 1 0 in the above results <strong>of</strong><br />

this paper, we obtain the results obtained by Yuan<br />

et al. [28];<br />

(iii) If we take p 1 in the above results <strong>of</strong> this<br />

paper, we obtain the results obtained by Aouf et<br />

al. [4].<br />

Remark 2. Specializing the parameters<br />

p, q, s, Ai<br />

( i 1,..., q), Bi<br />

( i 1,..., s)<br />

and in<br />

the above results <strong>of</strong> this paper, we obtain the<br />

results for the corresponding operators<br />

<br />

n p 1<br />

M ( ), I<br />

<br />

and<br />

which are<br />

p, q, s 1 n p 1, <br />

defined in the introduction.<br />

4. CONCLUSIONS<br />

1<br />

D <br />

In this paper, using the Wright generalized<br />

hypergeometric function we define a new operator<br />

which contains many other operators as special<br />

cases <strong>of</strong> it. Also, we define some classes <strong>of</strong><br />

meromorphic functions associated to this operator<br />

by using the principle <strong>of</strong> subordination and<br />

investigate several inclusion properties <strong>of</strong> these<br />

classes. Some applications involving integral<br />

operator are also considered. Our results<br />

generalize many previous results.<br />

5. ACKNOWLEDGEMENTS<br />

The authors would like to thank the referees <strong>of</strong> the<br />

paper for their helpful suggestions.


52 M.K. Aouf et al<br />

6. REFERENCES<br />

1. Aouf, M.K. New criteria for multivalent<br />

meromorphic starlike functions <strong>of</strong> order Alpha.<br />

Proc. Japan Acad., Ser. A, Math. Sci. 69: 66-70<br />

(1993).<br />

2. Aouf, M.K. A new criterion for meromorphically<br />

p-valent convex functions <strong>of</strong> order Alpha. Math.<br />

Sci. Research Hot-Line 1 (8): 7-12 (1997).<br />

3. Aouf, M.K. & J. Dziok. Distortion and<br />

convolutional theorems for operators <strong>of</strong><br />

generalized hypergeometric functional calculus<br />

involving Wright function. J. Appl. Anal. 14: 183-<br />

192 (2008).<br />

4. Aouf, M.K., A. Shamandy, A.O. Mostafa & F.Z<br />

El-Emam. Inclusion properties <strong>of</strong> certain classes <strong>of</strong><br />

meromorphic functions associated with the Wright<br />

generalized hypergeometric function. Comput.<br />

Math. Appl. 61: 1419-1424 (2011).<br />

5. Aouf, M.K. & N.E. Xu. Some inclusion<br />

relationships and integral-preserving properties <strong>of</strong><br />

certain subclasses <strong>of</strong> p-valent meromorphic<br />

functions. Comput. Math. Appl. 61: 642-650<br />

(2011).<br />

6. Bajpai, S.K. A note on a class <strong>of</strong> meromorphic<br />

univalent functions. Rev. Roum. Math. Pure Appl.<br />

22: 295-297 (1977).<br />

7. Bansal, S.K., J. Dziok & P. Goswami. Certain<br />

results for a subclass <strong>of</strong> meromorphic multivalent<br />

functions associated with Wright function.<br />

European J. Pure Appl. Math. 3 (4): 633-640<br />

(2010).<br />

8. Bulboacă, T. Differential Subordinations and<br />

Superordinations. Recent Results. House <strong>of</strong><br />

Scientific Book Publ., Cluj-Napoca (2005).<br />

9. Cho, N.E. & I.H. Kim. Inclusion properties <strong>of</strong><br />

certain classes <strong>of</strong> meromorphic functions<br />

associated with the generalized hypergeometric<br />

function. Appl. Math. Comput. 187: 115-121<br />

(2007).<br />

10. Dziok, J. & R.K. Raina. Families <strong>of</strong> analytic<br />

functions associated with the Wright generalized<br />

hypergeometric function. Demonstratio Math. 37<br />

(3): 533-542 (2004).<br />

11. Dziok, J., R.K. Raina & H.M. Srivastava. Some<br />

classes <strong>of</strong> analytic functions associated with<br />

operators on Hilbert space involving Wright<br />

hypergeometric function. Proc. Jangieon Math.<br />

Soc. 7: 43-55 (2004).<br />

12. Enigenberg, P. S.S. Miller, P.T. Mocanu, & M.O.<br />

Reade. On a Briot-Bouquet differential<br />

subordination. General Inequalities 3: 339-348<br />

(1983).<br />

13. Goel, R.M. & N.S. Sohi. On a class <strong>of</strong><br />

meromorphic functions. Glas. Math. 17: 19-28<br />

(1981).<br />

14. Kumar, V. & S.L. Shukla. Certain integrals for<br />

classes <strong>of</strong> p-valent meromorphic functions. Bull<br />

Austral. Math. Soc. 25: 85-97 (1982).<br />

15. Miller, S.S. & P.T. Mocanu. Differential<br />

subordinations and univalent functions. Michigan<br />

Math. J. 28: 157-171(1981).<br />

16. Miller, S.S. & P.T. Mocanu. Differential<br />

Subordination: Theory and Applications. In: Series<br />

on Monographs and Textbooks in Pure and<br />

Applied Mathematics Vol. 225. Marcel Dekker,<br />

New York (2000).<br />

17. Mostafa, A.O. Applications <strong>of</strong> differential<br />

subordination to certain subclasses <strong>of</strong> p-valent<br />

meromophic functions involving certain operator.<br />

Math. Comput. Modelling 54: 1486-1498 (2011).<br />

18. Muhamad, A. On certain class <strong>of</strong> meromorphic<br />

functions defined by means <strong>of</strong> a linear operator.<br />

Acta Univ. Apulensis 23: 251-262 (2010).<br />

19. Noor, K.I. & A. Muhamad. On certain subclasses<br />

<strong>of</strong> meromorphic univalent functions. Bull. Inst.<br />

Math. Acad. Sinica 5 (1): 83-94 (2010).<br />

20. Owa, S. & H.M. Srivastava. Univalent and starlike<br />

generalized hypergeometric functions. Canad. J.<br />

Math. 39: 1057-1077 (1987).<br />

21. Patel, J. & A.K. Patil. On certain subclasses <strong>of</strong><br />

meromorphically multivalent functions associated<br />

with the generalized hypergeometric function. J.<br />

Inequal. Pure Appli. Math. 10(1) (Art 13): 1-33<br />

(2009).<br />

22. Singh, R. Meromorphic close-to-convex functions.<br />

J. Indian Math. Soc. 33: 13-20 (1969).<br />

23. Srivastava, H.M. & P.W. Karlsson. Multiple<br />

Gaussian Hypergeometric Series. Halsted Press<br />

(Ellis Horwood Ltd, Chichester); John Wiley and<br />

Sons, New York (1985).<br />

24. Srivastava, H.M. & S. Owa. Some<br />

characterizations and distortions theorems<br />

involving fractional calculus, generalized<br />

hypergeometric functions, Hadmard products,<br />

linear operators and certain subclasses <strong>of</strong> analytic<br />

functions. Nagoya Math. J. 106: 1-28 (1987).<br />

25. Wright, E.M. The asymptotic expansion <strong>of</strong> the<br />

generalized hypergeometric function. Proc.<br />

London Math. Soc. 46: 389-408 (1946).<br />

26. Yang, D.G. On new subclasses <strong>of</strong> meromorphic p-<br />

valent functions. J. Math. Res. Exposition 15: 7-13<br />

(1995).<br />

27. Yang, D. On a class <strong>of</strong> meromorphic starlike<br />

multivalent functions. Bull. Inst. Math. Acad.<br />

Sinica 24: 151-157 (1996).<br />

28. Yuan, S.M., Z.M. Liu & H.M. Srivastava. Some<br />

inclusion relationships and integral-preserving<br />

properties <strong>of</strong> certain subclasses <strong>of</strong> meromorphic<br />

functions associated with a family <strong>of</strong> integral<br />

operators. J. Math. Anal. Appl. 337: 505-515 (2008).


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 53-61 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Original Article<br />

Some Inclusion Properties <strong>of</strong> Certain Operators<br />

M.K. Aouf 1 , R.M. El-Ashwah 1 and E.E. Ali 1,2*<br />

1 Mathematics Department, Faculty <strong>of</strong> Science, Mansoura University, Mansoura 33516, Egypt<br />

2 Mathematics Department, Faculty <strong>of</strong> Science, University <strong>of</strong> Hail, Kingdome <strong>of</strong> Saudi Arabia<br />

Abstract: In this paper we introduce several new subclasses <strong>of</strong> analytic p vhalent functions which are<br />

defined by means <strong>of</strong> a general integral operators I ( a,<br />

b,<br />

c)<br />

( a,<br />

b,<br />

c <br />

\ Z<br />

<br />

, p,<br />

p )<br />

and<br />

,<br />

p<br />

0<br />

investigate various inclusion properties <strong>of</strong> these subclasses. Many interesting applications involving these<br />

and other families <strong>of</strong> p valent operators are also considered.<br />

Keywords: Analytic function, starlike <strong>of</strong> order ,<br />

convex <strong>of</strong> order , subordinate, Hadamard product,<br />

integral operator.<br />

2000 Mathematics Subject Classification : 30C45<br />

1. INTRODUCTION<br />

Let A( p)<br />

denote the class <strong>of</strong> functions <strong>of</strong> the form:<br />

f ( z)<br />

z<br />

p<br />

<br />

a<br />

k1<br />

k<br />

p<br />

z<br />

k<br />

p<br />

( p {1,2,...}),<br />

(1.1)<br />

which are analytic and p valent in the open unit<br />

disc U { z :| z | 1}<br />

. A function f ( z)<br />

A(<br />

p)<br />

is<br />

said to be in the class S <br />

( ) <strong>of</strong> p valently<br />

starlike <strong>of</strong> order , if it satisfies<br />

zf (<br />

z)<br />

<br />

Re<br />

<br />

f ( z)<br />

<br />

<br />

We write<br />

p<br />

(0 p;<br />

z U).<br />

(1.2)<br />

S ( 0)<br />

S , the class <strong>of</strong> p valently<br />

<br />

p<br />

<br />

p<br />

starlike in U . A function f ( z)<br />

A(<br />

p)<br />

is said to<br />

be in the class K p( ) <strong>of</strong> p valently convex <strong>of</strong><br />

order , if it satisfies<br />

It follows form (1.2) and (1.3) that<br />

zf (<br />

z)<br />

<br />

f ( z)<br />

K<br />

p(<br />

) S<br />

p(<br />

)<br />

(0 <br />

p) . (1.4)<br />

p<br />

The classes S <br />

p(<br />

) and K p( ) were studied by<br />

Owa [1] and Patil and Thakare [2].<br />

Furthermore, a function f ( z)<br />

A(<br />

p)<br />

is said<br />

to be p valently close-to-convex functions <strong>of</strong><br />

order and type in U , if there exists a<br />

<br />

function g ( z)<br />

S ( ) such that<br />

zf (<br />

z)<br />

<br />

Re<br />

<br />

g(<br />

z)<br />

<br />

<br />

p<br />

(0 ,<br />

p;<br />

z U) . (1.5)<br />

We denote by B ( ,<br />

) , the subclass <strong>of</strong> A ( p)<br />

p<br />

consisting <strong>of</strong> all such functions. The class<br />

B ( ,<br />

) was studied by Aouf [3].<br />

p<br />

zf ( z)<br />

<br />

Re1<br />

<br />

f (<br />

z)<br />

<br />

<br />

(0 p;<br />

z U).<br />

(1.3)<br />

――――――――――――――――<br />

Received, January <strong>2012</strong>; Accepted, March <strong>2012</strong><br />

