07.01.2015 Views

Presentation - What is Neuro-iT.net

Presentation - What is Neuro-iT.net

Presentation - What is Neuro-iT.net

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Food for thought<br />

Mag<strong>is</strong>tretti et al., Science, 1999


Hemodynamic response<br />

Blood<br />

flow<br />

<strong>Neuro</strong>electrical<br />

activity<br />

Blood flow<br />

Oxygen<br />

Hemoglobin<br />

fMRI signal<br />

Deoxyhemoglobin


Questions about the integration of<br />

EEG/MEG with the fMRI<br />

<strong>What</strong> are the techniques to usefully relate<br />

EEG/MEG and fMRI<br />

<strong>What</strong> <strong>is</strong> the evidence for true synergy<br />

<strong>What</strong> behavioral and analys<strong>is</strong> methods are<br />

successful<br />

<strong>What</strong> do we expect in the near future


Human brain produces<br />

measurable signals on the scalp<br />

Hans Berger in 1929 produced the first report<br />

on the measurement of electrical activity in<br />

man over the scalp surface<br />

He hoped that EEG could represent a sort of<br />

“window on the mind”<br />

Berger’s equipment


High Resolution<br />

Electroencephalography (HREEG)<br />

Brain activity elicited a time varying<br />

potential d<strong>is</strong>tribution over the<br />

cortical surface<br />

Such potential d<strong>is</strong>tribution are still<br />

measurable at the scalp level<br />

Due to low scalp conductivity the<br />

EEG Signal to no<strong>is</strong>e ratio <strong>is</strong> very<br />

low<br />

HREEG => Sampling the potential<br />

d<strong>is</strong>tribution with an high number of<br />

electrodes, MRI images for real<strong>is</strong>tic<br />

head modeling and spatial<br />

deblurring algorithms


teps to improve the spatial details of<br />

recorded EEG Data<br />

1975 1993<br />

1989 1996<br />

Real<strong>is</strong>tic<br />

Insert the<br />

Model Computation<br />

scalp geometry of of<br />

The of thickness skull Real<strong>is</strong>tic Head and in dura<br />

Volume Surface the mater SL in<br />

Conductor Laplacian computation<br />

inverse<br />

calculation


The neuroimaging puzzle<br />

Different neuroimaging techniques, same<br />

experimental paradigm<br />

(unilateral right middle finger movement)<br />

fMRI EEG MEG


The linear inverse problem<br />

ξ = argmin ( Ax − b +<br />

The difference between<br />

modeled and measured<br />

potentials/fields <strong>is</strong><br />

minimized, together<br />

with the energy of the<br />

sources<br />

x<br />

2<br />

M<br />

λ<br />

2<br />

A <strong>is</strong> the lead field matrix<br />

x <strong>is</strong> a vector in the source space<br />

b <strong>is</strong> the measured data vector<br />

λ <strong>is</strong> a regularization parameter<br />

M <strong>is</strong> the metric for the data space<br />

N <strong>is</strong> the metric for the source<br />

space<br />

ξ <strong>is</strong> the solution vector<br />

Solutions ξ are obtained by using x = G b where<br />

G<br />

( ) AN<br />

−1<br />

′ + λ<br />

−1<br />

1<br />

−1 −<br />

= N A′<br />

A M<br />

x<br />

2<br />

N<br />

)


Dipolar Localization Error (DLE)<br />

k-th source<br />

x<br />

Est<br />

=<br />

Gb<br />

=<br />

GAx<br />

True<br />

i-th source<br />

x<br />

Est<br />

=<br />

Rx<br />

True<br />

x = Rδ = R.<br />

i-th column of the resolution matrix R<br />