*Corresponding author, E.E. Ali; E-mail: ekram_008eg@yahoo.com<br />

Suppose that f (z)<br />

and g (z)<br />

are analytic in<br />

U . Then we say that the function g (z)<br />

is<br />

subordinate to f (z)<br />

if there exists an analytic


54 M.K. Aouf et al<br />

function w(z)<br />

in U with w( z)<br />

z for all<br />

z U , such that ( z)<br />

f ( w(<br />

z))<br />

g , denoted<br />

g f <strong>of</strong> g( z)<br />

f ( z)<br />

. In case f (z)<br />

is univalent<br />

in U we have that the subordination g( z)<br />

f ( z)<br />

is equivalent to g( 0) f (0)<br />

and g( U)<br />

f ( U)<br />

(see [4]; see also [5],[6, p. 4]).<br />

For the functions f j<br />

( z)<br />

( j 1,2)<br />

defined by<br />

<br />

p<br />

k<br />

p<br />

f<br />

j<br />

( z)<br />

z ak<br />

p,<br />

jz<br />

( p)<br />

(1.6)<br />

k1<br />

we denote the Hadamard product (or convolution)<br />

<strong>of</strong> f 1(<br />

z ) and f ( z)<br />

by 2<br />

<br />

p<br />

k<br />

p<br />

f f )( z)<br />

z a a z . (1.7)<br />

(<br />

1 2<br />

k<br />

p,1<br />

k<br />

p,<br />

2<br />

k1<br />

Let M be the class <strong>of</strong> analytic functions<br />

(z) in U normalized by ( 0) 1, and let S be<br />

the subclass <strong>of</strong> M consisting <strong>of</strong> those functions<br />

(z) which are univalent in U and for which<br />

(U) is convex and Re ( z)<br />

0 ( zU)<br />

.<br />

Making use <strong>of</strong> the principle <strong>of</strong> subordination<br />

between analytic functions, we introduce the<br />

subclasses S ( ),<br />

K ( )<br />

and C ( ,<br />

) <strong>of</strong> the<br />

p<br />

p<br />

class A ( p)<br />

for , S , which are defined by<br />

<br />

zf (<br />

z)<br />

<br />

S p<br />

( )<br />

f : f A(<br />

p)<br />

and (<br />

z)<br />

in U ,<br />

<br />

pf ( z)<br />

<br />

<br />

1 zf ( z)<br />

<br />

<br />

K p<br />

( )<br />

f : f A(<br />

p)<br />

and 1<br />

(<br />

z)<br />

in U ,<br />

<br />

p f (<br />

z)<br />

<br />

<br />

f : f A( p) and h <br />

<br />

<br />

Cp<br />

( , ) f()<br />

z<br />

.<br />

<br />

K p ( ) s. t. ( z) in U<br />

h()<br />

z<br />

<br />

<br />

<br />

p<br />

1<br />

z <br />

Kp<br />

Kp<br />

,<br />

1<br />

z <br />

p ( p 2 )<br />

z <br />

K p<br />

K p( ) (0 p),<br />

1<br />

z <br />

1z<br />

1z Cp<br />

, Cp<br />

,<br />

1z<br />

1z<br />

p ( p 2 ) z p ( p 2 )<br />

z <br />

Cp<br />

, Cp( , ) (0 , p).<br />

1z<br />

1z<br />

<br />

<br />

Furthermore, for the function classes S p<br />

[ A,<br />

B,<br />

]<br />

and K p<br />

[ A,<br />

B,<br />

]<br />

investigated by Aouf ([9, 10], it is<br />

easily seen that<br />

1[<br />

B(<br />

AB)(1<br />

)]<br />

<br />

p <br />

S<br />

p<br />

1<br />

Bz S<br />

p[<br />

A,<br />

B,<br />

] ( 1<br />

B A 1;0<br />

p)<br />

<br />

(see Aouf [9]),<br />

And<br />

1[<br />

B(<br />

AB)(1<br />

)]<br />

p <br />

K<br />

p<br />

1<br />

Bz K<br />

p[<br />

A,<br />

B,<br />

] ( 1<br />

B A 1;0<br />

p)<br />

<br />

(see Aouf [10]).<br />

For real or complex number a , b,<br />

c other than<br />

0,<br />

1, 2,...<br />

, the hypergeometric series is defined<br />

by<br />

( a)<br />

k<br />

( b)<br />

k k<br />

2<br />

F1<br />

( a,<br />

b;<br />

c;<br />

z)<br />

<br />

z ,<br />

(1.8)<br />

k0<br />

( c)<br />

(1)<br />

k<br />

where ( x)<br />

k<br />

is Pochhammer symbol defined by<br />

k<br />

(<br />

x k)<br />

x(<br />

x 1)...(<br />

x k 1)<br />

( k N;<br />

xC),<br />

( x)<br />

k<br />

<br />

(<br />

x)<br />

1<br />

( k 0; k C<br />

\{0}).<br />

We note that the series (1.8) converges<br />

We note that for p 1, the classes<br />

S<br />

<br />

1<br />

( )<br />

S<br />

<br />

( ),<br />

K1(<br />

)<br />

K(<br />

)<br />

and<br />

C1 ( ,<br />

C(<br />

,<br />

) are investigated by Ma and<br />

Minda [7] and Kim et al [8].<br />

Obviously, for special choices for the<br />

functions and involved in the above<br />

definitions, we have the following relationships:<br />

1<br />

z <br />

Sp<br />

Sp<br />

,<br />

1<br />

z <br />

p ( p 2 )<br />

z <br />

S p<br />

S p( ) (0 p),<br />

1<br />

z <br />

absolutely for all z U so that it represents an<br />

analytic function in U (see, for details, [11,<br />

Chapter 14]).<br />

Now we set<br />

p<br />

z<br />

f , p(<br />

z)<br />

<br />

p<br />

(1 z)<br />

( p)<br />

(1.9)<br />

and define f , p(<br />

z)<br />

by means <strong>of</strong> the Hadamard<br />

product<br />

( 1)<br />

p<br />

f , p( z)<br />

f,<br />

p<br />

( z)<br />

z<br />

2F1<br />

( a,<br />

b;<br />

c;<br />

z)<br />

( zU)<br />

, (1.10)<br />

This leads us to a family <strong>of</strong> linear operators


Inclusion Properties <strong>of</strong> Certain Operators 55<br />

( 1)<br />

, p <br />

,<br />

p<br />

I ( a, b, c) f ( z) f ( z)<br />

<br />

0<br />

( a, b, c R \ Z , p, p , z U).<br />

(1.11)<br />

After some computations, we obtain<br />

<br />

p ( a)<br />

k<br />

( b)<br />

k<br />

k<br />

p<br />

I , p(<br />

a,<br />

b,<br />

c)<br />

f ( z)<br />

z <br />

ak<br />

pz<br />

. (1.12)<br />

k1<br />

( c)<br />

( p)<br />

From (1.12), we deduce that<br />

( a,<br />

p,<br />

a)<br />

f ( z)<br />

f ( z)<br />

( p,<br />

p<br />

I<br />

, p<br />

<br />

and<br />

zf (<br />

z)<br />

I1,<br />

p<br />

( p 1, p 1,<br />

p)<br />

f ( z)<br />

,<br />

p<br />

z( I ( a, b, c) f ( z)) ( p) I ( a, b, c) f ( z)<br />

1, p<br />

,<br />

p<br />

I ( a, b, c) f ( z) ( p),<br />

1,<br />

p<br />

and<br />

z( I ( a, b, c) f ( z)) aI ( a 1, b, c) f ( z)<br />

, p<br />

,<br />

p<br />

( a p) I ( a, b, c) f ( z).<br />

,<br />

p<br />

We note that;<br />

k<br />

k<br />

)<br />

(1.13)<br />

(1.14)<br />

(i) I a,<br />

p 1,<br />

a)<br />

f ( z)<br />

I ( n ) , where<br />

n, p( n<br />

p1<br />

p<br />

I<br />

n p1<br />

is the Noor integral operator <strong>of</strong><br />

( n p 1)<br />

th<br />

order (see Liu and Noor [12]<br />

and Patel and Cho [13]);<br />

n<br />

p1<br />

(ii) I ( p 1,<br />

n p,1)<br />

f ( z)<br />

D f ( z)<br />

( n ) ,<br />

1,<br />

p<br />

p<br />

1<br />

where D n<br />

p<br />

f ( z)<br />

is the ( n p 1)<br />

th<br />

order Ruscheweyh derivative <strong>of</strong> a function<br />

f ( z)<br />

A(<br />

p)<br />

(see Kumar and Shukla [14]);<br />

(iii) I a,2,<br />

a)<br />

f ( z)<br />

I f ( z)<br />

( n 1)<br />

( n , 1 n<br />

<br />

is the Noor integral operator <strong>of</strong><br />

(see [15]);<br />

( ,<br />

p)<br />

(iv) I ( a,<br />

p 1,<br />

a)<br />

f ( z)<br />

f ( )<br />

1<br />

,<br />

p<br />

z<br />

z<br />

( k p 1) ( p 1 )<br />

z ak<br />

pz<br />

( p 1) ( k p 1 )<br />

k1<br />

z F (1, p 1; p 1 ; z) f ( z)<br />

2 1<br />

( p 1; z U<br />

).<br />

, where I<br />

n<br />

n th order<br />

p k p<br />

p<br />

( ,<br />

p)<br />

The operator <br />

z<br />

was introduced and<br />

studied by Patel and Mishra [16]:<br />

(v)<br />

I,<br />

p ( p, p, p 1) f ( z)<br />

,<br />

J f ( z) ( p)<br />

,<br />

p<br />

where J , p<br />

is the generalized Bernardi-<br />

Libera-Livingston operator defined by (3.1)<br />

(see [17]);<br />

I,1 ( , b, b) f ( z) I,<br />

f ( z)<br />

(vi)<br />

,<br />

( 1, 0, f ( z) A(1) A)<br />

where I<br />

, <br />

is the Choi-Saigo-Srivastava<br />

operator (see [17]).<br />

We also note that:<br />

p<br />

I , p( ,<br />

b,<br />

b)<br />

f ( z)<br />

I,<br />

<br />

f ( z)<br />

( p,<br />

0, f ( z)<br />

A(<br />

p))<br />

,<br />

p<br />

where I , <br />

is the generalized Choi-Saigo-<br />

Srivastava operator (see [17]) defined by<br />

<br />

p<br />

p ( )<br />

k<br />

k<br />

p<br />

I, <br />

f ( z)<br />

z ak<br />

pz<br />

( p;<br />

0; z U) .<br />

k1<br />

( p)<br />

k<br />

Next, by using the general operator<br />

( a,<br />

b,<br />

) , we introduce the following classes <strong>of</strong><br />

I , p<br />

c<br />

analytic<br />

S<br />

<br />

,<br />

p<br />

p valent functions for<br />

f : f A( p) and <br />

( a, b, c; ) <br />

,<br />

<br />

I,<br />

p( a, b, c) f ( z) S<br />

p( )<br />

<br />

f : f A( p) and <br />

K,<br />

p ( a, b, c; ) <br />

,<br />

I,<br />

p( a, b, c) f ( z) K<br />

p( )<br />

<br />

<br />

<br />

And<br />

C<br />

,<br />

p<br />

f : f A( p) and <br />

( a, b, c; , ) <br />

.<br />

I,<br />

p( a, b, c) f ( z) Cp( , )<br />

<br />

<br />

<br />

We also note that<br />

zf (<br />

z)<br />

<br />

f ( z)<br />

K, p(<br />

a,<br />

b,<br />

c;<br />

)<br />

S,<br />

p(<br />

a,<br />

b,<br />

c;<br />

).<br />

(1.15)<br />

p<br />

In particular, we set<br />

1<br />

z <br />

Sn, pa, p 1,<br />

a;<br />

Sn<br />

p1<br />

( n p),<br />

1<br />

z <br />

S<br />

1<br />

Az <br />

a<br />

b,<br />

c;<br />

S<br />

1<br />

Bz <br />

a,<br />

b,<br />

c;<br />

A,<br />

B ( 1<br />

B A 1),<br />

<br />

<br />

,<br />

p<br />

,<br />

,<br />

p


56 M.K. Aouf et al<br />

and<br />

1<br />

Az <br />

K<br />

pa<br />

b,<br />

c;<br />

K<br />

1<br />

Bz <br />

a,<br />

b,<br />

c;<br />

A,<br />

B ( 1<br />

B A 1).<br />

,<br />

,<br />

,<br />

p<br />

<br />

Inclusion properties was investigated by<br />

several authors (e.g. see [18], [19], [20] and [21]).<br />

In this paper, we investigate several inclusion<br />

<br />

properties <strong>of</strong> the classes ( a,<br />

b,<br />

c;<br />

),<br />

S, p<br />

<br />

K p<br />

( a,<br />

b,<br />

c;<br />

) and C p<br />

( a,<br />

b,<br />

c;<br />

,<br />

) associated<br />

, <br />

, <br />

with the general integral operator ( a,<br />

b,<br />

)<br />

I , p<br />

c .<br />

Some applications involving these and other<br />

families <strong>of</strong> integral operators also considered.<br />

2 . INCLUSION PROPERTIES INVOLVING<br />

I ,<br />

p<br />

To establish our main results, we shall need the<br />

following lemmas.<br />

Lemma 1 [22]. Let h be convex univalent in<br />

U with h ( 0) 1<br />

and<br />

Re<br />

h(<br />

z)<br />

0 ( ,<br />

C)<br />

.<br />

If q (z)<br />

is analytic in U with q ( 0) 1, then<br />

zq(<br />

z)<br />

q( z)<br />

h(<br />

z)<br />

( z U)<br />

q(<br />

z)<br />

<br />

implies that q( z)<br />

h(<br />

z)<br />

( z U)<br />

.<br />

Lemma 2 [23]. Let h be convex in U with<br />

h ( 0) 1. Suppose also that Q (z)<br />

is analytic in U<br />

with ReQ<br />

( z)<br />

0 ( zU)<br />

. If q (z)<br />

is analytic in<br />

U with q ( 0) 1, then<br />

q( z)<br />

Q(<br />

z)<br />

zq(<br />

z)<br />

h(<br />

z)<br />

( zU)<br />

implies that q( z)<br />

h(<br />

z)<br />

( z U)<br />

.<br />

Theorem 1. Let p,<br />

a p and p <br />

. Then<br />

<br />

<br />

, p<br />

,<br />

p<br />

S ( a 1, b, c; ) S ( a, b, c; )<br />

<br />

1,<br />

p<br />

S ( a, b, c; ) ( S).<br />

Pro<strong>of</strong>. First <strong>of</strong> all, we show that<br />

<br />

,<br />

p<br />

S ( a 1, b, c; )<br />

<br />

,<br />

p<br />

S ( a, b, c; ) ( S; p; a p; p N).<br />

Let f ( z)<br />

S<br />

<br />

, p(<br />

a 1,<br />

b,<br />

c;<br />

)<br />

and set<br />

<br />

z I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

<br />

<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

q(<br />

z)<br />

,<br />

(2.1)<br />

2<br />

where q ( z)<br />

1<br />

q1z<br />

q2z<br />

...<br />

is analytic in U<br />

and q ( z)<br />

0 for all z U . Using the identity<br />

(1.14) in (2.1), we obtain<br />

I,<br />

p(<br />

a 1,<br />

b,<br />

c)<br />

f ( z)<br />

a<br />

pq(<br />

z)<br />

a p .<br />

I ( a,<br />

b,<br />

c)<br />

f ( z)<br />

,<br />

p<br />

(2.2)<br />

Differentiating (2.2) logarithmically with<br />

respect to z , we have<br />

<br />

<br />

I<br />

( a 1,<br />

b,<br />

c)<br />

f ( z)<br />

zI<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

<br />

z<br />

I<br />

,<br />

p<br />

,<br />

p<br />

( a 1,<br />

b,<br />

c)<br />

f ( z)<br />

Since<br />

<br />

I<br />

,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

zq(<br />

z)<br />

q(<br />

z)<br />

<br />

.<br />

pq(<br />

z)<br />

a p<br />

zq(<br />

z)<br />

<br />

pq(<br />

z)<br />

a p<br />

(2.3)<br />

a p, ( z)<br />

S<br />

, and f ( z)<br />

S<br />

, p(<br />

a 1,<br />

b,<br />

c;<br />

)<br />

,<br />

from (2.3) we see that<br />

Re<br />

p<br />

( z)<br />

a p 0 ( zU)<br />

and<br />

zq(<br />

z)<br />

q( z)<br />

<br />

(<br />

z)<br />

( z U)<br />

pq(<br />

z)<br />

a p<br />

Thus, by using Lemma 1 and (2.1), we<br />

observe that<br />

q( z)<br />

(<br />

z)<br />

( zU) ,<br />

so that<br />

<br />

f ( z)<br />

S<br />

,<br />

( a,<br />

b,<br />

c;<br />

) .<br />

p<br />

This implies that<br />

<br />

<br />

S, p( a 1, b,<br />

c;<br />

)<br />

S,<br />

p(<br />

a,<br />

b,<br />

c;<br />

) .<br />

To prove the second part, let<br />

<br />

f ( z) S ( a, b, c; ) ( p; a p; p ) and<br />

put<br />

<br />

z I<br />

pI<br />

1,<br />

p<br />

1,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

<br />

<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

g(<br />

z)<br />

,<br />

2<br />

where g ( z)<br />

1<br />

d z d z ... is analytic in U<br />

1 2


Inclusion Properties <strong>of</strong> Certain Operators 57<br />

and g ( z)<br />

0 for all z U . Then, by using<br />

arguments similar to those detailed above with the<br />

identity (1.13), it follows that<br />

g( z)<br />

(<br />

z)<br />

( zU) ,<br />

<br />

which implies that f z)<br />

S ( a,<br />

b,<br />

c;<br />

) . Hence<br />

we conclude that<br />

(<br />

1,<br />

p<br />

<br />

<br />

<br />

<br />

S, p( a 1,<br />

b,<br />

c;<br />

)<br />

S,<br />

p(<br />

a,<br />

b,<br />

c;<br />

)<br />

S<br />

1,<br />

p(<br />

a,<br />

b,<br />

c;<br />

)<br />

,<br />

which completes the pro<strong>of</strong> <strong>of</strong> Theorem 1.<br />

1z Putting n, c a,<br />

b p 1<br />

and ( z)<br />

<br />

1 z<br />

( zU)<br />

in<br />

Theorem 1, we obtain the following corollary.<br />

Corollary 1. Let<br />

S<br />

S<br />

<br />

<br />

n p1<br />

<br />

n<br />

p<br />

.<br />

n p<br />

and p <br />

. Then<br />

Remark 1. Putting p 1<br />

in Corollary 1, we<br />

obtain the result obtained by Noor [15].<br />

Theorem 2. Let p,<br />

a p and p <br />

. Then<br />

C ( a 1, b, c; ) C ( a, b, c; )<br />

, p<br />

,<br />

p<br />

C ( a, b, c; ) ( S).<br />

1,<br />

p<br />

Pro<strong>of</strong>. Applying (1.15) and Theorem 1, we<br />

observe that<br />

f ( z) C ,<br />

p<br />

( a 1, b, c; )<br />

I<br />

,<br />

p<br />

( a 1, b, c) f ( z) K p( )<br />

z ( I<br />

,<br />

( a 1, b , c ) f ( z )) S<br />

<br />

p p<br />

p( )<br />

zf<br />

()<br />

z <br />

I<br />

, p<br />

( a 1, b, c) p S<br />

<br />

<br />

p( )<br />

<br />

zf ()<br />

z<br />

p S<br />

<br />

,<br />

p<br />

( a 1, b, c; )<br />

zf ()<br />

z<br />

p S<br />

<br />

,<br />

p<br />

( a, b, c; )<br />

zf<br />

()<br />

z <br />

I<br />

,<br />

( a, b, c) S<br />

<br />

p p p ( )<br />

<br />

<br />

z<br />

p I<br />

, p<br />

( a , b , c ) f ( z ) S<br />

<br />

<br />

p( )<br />

I<br />

,<br />

p<br />

( a, b, c) f ( z) K p( )<br />

f ( z) C ,<br />

p<br />

( a, b, c; )<br />

and<br />

f ( z) K ( a, b, c; )<br />

<br />

1,<br />

p<br />

,<br />

p<br />

zf ()<br />

z<br />

p<br />

zf ()<br />

z<br />

p<br />

1,<br />

p<br />

<br />

,<br />

p<br />

S ( a, b, c; )<br />

<br />

1,<br />

p<br />

S ( a, b, c; )<br />

<br />

z<br />

<br />

I ( a, b, c) f ( z) S ( )<br />

p<br />

I ( a, b, c) f ( z) K ( )<br />

f ( z) K ( a, b, c; ),<br />

1,<br />

p<br />

which evidently proves Theorem 2.<br />

Taking<br />

1<br />

Az<br />

( z)<br />

( 1<br />

B A 1;<br />

z U)<br />

1<br />

Bz<br />

in Theorem 1 and 2, we have<br />

<br />

p<br />

Corollary 2. Let p , a p,<br />

p<br />

and<br />

1<br />

B A 1.<br />

Then<br />

<br />

<br />

1, , ; , p , , ; , <br />

a, b, c; A,<br />

B<br />

<br />

, p<br />

,<br />

S a b c A B S a b c A B<br />

S<br />

<br />

1,<br />

p<br />

and<br />

K a 1, b, c; A, B K a, b, c; A,<br />

B<br />

p <br />

a, b, c; A, B.<br />

, p<br />

,<br />

K<br />

1,<br />

p<br />

Theorem 3. Let p,<br />

a p and p <br />

. Then<br />

C ( a 1, b, c; , ) C ( a, b, c; , )<br />

, p<br />

,<br />

p<br />

C ( a, b, c; , ) ( , S).<br />

1,<br />

p<br />

Pro<strong>of</strong>. We begin by proving that<br />

C ( a 1, b, c; , ) C ( a, b, c; , )<br />

, p<br />

,<br />

p<br />

( p; a p; p ; , S).<br />

Let f ( z)<br />

C<br />

, p(<br />

a 1,<br />

b,<br />

c;<br />

,<br />

) . Then, in view <strong>of</strong><br />

<br />

<br />

(1.7), there exists a function h ( z)<br />

S ( )<br />

such<br />

that<br />

z I<br />

(<br />

,<br />

p<br />

( a 1,<br />

b,<br />

c)<br />

f ( z))<br />

<br />

( z)<br />

ph(<br />

z)<br />

p<br />

p<br />

( z U) .<br />

Choose the function g(z)<br />

such that


58 M.K. Aouf et al<br />

I , p<br />

( a 1,<br />

b,<br />

c)<br />

g(<br />

z)<br />

h(<br />

z)<br />

. Then g( z)<br />

S<br />

<br />

, p(<br />

a 1,<br />

b,<br />

c;<br />

)<br />

and<br />

z(<br />

I<br />

pI<br />

z(<br />

I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

( a 1,<br />

b,<br />

c)<br />

f ( z))<br />

<br />

( z)<br />

( z U) . (2.4)<br />

( a 1,<br />

b,<br />

c)<br />

g(<br />

z)<br />

Now let<br />

<br />

z<br />

I<br />

<br />

<br />

,<br />

p<br />

,<br />

p<br />

( a 1,<br />

b,<br />

c)<br />

f ( z))<br />

<br />

q(<br />

z),<br />

( a 1,<br />

b,<br />

c)<br />

g(<br />

z)<br />

(2.5)<br />

2<br />

where q ( z)<br />

1<br />

q1z<br />

a2z<br />

...<br />

is analytic in<br />

U and q ( z)<br />

0 for all z U . Thus by using the<br />

identity (1.14), we have<br />

z(<br />

I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

( )<br />

I<br />

,<br />

( a 1, b,<br />

c)<br />

zf <br />

p<br />

( a 1, b,<br />

c)<br />

f ( z))<br />

p z <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

( a 1,<br />

b,<br />

c)<br />

g(<br />

z)<br />

I ( a 1,<br />

b,<br />

c)<br />

g(<br />

z)<br />

,<br />

p<br />

<br />

( )<br />

( )<br />

,<br />

( , , )<br />

zf<br />

p z <br />

<br />

<br />

z I a b c<br />

<br />

<br />

<br />

<br />

,<br />

( , , )<br />

zf <br />

p z <br />

<br />

<br />

<br />

p<br />

I a b c <br />

<br />

p<br />

<br />

<br />

<br />

<br />

( a p)<br />

I,<br />

p<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

I,<br />

p<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

<br />

.<br />

z(<br />

I,<br />

p<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z))<br />

<br />

( a p)<br />

I,<br />

p<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

(2.6)<br />

<br />

<br />

Since g z)<br />

S<br />

( a 1,<br />

b,<br />

c;<br />

)<br />

S ( a,<br />

b,<br />

c;<br />

)<br />

( )<br />

(<br />

, p<br />

,<br />

p<br />

S ,<br />

by Theorem 1, we set<br />

z(<br />

I<br />

,<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z))<br />

<br />

p<br />

G(<br />

z)<br />

,<br />

pI ( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

,<br />

p<br />

,<br />

p<br />

( )<br />

( a,<br />

b,<br />

c)<br />

zf<br />

p z <br />

<br />

<br />

( a p)<br />

I<br />

<br />

z<br />

( )<br />

( a,<br />

b,<br />

c)<br />

zf <br />

p z <br />

<br />

<br />

<br />

I<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

( a p)<br />

I ( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

,<br />

p<br />

,<br />

p<br />

,<br />

p<br />

where G( z)<br />

(<br />

z)<br />

( z U)<br />

for S.<br />

Then, by<br />

virture <strong>of</strong> (2.5) and (2.6), we observe that<br />

zf (<br />

z)<br />

<br />

I<br />

,<br />

( a,<br />

b,<br />

c)<br />

<br />

p<br />

q(<br />

z)<br />

I,<br />

p(<br />

a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

(2.7)<br />

p <br />

and<br />

<br />

( )<br />

,<br />

( , , )<br />

zf<br />

p z <br />

<br />

<br />

<br />

<br />

<br />

zI<br />

a b c <br />

p<br />

<br />

<br />

<br />

z(<br />

I ( a 1,<br />

b,<br />

c)<br />

f ( z))<br />

<br />

( a p)<br />

q(<br />

z)<br />

, p<br />

I,<br />

p<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

<br />

. (2.8)<br />

pI ( a 1,<br />

b,<br />

c)<br />

g(<br />

z)<br />

pG(<br />

z)<br />

a p<br />

,<br />

p<br />

Differentiating both sides <strong>of</strong> (2.7) with respect<br />

to z , we obtain<br />

( )<br />

z I<br />

,<br />

( a,<br />

b,<br />

c)<br />

zf<br />

p p z <br />

<br />

<br />

<br />

<br />

I ( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

z(<br />

I<br />

pI<br />

,<br />

p<br />

pG(<br />

z)<br />

q(<br />

z)<br />

zq(<br />

z)<br />

.<br />

Making use <strong>of</strong> (2.4), (2.8) and (2.9), we get<br />

,<br />

p<br />

,<br />

p<br />

(2.9)<br />

( a 1,<br />

b,<br />

c)<br />

f ( z))<br />

pG(<br />

z)<br />

q(<br />

z)<br />

zq(<br />

z)<br />

( a p)<br />

q(<br />

z)<br />

<br />

( a 1,<br />

b,<br />

c)<br />

g(<br />

z)<br />

pG(<br />

z)<br />

a p<br />

zq(<br />

z)<br />

q( z)<br />

<br />

( z)<br />

( z U) . (2.10)<br />

pG(<br />

z)<br />

a p<br />

Since<br />

a p, p<br />

and G( z)<br />

(<br />

z)<br />

( z U)<br />

,<br />

pG(<br />

z)<br />

a p 0 ( zU)<br />

.<br />

Re<br />

Hence, by taking<br />

1<br />

Q(<br />

z)<br />

<br />

pG(<br />

z)<br />

a p<br />

in (2.10), and applying Lemma 2, we can show<br />

that<br />

p( z)<br />

( z)<br />

( zU) ,<br />

so that<br />

f ( z)<br />

C<br />

, p(<br />

a,<br />

b,<br />

c;<br />

,<br />

) ( ,<br />

S) .<br />

<br />

For the second part, by using arguments<br />

similar to those detailed above with the identity<br />

(1.13), we obtain:<br />

C a,<br />

b,<br />

c;<br />

,<br />

) C <br />

( a,<br />

b,<br />

c;<br />

,<br />

) ( ,<br />

) .<br />

, p( 1,<br />

p<br />

S<br />

The pro<strong>of</strong> <strong>of</strong> Theorem 3 is thus completed.<br />

3. INCLUSION PROPERTIES INVOLVING<br />

J , p<br />

In this section, we consider the generalized<br />

Bernardi-Libera-Livingston integral operator<br />

J , p<br />

( p)<br />

defined by (see [24],[25],and [26]).<br />

p<br />

z<br />

1<br />

J , p(<br />

f )( z)<br />

t<br />

f ( t)<br />

dt ( f A(<br />

p);<br />

p) . (3.1)<br />

<br />

z 0<br />

Theorem 4. Let p, p,<br />

a p and<br />

p . If f ( z)<br />

S<br />

<br />

, p(<br />

a,<br />

b,<br />

c;<br />

)<br />

( S)<br />

, then


Inclusion Properties <strong>of</strong> Certain Operators 59<br />

J<br />

, p( f )( z)<br />

S<br />

<br />

<br />

,<br />

p(<br />

a,<br />

b,<br />

c;<br />

)<br />

( S) .<br />

<br />

Pro<strong>of</strong> . Let f ( z)<br />

S<br />

,<br />

( a,<br />

b,<br />

c;<br />

)<br />

for S<br />

, and<br />

set<br />

z(<br />

I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

J<br />

( a,<br />

b,<br />

c)<br />

J<br />

, p<br />

, p<br />

p<br />

( f )( z))<br />

<br />

q(<br />

z)<br />

,<br />

( f )( z)<br />

(3.2)<br />

2<br />

where q ( z)<br />

1<br />

q1z<br />

q2z<br />

...<br />

is analytic in<br />

U and q ( z)<br />

0 for all z U . From (3.1), we<br />

obtain<br />

z( I, p ( a, b, c) J, p ( f )( z)) ( p) I,<br />

p ( a, b, c) f ( z)<br />

(3.3)<br />

I ( a, b, c) J ( f )( z) ( z U) .<br />

, p<br />

,<br />

p<br />

By applying (3.2) and (3.3), we obtain<br />

I,<br />

p(<br />

a,<br />

b,<br />

c)<br />

f ( z)<br />

( p)<br />

pq(<br />

z)<br />

<br />

.<br />

I ( a,<br />

b,<br />

c)<br />

J ( f )( z)<br />

,<br />

p<br />

, p<br />

(3.4)<br />

Differentiating (3.4) logarithmically with respect<br />

to z , we obtain<br />

z(<br />

I<br />

I<br />

,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

f ( z))<br />

zq(<br />

z)<br />

q(<br />

z)<br />

.<br />

( a,<br />

b,<br />

c)<br />

f ( z)<br />

pq(<br />

z)<br />

<br />

Since<br />

from (3.5), we have<br />

Re<br />

(3.5)<br />

<br />

p, ( z)<br />

S<br />

, and f ( z)<br />

S<br />

,<br />

( )<br />

,<br />

zq(<br />

z)<br />

pq(<br />

z)<br />

<br />

p<br />

p(<br />

z)<br />

0 and q(<br />

z)<br />

(<br />

z)<br />

( z U)<br />

.<br />

Hence, by virbure <strong>of</strong> Lemma 1, we conclude<br />

that q( z)<br />

(<br />

z)<br />

( zU)<br />

,<br />

which implies that<br />

J<br />

, p( f )( z)<br />

S<br />

<br />

<br />

,<br />

p(<br />

a,<br />

b,<br />

c;<br />

)<br />

( S) .<br />

Next, we derive an inclusion property<br />

involving , which is given by<br />

J , p<br />

Theorem 5. Let p, p,<br />

a p and<br />

p . If f ( z)<br />

K<br />

, p(<br />

a,<br />

b,<br />

c;<br />

)<br />

( S)<br />

, then<br />

J<br />

, p( f )( z)<br />

K,<br />

p(<br />

a,<br />

b,<br />

c;<br />

)<br />

( S) .<br />

<br />

Pro<strong>of</strong> . By applying Theorem 4, it follows that<br />

zf (<br />

z)<br />

<br />

f ( z)<br />

K, p(<br />

a,<br />

b,<br />

c;<br />

)<br />

S,<br />

p(<br />

a,<br />

b,<br />

c;<br />

)<br />

p<br />

zf ( z)<br />

<br />

J, p<br />

S,<br />

p( a, b, c; )<br />

p <br />

z <br />

J , p( f )( z ) S<br />

<br />

,<br />

p( a , b , c ; )<br />

p<br />

J f )( z)<br />

K<br />

( a,<br />

b,<br />

c;<br />

)<br />

( <br />

, p( ,<br />

p<br />

S<br />

which proves Theorem 5.<br />

Finally, we prove<br />

Theorem 6. Let<br />

) ,<br />

p, p,<br />

a p and<br />

p . If f ( z)<br />

C<br />

, p(<br />

a,<br />

b,<br />

c;<br />

,<br />

) ( ,<br />

S)<br />

, then<br />

<br />

J<br />

, p( f )( z)<br />

C<br />

, p(<br />

a,<br />

b,<br />

c;<br />

,<br />

) ( ,<br />

S) .<br />

Pro<strong>of</strong>. Let f ( z)<br />

C<br />

,<br />

( a,<br />

b,<br />

c;<br />

,<br />

) for , S<br />

.<br />

p<br />

Then, in view <strong>of</strong> (1.7), there exists a function<br />

<br />

g( z)<br />

S<br />

,<br />

( a,<br />

b,<br />

c;<br />

)<br />

such that<br />

z(<br />

I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

p<br />

( a,<br />

b,<br />

c)<br />

f ( z))<br />

<br />

( z)<br />

( z U) . (3.6)<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

Thus we set<br />

z(<br />

I ( a,<br />

b,<br />

c)<br />

J<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

J<br />

, p<br />

, p<br />

( f )( z))<br />

<br />

q(<br />

z)<br />

,<br />

( f )( z)<br />

2<br />

where q ( z)<br />

1<br />

q1z<br />

q2z<br />

...<br />

is analytic in<br />

U and q ( z)<br />

0 for all z U . Applying (3.3), we<br />

get<br />

( )<br />

I<br />

,<br />

( a,<br />

b,<br />

c)<br />

zf <br />

p<br />

z(<br />

I<br />

,<br />

( a,<br />

b,<br />

c)<br />

f ( z))<br />

p z <br />

<br />

<br />

p<br />

<br />

<br />

pI ( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

I ( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

,<br />

p<br />

<br />

z<br />

I<br />

<br />

<br />

z<br />

<br />

<br />

z<br />

I<br />

<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

J<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

J<br />

<br />

I<br />

( a,<br />

b,<br />

c)<br />

J ( g)(<br />

z)<br />

I<br />

( a,<br />

b,<br />

c)<br />

J ( g)(<br />

z)<br />

,<br />

p<br />

,<br />

p<br />

, p<br />

<br />

zf<br />

( )<br />

p z <br />

<br />

<br />

I<br />

<br />

, p<br />

<br />

( a,<br />

b,<br />

c)<br />

J<br />

, p <br />

<br />

I ( a,<br />

b,<br />

c)<br />

g<br />

,<br />

p<br />

z I<br />

,<br />

I<br />

,<br />

p<br />

,<br />

p<br />

, p<br />

, p<br />

zf (<br />

)<br />

p z <br />

<br />

<br />

z f ( ) <br />

(<br />

) <br />

p z <br />

I<br />

,<br />

( a,<br />

b,<br />

c)<br />

J<br />

, <br />

zf<br />

p<br />

p <br />

<br />

p z<br />

<br />

<br />

<br />

( z)<br />

I<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

J<br />

, pg(<br />

z)<br />

<br />

p<br />

( a,<br />

b,<br />

c)<br />

J<br />

, p<br />

( g)(<br />

z)<br />

<br />

<br />

, p<br />

( a,<br />

b,<br />

c)<br />

J<br />

, pg(<br />

z)<br />

(3.7)<br />

<br />

<br />

<br />

Since g( z)<br />

S<br />

<br />

, p(<br />

a,<br />

b,<br />

c;<br />

)<br />

( S)<br />

, by virtue<br />

<br />

<br />

<strong>of</strong> Theorem 4, we have J g)(<br />

z)<br />

S ( a,<br />

b,<br />

c;<br />

) .<br />

Let us now put<br />

, p( ,<br />

p<br />

<br />

.


60 M.K. Aouf et al<br />

<br />

z I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

J<br />

( a,<br />

b,<br />

c)<br />

J<br />

, p<br />

, p<br />

( g)(<br />

z)<br />

<br />

<br />

( g)(<br />

z)<br />

H(<br />

z)<br />

,<br />

where H( z)<br />

(<br />

z)<br />

( z U)<br />

for<br />

S<br />

. Then, by<br />

using the same techniques as in the pro<strong>of</strong> <strong>of</strong><br />

Theorem 3, we conclude from (3.6) and (3.7) that<br />

z(<br />

I<br />

pI<br />

,<br />

p<br />

,<br />

p<br />

( a,<br />

b,<br />

c)<br />

f ( z))<br />

zq(<br />

z)<br />

q(<br />

z)<br />

( z)<br />

( z U) . (3.8)<br />

( a,<br />

b,<br />

c)<br />

g(<br />

z)<br />

pH(<br />

z)<br />

<br />

Hence, upon setting<br />

1<br />

Q( z)<br />

<br />

( z U)<br />

pH(<br />

z)<br />

<br />

in (3.8), if we apply Lemma 2, we obtain<br />

q( z)<br />

( z)<br />

( zU) ,<br />

which yields<br />

J<br />

, p( f )( z)<br />

C<br />

, p(<br />

a,<br />

b,<br />

c;<br />

,<br />

) ( ,<br />

S) .<br />

The pro<strong>of</strong> <strong>of</strong> Theorem 6 is thus completed.<br />

Remark 2.<br />

(i) Putting a 0 and b c in the above<br />

results we obtain the corresponding results,<br />

p<br />

for the operator ;<br />

I , <br />

(ii) Putting b p 1 , a c and replacing by<br />

1,<br />

p 1in the above results, we<br />

obtain the corresponding results for the<br />

( ,<br />

p)<br />

operator .<br />

4. ACKNOWLEDGMENTS<br />

z<br />

The authors thank the referees for their valuable<br />

suggestions to improve the paper.<br />

5. REFERENCES<br />

1. Owa, S. On certain classes <strong>of</strong> p valent<br />

functions with negative coefficients. Simon Stevin<br />

59: 385-402 (1985).<br />

2. Patil , D.A. & N.K. Thakare. On convex hulls and<br />

extreme points <strong>of</strong> p valent starlike and convex<br />

classes with applications. Bull. Math. Soc. Sci.<br />

Math. Roumanie (N. S.) 27 (75): 145-160 (1983).<br />

3. Aouf, M.K. On a class <strong>of</strong> p valet close -to-<br />

convex functions <strong>of</strong> order and type .<br />

Internat. J. Math. Math. Sci. 11: 259-266 (1988).<br />

4. Bulboaca, T. Differential Subordinations and<br />

Superordinations – Recent Results. House <strong>of</strong><br />

Scientific Book Publ., Cluj-Napoca (2005).<br />

5. Miller, S.S. & P.T. Mocanu. Differential<br />

subordinations and univalent functions. Michigan<br />

Math. J. 28, 157-171 (1981).<br />

6. Miller, S.S. & P.T. Mocanu. Differential<br />

Subordinations: Theory and Applications, Series<br />

on Monographs and Texbooks in Pure and<br />

Applied Mathematics Vol. 225. Marcel Dekker,<br />

New York (2000).<br />

7. Ma, W. & D. Minda. Uniformly convex functions.<br />

Ann. Polon. Math. 57 (2): 165-175 (1992).<br />

8. Kim, Y.C. Choi, J.H. & T. Sugawa. Coefficient<br />

bounds and convolution for certain classes <strong>of</strong><br />

close -to- convex functions. Proc. Japan Acad.<br />

Ser. A Math. Sci. 76, 95-98 (2000).<br />

9. Aouf, M.K . On a class <strong>of</strong> p valent starlike<br />

functions <strong>of</strong> order . Internat. J. Math. Math. Sci.<br />

10 (4): 733-744 (1987).<br />

10. Aouf, M.K . A generalization <strong>of</strong> multivalent<br />

functions with negative coefficients. J. Korean<br />

Math. Soc. 25: 53-66 (1988).<br />

11. Whittaker , E.T. & G.N. Wastson. A Course on<br />

Modern Analysis : An Introduction to the General<br />

Theory <strong>of</strong> Infinite Processes and <strong>of</strong> Analytic<br />

Functions; With an Account <strong>of</strong> the Principal<br />

Transcenclental Functions, 4 th ed. (Reprinted),<br />

Cambridge Univ. Press, Cambridge (1972).<br />

12. Liu, J.L. & K.I. Noor. Some properties <strong>of</strong> Noor<br />

integral operator. J. Natur. Geom. 21: 81-90<br />

(2002).<br />

13. Patel, J. Cho N.E. & H.M. Srivastava. Certain<br />

subclasses <strong>of</strong> multivalent functions associated<br />

with a family <strong>of</strong> linear Operator. Math. Comput.<br />

Modelling 43: 320-338 (2006).<br />

14. Kumar, V. & S.L. Shukla . Multivalent functions<br />

defined by Ruscheweyh derivatives. I and II.<br />

Indian J. Pure Appl. Math. 15 (11): 1216-1238<br />

(1984).<br />

15. Noor, K.I. On new classes <strong>of</strong> integral operators. J.<br />

Natur. Geom. 16: 71-80 (1985).<br />

16. Patel , J. & A.K. Mishra. On certain subclasses <strong>of</strong><br />

multivalent functions associated with an extended<br />

fractional differintegral operator. J. Math. Anal.<br />

Appl. 332: 109-122 (2007).<br />

17. Choi, J.H. Saigo, M. & H.M. Srivastava. Some<br />

inclusion properties <strong>of</strong> a certain family <strong>of</strong> integral<br />

operators. J. Math. Anal. Appl. 276: 432-445<br />

(2002).<br />

18. Aouf, M.K. Some inclusion relationships<br />

associated with Dziok – Srivastava operator.<br />

Applied Math. Computation 216: 431-437 (2010).<br />

19. Aouf, M.K. & R.M. El-Ashwah. Inclusion


Inclusion Properties <strong>of</strong> Certain Operators 61<br />

properties <strong>of</strong> certain subclass <strong>of</strong> analytic functions<br />

defined by multiplier transformations. Ann. Univ.<br />

Mariae Curie-Sklodowska. Sect. A 63: 29-38<br />

(2009).<br />

20. Aouf, M.K . & T.M. Seoudy. Inclusion properties<br />

for certain K-uniformly subclasses <strong>of</strong> analytic<br />

functions associated with certain integral operator.<br />

Bull. Math. Anal. Appl. 3 (4): 155-162 (2011).<br />

21. Srivastava, H.M. Aouf, M.K & R.M. El-Ashwah.<br />

Some inclusion relationships associated with<br />

certain class <strong>of</strong> integral operators. Asian-<br />

European J. Math. 3 (4): 667–684 (2010).<br />

22. Eenigenburg, P. Miller, S.S. Mocanu, P.T. & M.<br />

Reade. On a Briot-Bouqet differential<br />

subordination. General Inequalities 3, I. S. N. M.,<br />

Vol. 64. Brikhauser Verlag, Basel, p. 339-348<br />

(1983).<br />

23. Miller, S.S. & P.T. Mocanu. Differential<br />

subordinations and inequalities in the complex<br />

plane. J. Differential Equations 67: 199-211<br />

(1987).<br />

24. Bernardi, S.D. Convex and starlike univalent<br />

functions. Trans. Amer. Math. Soc. 135: 429-446<br />

(1969).<br />

25. Libera, R.J. Some classes <strong>of</strong> regular univalent<br />

function. Proc. Amer. Math. Soc. 16: 755-758<br />

(1965).<br />

26. Srivastava, H.M. & S. Owa (Eds.). Current<br />

Topics in Analytic Function Theor. World<br />

Scientific Publishing, Hong Kong (1992).


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 63-66 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Citations<br />

Citations <strong>of</strong> Newly Elected Fellows <strong>of</strong> PAS<br />

The following two eminent scientists were elected Fellows <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> during<br />

2011:<br />

Dr. Rumina Hasan<br />

Dr. Rumina Hasan (MBBS, PhD, FRC Path) is<br />

currently a Pr<strong>of</strong>essor in the Department <strong>of</strong><br />

Pathology & Microbiology at the Aga Khan<br />

University (AKU), Karachi and Honorary<br />

Pr<strong>of</strong>essor at the London School <strong>of</strong> Hygiene and<br />

Tropical Medicine UK. She was instrumental in<br />

establishing the clinical mycobacterial laboratory<br />

at AKU; one <strong>of</strong> the few laboratories, performing<br />

M. tuberculosis culture and drug sensitivity in<br />

<strong>Pakistan</strong>. Dr. Hasan's research interests include<br />

antimicrobial resistance. She conducted the<br />

baseline studies for determining M. tuberculosis<br />

genogroups prevalent in <strong>Pakistan</strong> and their<br />

relationship to drug resistance. This work is now<br />

being taken forward to explore genetic markers<br />

associated with pathogenesis amongst strains<br />

prevalent in this region. Her work has also<br />

addressed the issue <strong>of</strong> M. tuberculosis drug<br />

resistance at a community level in particular<br />

evaluation <strong>of</strong> risk factors.<br />

Dr. Hasan's research group has explored<br />

molecular basis <strong>of</strong> antimicrobial resistance in<br />

bacterial organisms other than tuberculosis and has<br />

worked towards development <strong>of</strong> systems to reduce<br />

spread <strong>of</strong> resistant organisms in nosocomial<br />

settings. The antimicrobial resistance work is<br />

being taken forward to investigate resistance in<br />

fungal organisms. Her work on antimicrobial<br />

resistance has led to the establishment <strong>of</strong> a<br />

national task force to address the issue <strong>of</strong><br />

antimicrobial resistance at a national level.<br />

In addition to research activity, Dr. Hasan has<br />

been involved in training. She initiated clinical<br />

microbiology residency outside the armed forces;<br />

to date 9 residents have passed their FCPS<br />

pr<strong>of</strong>essional exam. She has also supervised 3 PhD<br />

students as primary supervisor, 2 <strong>of</strong> whom have<br />

completed.<br />

Dr. Muhammad Iqbal<br />

Dr. Muhammad Iqbal is the Director General,<br />

Centre for Applied Molecular Biology, Lahore.<br />

Prior to this, he was the Chief Scientific Officer<br />

and Head, Food and Biotechnology Research<br />

Center at PCSlR, Labs Complex, Lahore. He is an<br />

internationally known scientist for his pioneering<br />

work towards the development <strong>of</strong> novel<br />

immobilization technique developed by using<br />

indigenous low-cost agro-waste materials. This<br />

innovative immobilization technique has now<br />

become an essential tool for biotechnological<br />

research in the field <strong>of</strong> fermentation,<br />

bioremediation and biosorption and is being used<br />

worldwide for the entrapment <strong>of</strong> microalgae,<br />

fungi, yeasts, bacteria and plant cells.<br />

Dr. Iqbal has published 76 research papers in<br />

top ranking international and national journals<br />

with cumulative Impact Factor <strong>of</strong> 101.45 (JCR-<br />

2009, USA). The importance <strong>of</strong> his work can also<br />

be judged by more than 900 world-wide citations<br />

by Scopus/web <strong>of</strong> Science. Three <strong>of</strong> his research<br />

papers have been ranked ISI 1 st and 5th among the<br />

top 10 most cited papers during last five years<br />

(Scopus/Science Direct). He has also been<br />

honored with Extraordinary Career Accomplishment<br />

Award Letter by Web <strong>of</strong> Science, USA.<br />

Dr. Iqbal obtained his BSc (Hons) in 1979 and<br />

MSc (2nd position) in 1980, both in Botany, from<br />

the University <strong>of</strong> Karachi and MPhil (1 st position)<br />

in Plant Physiology from Quaid-i-Azam<br />

University, Islamabad in 1985. His PhD is in<br />

Microbial Biotechnology from the University <strong>of</strong><br />

Sheffield, UK in 1990. He is the recipient <strong>of</strong> three<br />

prestigious international Research awards;<br />

Overseas Research Students (ORS) Award, UK<br />

(1986-89) Alexander von Humboldt Foundation<br />

Fellow, Germany (1996-98); and Fulbright Senior<br />

Research Fellow, USA (2006-07). In national


64 Citations <strong>of</strong> Elected Fellows<br />

competition, he has won the S&T International<br />

Talent Scholarship for PhD and the Post-doctoral<br />

International Fellowship Award, UK (2002), both<br />

awarded by the Ministry <strong>of</strong> Science and<br />

Technology, <strong>Pakistan</strong>.<br />

Dr. Jqbal was awarded Tamgha-i-Imtiaz in<br />

2010 by the President <strong>of</strong> <strong>Pakistan</strong>. He is recipient<br />

<strong>of</strong> PAS Gold Medal (2008) in Botany and the<br />

1996 TWAS Young Scientist <strong>of</strong> the Year Award<br />

in Biology <strong>of</strong> the Third World <strong>Academy</strong> <strong>of</strong><br />

<strong>Sciences</strong>, Italy. His research achievements have<br />

also been recognized by the Government <strong>of</strong><br />

<strong>Pakistan</strong> through Research Productivity Awards<br />

for eight (8) consecutive years, since 2001.<br />

Recently, he has been placed in " A " category <strong>of</strong><br />

Scientists <strong>of</strong> <strong>Pakistan</strong> (2010-2011), based on<br />

Impact Factor and Citations <strong>of</strong> his publications, by<br />

the Ministry <strong>of</strong> Science and Technology <strong>of</strong><br />

<strong>Pakistan</strong>.<br />

Citations <strong>of</strong> Newly Elected Foreign Fellows <strong>of</strong> PAS<br />

The following two eminent scientists were elected Foreign Fellows <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong><br />

<strong>Sciences</strong> during 2011:<br />

Pr<strong>of</strong>. Dr. Chunli Bai<br />

Chunli Bai is Pr<strong>of</strong>essor <strong>of</strong> Chemistry and<br />

President <strong>of</strong> the Chinese <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

(CAS) and President <strong>of</strong> the Graduate University <strong>of</strong><br />

CAS with more than 34,000 graduate students.<br />

Pr<strong>of</strong>. Chunli Bai graduated from Department<br />

<strong>of</strong> Chemistry, Peking University in 1978 and<br />

received his MS and PhD degrees from CAS<br />

Institute <strong>of</strong> Chemistry in 1981 and 1985,<br />

respectively. During 1985-1987, he was Research<br />

Associate at Caltech, USA for advanced studies,<br />

conducting research in the field <strong>of</strong> physical<br />

chemistry. Thereafter he continued his research at<br />

CAS Institute <strong>of</strong> Chemistry. From 1991 to 1992,<br />

he was a visiting pr<strong>of</strong>essor at Tohoku University<br />

in Japan.<br />

Research areas <strong>of</strong> Pr<strong>of</strong>. Bai involve the<br />

structure and properties <strong>of</strong> polymer catalysts, X-<br />

ray crystallography <strong>of</strong> organic compounds,<br />

molecular mechanics and EXAFS research on<br />

electro-conducting polymers. In mid-1980s, he<br />

shifted his research orientation to the field <strong>of</strong><br />

scanning tunneling microscopy, molecular<br />

nanostructures, self-assembly, novel nanomaterials,<br />

molecular nano devices, and single<br />

molecule detection.<br />

Pr<strong>of</strong>. Bai is one <strong>of</strong> the pioneers in the field <strong>of</strong><br />

scanning probe microscopy and nanotechnology in<br />

China. In mid-1980s while the scanning probe<br />

microscope was not yet commercially available,<br />

he successfully designed and developed China's<br />

first atomic force microscope (AFM), scanning<br />

tunneling microscope (STM), low-temperature<br />

STM, UHV-STM, and ballistic electron emission<br />

microscopy (BEEM). Due to his creative<br />

contributions to the solutions <strong>of</strong> a series <strong>of</strong><br />

technical problems, he has earned a number <strong>of</strong><br />

patents <strong>of</strong> original innovations and applications.<br />

These achievements were the landmarks <strong>of</strong> SPM<br />

research in China, leading to the earliest<br />

technological tools in the country for manipulating<br />

single atoms and molecules and characterizing<br />

surface and interface in the nano-scale world.<br />

Pr<strong>of</strong>. Bai has been instrumental in furthering<br />

China's nanoscience and nanotechnology research<br />

both as a scientist and a policy-maker. As Chief<br />

Scientist <strong>of</strong> National Steering Committee for<br />

Nanoscience and Related Technology, he initiated<br />

and coordinated a number <strong>of</strong> national key projects<br />

about Nano S&T. He is the founding Director and<br />

Council Chairman <strong>of</strong> the National Center for<br />

Nanoscience and Technology, China.<br />

Pr<strong>of</strong>. Bai has more than 350 scientific<br />

publications in refereed journals and has authored<br />

12 monographs and several book chapters in the<br />

field. He has won more than 20 prestigious awards<br />

and prizes for his academic achievements. He was<br />

elected a member <strong>of</strong> CAS and a Fellow <strong>of</strong> the<br />

<strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> for the Developing World<br />

(TWAS) in 1997. He is also Foreign Associate <strong>of</strong><br />

the US National <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>, Foreign<br />

Member <strong>of</strong> Russian <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>,<br />

Member <strong>of</strong> the German National <strong>Academy</strong> <strong>of</strong><br />

Science and Engineering (acatech.de) and<br />

Honorary Fellow <strong>of</strong> the Indian <strong>Academy</strong> <strong>of</strong>


Citations <strong>of</strong> Elected Fellows 65<br />

<strong>Sciences</strong>, the Royal Society <strong>of</strong> Chemistry, UK and<br />

the Chemical Research Society <strong>of</strong> India. Also, he<br />

has been honorary doctor or named fellow in<br />

several universities <strong>of</strong> USA, UK, Sweden,<br />

Demark, Russia, Australia, etc. He is recipient <strong>of</strong><br />

the UNESCO first medal "for contributions to the<br />

development <strong>of</strong> nanoscience and nanotechnology"<br />

(shared with Nobel Laureate Pr<strong>of</strong>essor Zhores<br />

Ivanovich Alferov); International Medal <strong>of</strong> the<br />

Society <strong>of</strong> Chemical Industry, London; and TWAS<br />

2002 Lecture Medal in Chemical <strong>Sciences</strong>.<br />

Because <strong>of</strong> his meritorious services, he is Vice<br />

President <strong>of</strong> TWAS, President <strong>of</strong> Federation <strong>of</strong><br />

Asian Chemical Societies, President <strong>of</strong> Chinese<br />

Chemical Society, Honorary President <strong>of</strong> Chinese<br />

Society <strong>of</strong> Micro-Nano Technology and<br />

(CSMNT), Vice President <strong>of</strong> the China<br />

Association for Science and Technology, and Vice<br />

President <strong>of</strong> the Asia-Pacific <strong>Academy</strong> <strong>of</strong><br />

Materials.<br />

Dr. G. Sarwar Gilani<br />

Dr. G. Sarwar Gilani did his MSc in Agricultural<br />

Chemistry from University <strong>of</strong> Peshawar; MSc and<br />

PhD in Nutritional <strong>Sciences</strong> from University <strong>of</strong><br />

Saskatchewan, Canada. After working as Postdoctoral<br />

Fellow at University <strong>of</strong> Alberta and as<br />

Research Advisor for Rapeseed Association <strong>of</strong><br />

Canada, joined Bureau <strong>of</strong> Nutritional <strong>Sciences</strong> <strong>of</strong><br />

Health Canada in 1977. Currently, he is a Senior<br />

Research Scientist in Nutrition Research Division<br />

<strong>of</strong> Health Canada, Ottawa in the area <strong>of</strong> safety,<br />

nutritional quality and health aspects <strong>of</strong> dietary<br />

proteins and associated minor bioactive<br />

components. Previously, he was Adjunct Pr<strong>of</strong>essor<br />

at McGill University and Universite Laval and has<br />

supervised graduate students’ research at the<br />

University <strong>of</strong> Ottawa and the University <strong>of</strong><br />

Toronto.<br />

Dr. Gilani has authored 100 research papers,<br />

18 reviews and 25 book chapters. Impact factor <strong>of</strong><br />

his publications is 295 and number <strong>of</strong> citations <strong>of</strong><br />

his publications is 1132. He is Senior Co-Editor <strong>of</strong><br />

the American Oil Chemists’ Society’s book,<br />

Phytoestrogens and Health (2002).<br />

Dr. Gilani has made 147 scientific<br />

presentations at national and international<br />

meetings, has served on expert panels, and has<br />

organized and chaired several international<br />

symposia including those on functional<br />

foods/nutraceuticals, bioactive peptides,<br />

phytoestrogens, foods derived through<br />

biotechnology, and trans-isomer fatty acids (Trans<br />

fats). He presented papers at the Global Biobusiness<br />

Forum “Bio Asia”, held in India in 2006-<br />

2009, and since 2002 has served as Editor <strong>of</strong> Food<br />

Composition and Additive Section <strong>of</strong> Journal <strong>of</strong><br />

Association <strong>of</strong> Official Analytical Communities<br />

International (AOACI). Dr. Gilani participated in<br />

2002 joint FAO/WHO Expert Consultation on<br />

Protein and Amino Acid Requirements for<br />

Humans. Also, he was Scientific Advisor to<br />

FAO/WHO expert committees on Protein Quality<br />

Consultation on the assessment <strong>of</strong> nutritional<br />

requirements <strong>of</strong> infant formula. He has contributed<br />

to the Codex Alimentarius Commission’s Food<br />

Standards Programme and has advised Federation<br />

<strong>of</strong> Asian Biotech Association, Hyderabad, India<br />

about consumption <strong>of</strong> safe bi<strong>of</strong>ortified crops in<br />

reducing malnutrition and risk <strong>of</strong> chronic diseases<br />

in developing countries.<br />

Dr. Gilani guided for updating <strong>of</strong> graduate<br />

courses and laboratory facilities in Food<br />

Science/Nutrition at Faculty <strong>of</strong> Agriculture at<br />

<strong>Pakistan</strong>’s Gomal University and assisted in<br />

designing surveys to assess nutritional status <strong>of</strong><br />

local populations and prepared a feasibility report<br />

for increased production and utilization <strong>of</strong> healthy<br />

oilseeds in D.I. Khan. Also, he provided guidance<br />

for improving food safety laws and nutritional<br />

quality and implementing food policies regarding<br />

nutritional needs <strong>of</strong> infants, school children and<br />

pregnant women; and reviewed Food and<br />

Nutrition Section <strong>of</strong> <strong>Pakistan</strong>’s 9 th Five-Year Plan.<br />

Dr. Gilani advised National Agriculture<br />

Research Center, Islamabad on research projects<br />

concerning removal <strong>of</strong> antinutritional factors and<br />

nutritional quality improvements in food crops,<br />

development <strong>of</strong> a nutritionally balanced formula<br />

based on local ingredients and folate-fortification<br />

<strong>of</strong> foods in <strong>Pakistan</strong>. He collaborated with<br />

Government <strong>of</strong> <strong>Pakistan</strong> in proposing the<br />

establishment <strong>of</strong> an Institute <strong>of</strong> Food and Nutrition<br />

and assisted in capacity building <strong>of</strong> National<br />

Institute <strong>of</strong> Food Science and Technology,<br />

University <strong>of</strong> Agriculture, Faisalabad. Dr. Gilani<br />

advised <strong>Pakistan</strong>’s Ministry <strong>of</strong> Health, regarding<br />

establishment <strong>of</strong> a National Institute <strong>of</strong> Nutrition.<br />

Also, he collaborated with <strong>Pakistan</strong>’s National<br />

Commission on Biotechnology and COMSTECH<br />

on projects and issues related to food<br />

biotechnology.


66 Citations <strong>of</strong> Elected Fellows<br />

Dr. Gilani was on the Organizing Committee<br />

and International Advisory Committee <strong>of</strong> the<br />

FAO-sponsored international symposium on<br />

Dietary Protein for Human Health, held in March<br />

2011 in Auckland, New Zealand. In recognition <strong>of</strong><br />

his pr<strong>of</strong>essional contributions to Canadian and<br />

international community in 2003, Dr. Gilani was<br />

awarded the Commemorative Gold Medal.


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> 49 (1): 67 (<strong>2012</strong>)<br />

Copyright © <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

ISSN: 0377 - 2969<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Book Review<br />

Bi<strong>of</strong>ertiliser Handbook: Research, Production, Application<br />

By Dr. P. Bhattacharyya and Dr. HLS Tandon, pp. 190 + x. ISBN: 81-85116- 64-4 (<strong>2012</strong>).<br />

Fertiliser Development and Consultation Organisation, New Delhi 110 048, India, www.tandontech.net<br />

This handbook provides a comprehensive and indepth<br />

coverage on Bi<strong>of</strong>ertilisers, starting from<br />

theoretical concepts to practical applications. The<br />

book contains 13 chapters on various aspects <strong>of</strong><br />

Bi<strong>of</strong>ertiliser Technology. The first three chapters<br />

deal with bi<strong>of</strong>ertiliser classification while 4 th<br />

chapter covers crop responses to bi<strong>of</strong>ertliser<br />

inputs. In 5 th and 6 th chapters, production<br />

technology and storage issues have been critically<br />

discussed. Chapters 7 and 8 deal with marketing<br />

and commercialization constraints <strong>of</strong> bi<strong>of</strong>ertilisers,<br />

while chapter 9 provides an insight on practical<br />

recommendations <strong>of</strong> different kinds <strong>of</strong><br />

bi<strong>of</strong>ertilisers. In chapter 10, the authors have<br />

critically discussed the most important issue <strong>of</strong><br />

quality control <strong>of</strong> bi<strong>of</strong>ertilisers. Research and<br />

development efforts on bi<strong>of</strong>ertilizers undertaken<br />

by Indian as well as by some other institutions<br />

have been elaborated in chapter 11. Overall, it is<br />

an excellent effort to provide comprehensive<br />

knowledge on Bi<strong>of</strong>ertiliser Technology for the<br />

interested readers, including students, researchers<br />

and commercial stakeholders.<br />

The bi<strong>of</strong>ertiliser concept is not a new one; but<br />

it never got its due position amongst agricultural<br />

inputs because <strong>of</strong> a number <strong>of</strong> bi<strong>of</strong>ertiser-specific<br />

factors, such as poor quality control, shelf life<br />

limitation, mechanism <strong>of</strong> action, and inconsistency<br />

in evoking plant responses to bi<strong>of</strong>ertilisers.<br />

Farmers also used to show reluctance in adapting<br />

this input in the presence <strong>of</strong> chemical fertilizers.<br />

However, the realization regarding soil<br />

degradation due to intensive agriculture with high<br />

input <strong>of</strong> chemical fertilizers and unprecedented<br />

price hike <strong>of</strong> chemical fertilizers, coupled with<br />

their availability issue, have forced the scientists/<br />

researchers and farmers to use bi<strong>of</strong>ertilisers as<br />

supplements to chemical fertilizers. Moreover,<br />

during the last decade, substantial advancements<br />

have been made in the field <strong>of</strong> bi<strong>of</strong>ertiliser<br />

technology with respect to quality control, shelf<br />

life and mechanisms <strong>of</strong> action. During the last<br />

couple <strong>of</strong> years, numerous products have been<br />

marketed under the umbrella <strong>of</strong> bi<strong>of</strong>ertilisers with<br />

different claims. So this was the right time for<br />

writing up <strong>of</strong> such kind <strong>of</strong> a book to enhance<br />

awareness amongst researchers/ scientists and<br />

other stakeholders about bi<strong>of</strong>ertilisers. The most<br />

unique aspect <strong>of</strong> this book is that it covers almost<br />

every aspect <strong>of</strong> Bi<strong>of</strong>ertiliser Technology.<br />

I strongly believe that this book could be a<br />

useful asset for the academics as well as for<br />

commercial production purposes. I recommend the<br />

book for undergraduate and graduate students <strong>of</strong><br />

agriculture, particularly for the students <strong>of</strong> soil<br />

science.<br />

Dr. Muhammad Arshad, T.I.<br />

Pr<strong>of</strong>essor (Tenured)<br />

Director, Institute <strong>of</strong> Soil & Environmental <strong>Sciences</strong><br />

University <strong>of</strong> Agriculture, Faisalabad, <strong>Pakistan</strong><br />

P.S.: In <strong>Pakistan</strong>, this book is available with Pak Book Corporation, Lahore, Islamabad, Karachi<br />

www.pakbook.com


Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

Instructions for Authors<br />

Purpose and Scope: Proceedings <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> is <strong>of</strong>ficial journal <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong><br />

<strong>of</strong> <strong>Sciences</strong>, published quarterly, in English. It publishes original research papers in Engineering <strong>Sciences</strong> &<br />

Technology, Life <strong>Sciences</strong>, Medical <strong>Sciences</strong>, and Physical <strong>Sciences</strong>. State-<strong>of</strong>-the-art reviews (~ 20 pages, supported<br />

by recent references) summarizing R&D in a particular area <strong>of</strong> science, especially in the context <strong>of</strong> <strong>Pakistan</strong>, and<br />

suggesting further R&D are also considered for publication. Manuscripts undergo double-blind review. Authors are<br />

not required to be Fellows or Members <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong> or citizens <strong>of</strong> <strong>Pakistan</strong>.<br />

Manuscript Format:<br />

Manuscripts, in Times New Roman, double-spaced (but single-space the Tables), with line numbering and one-inch<br />

margins on all sides on A-4 size paper, should not exceed 20 pages, including Tables, Figures and illustrations. To<br />

conserve space, the Instructions are not double spaced and are in font size 10.<br />

The manuscripts may contain Abstract, Keywords, INTRODUCTION, MATERIALS AND METHODS,<br />

RESULTS, DISCUSSION (or RESULTS AND DISCUSSION), CONCLUSIONS, ACKNOWLEDGEMENTS<br />

and REFERENCES and any other information that the author(s) may consider necessary. The Manuscript sections<br />

must be numbered, starting with 1. INTRODUCTION. The text (in Font Size 10 for Abstract, Keywords,<br />

ACKNOWLEDGEMENTS and REFERENCES, and in Font Size 11 for all other sections) must be typed in a<br />

single column across the paper width; all Tables and Figures must be placed after REFERENCES.<br />

Title Page: Should carry: (a) Concise Title <strong>of</strong> the article (in Initial Capital and then lower case letters for each main<br />

word; font size 16; bold), < 160 characters, depicting its contents. Do not use abbreviations or acronyms; (b)<br />

Author(s)’ first name, middle initial and last name (font size 12, bold), and pr<strong>of</strong>essional affiliation(s) [i.e., each<br />

author’s Department, Institution, Mailing address and Email; but no position titles]; (c) Indicate the corresponding<br />

author with *; (d) Short running title <strong>of</strong> < 50 characters ( in font size 10).<br />

Second Page should start with Title <strong>of</strong> the Article, followed by entire manuscript.<br />

Headings and Subheadings: All flush left<br />

LEVEL-1: ALL CAPITAL LETTERS; bold<br />

Level-2: Initial Capital and then lower case letters for each main word; bold<br />

Level-3: Initial Capital and then lower case letters for all words; bold, Italic<br />

Level-4: Run-in head; Italics, in the normal paragraph position with only an Initial Capital and ending in a<br />

colon (i.e., :)<br />

Abstract: Must be self-explanatory, 200–250 words (in font size 10), stating rationale, objective(s), methodology,<br />

main results and conclusions <strong>of</strong> the study. Abbreviations, if used, must be defined on first mention in the Abstract as<br />

well as in the main text. Abstract <strong>of</strong> review articles may have variable format.<br />

Keywords: Three to eight keywords, depicting the article.<br />

INTRODUCTION: Provide a clear and concise statement <strong>of</strong> the problem, citing relevant recent literature, and<br />

objectives <strong>of</strong> the investigation.<br />

MATERIALS AND METHODS: Provide an adequate account <strong>of</strong> the procedures or experimental details, including<br />

statistical tests (if any), in a concise manner but sufficient enough to replicate the study.<br />

RESULTS: Be clear and concise with the help <strong>of</strong> appropriate Tables, Figures and other illustrations. Data should<br />

not be repeated in Tables and Figures, but must be supported with statistics.<br />

DISCUSSION: Provide interpretation <strong>of</strong> the RESULTS in the light <strong>of</strong> previous relevant studies, citing published<br />

references.<br />

ACKNOWLEDGEMENTS: In a brief statement, acknowledge financial support and other assistance.


70<br />

REFERENCES: Cite references in the text (in font size 10) by number only in square brackets, e.g. “Brown et al<br />

[2] reported ...” or “... as previously described [3, 6-8]”, and list them in REFERENCES section, in the order <strong>of</strong><br />

citation in the text, Tables and Figures (not alphabetically). Only published (and accepted for publication) journal<br />

articles, books, and book chapters qualify for REFERENCES. List <strong>of</strong> REFERENCES must be prepared as under:<br />

a. Journal Articles (Name <strong>of</strong> journals must be stated in full)<br />

1. Golding, I. Real time kinetics <strong>of</strong> gene activity in individual bacteria. Cell 123: 1025–1036 (2005).<br />

2. Bialek, W. & S. Setayeshgar. Cooperative sensitivity and noise in biochemical signaling. Physical Review<br />

Letters 100: 258–263 (2008).<br />

3. Kay, R.R. & C.R.L. Thompson. Forming patterns in development without morphogen gradients: scattered<br />

differentiation and sorting out. Cold Spring Harbor Perspectives in Biology 1: doi:<br />

10.1101/cshperspect.a001503 (2009).<br />

b. Books<br />

4. Luellen, W.R. Fine-Tuning Your Writing. Wise Owl Publishing Company, Madison, WI, USA (2001).<br />

5. Alon, U. & D.N. Wegner (Eds.). An Introduction to Systems Biology: Design Principles <strong>of</strong> Biological<br />

Circuits. Chapman & Hall/CRC, Boca Raton, FL, USA (2006).<br />

c. Book Chapters<br />

6. Sarnthein, M.S. & J.D. Stanford. Basal sauropodomorpha: historical and recent phylogenetic developments.<br />

In: The Northern North Atlantic: A Changing Environment. Schafer, P.R. & W. Schluter (Eds.), Springer,<br />

Berlin, Germany, p. 365–410 (2000).<br />

7. Smolen, J.E. & L.A. Boxer. Functions <strong>of</strong> Europhiles. In: Hematology, 4 th ed. Williams, W.J., E. Butler, &<br />

M.A. Litchman (Eds.), McGraw Hill, New York, USA, p. 103–101 (1991).<br />

Tables, with concise but comprehensive headings, on separate sheets, must be numbered according to the order <strong>of</strong><br />

citation (like Table 1., Table 2.). Round <strong>of</strong>f data to the nearest three significant digits. Provide essential explanatory<br />

footnotes, with superscript letters or symbols keyed to the data. Do not use vertical or horizontal lines, except for<br />

separating column heads from the data and at end <strong>of</strong> the Table.<br />

Figures may be printed in two sizes: (i) column width <strong>of</strong> 8.0 cm; or (ii) entire page width <strong>of</strong> 16.5 cm; number them<br />

as Fig. 1., Fig. 2., … in the order <strong>of</strong> citation in the text. Captions to Figures must be concise nut self-explanatory.<br />

Computer generated, laser printed line drawings are acceptable. Do not use lettering smaller than 9 points or<br />

unnecessarily large. Photographs, digital or glossy prints, must be <strong>of</strong> high quality. A scale bar should be provided<br />

on all photomicrographs.<br />

Declaration: Provide a declaration that the results are original; the same material is neither ‘in press’ nor under<br />

consideration elsewhere; approval <strong>of</strong> all authors has been obtained to submit the manuscript; and, in case the article<br />

is accepted for publication, its copyright will be assigned to <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>. Authors must obtain<br />

permission to reproduce copyrighted material from other sources.<br />

Reviewers: Authors may suggest four prospective reviewers, two local and two from a scientifically advanced<br />

country.<br />

For detailed information, visit website <strong>of</strong> the <strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong>, i.e., www.paspk.org<br />

Manuscript Submission: S<strong>of</strong>t copy <strong>of</strong> the manuscript in Micros<strong>of</strong>t (MS) Word (pdf files not acceptable), as Email<br />

attachment or on a CD, may be submitted to:<br />

Editor-in-Chief<br />

<strong>Pakistan</strong> <strong>Academy</strong> <strong>of</strong> <strong>Sciences</strong><br />

3-Constitution Avenue, G-5/2, Islamabad, <strong>Pakistan</strong><br />

E-mail: pas.editor@gmail.com<br />

Tel: +92-51-9207140<br />

Website: www.paspk.org


OF THE PAKISTAN ACADEMY OF SCIENCES<br />

C O N T E N T S<br />

Volume 49, No. 1, March <strong>2012</strong><br />

Page<br />

Research Articles<br />

Physical <strong>Sciences</strong><br />

On Regions <strong>of</strong> Variability <strong>of</strong> Some Differential Operators Implying Starlikeness 1<br />

– Sukhwinder Singh Billing<br />

Some New s-Hermite-Hadamard Type Inequalities for Differentiable Functions and Their Applications 9<br />

– Muhammad Muddassar, Muhammad I. Bhatti and Muhammad Iqbal<br />

Supra β-connectedness on Topological Spaces 19<br />

– O.R. Sayed<br />

A Study on Subordination Results for Certain Subclasses <strong>of</strong> Analytic Functions defined by Convolution 25<br />

– M.K. Aouf, A.A. Shamandy, A.O. Mostafa and A.K. Wagdy<br />

Existence and Uniqueness for Solution <strong>of</strong> Differential Equation with Mixture <strong>of</strong> Integer and<br />

Fractional Derivative 33<br />

– Shayma Adil Murad, Rabha W. Ibrahim and Samir B. Hadid<br />

On Stability for a Class <strong>of</strong> Fractional Differential Equations 39<br />

– Rabha W. Ibrahim<br />

Some Inclusion Properties <strong>of</strong> p-Valent Meromorphic Functions defined by the Wright Generalized<br />

Hypergeometric Function 45<br />

– M.K. Aouf, A.O. Mostafa, A.M. Shahin and S.M. Madian<br />

Some Inclusion Properties <strong>of</strong> Certain Operators 53<br />

– M.K. Aouf, R.M. El-Ashwah and E.E. Ali<br />

Citations <strong>of</strong> Elected Fellows 63<br />

Book Review 67<br />

Instructions for Authors 69<br />

PAKISTAN ACADEMY OF SCIENCES, ISLAMABAD, PAKISTAN<br />

HEC Recognised, Category X<br />

Website: www.paspk.org

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!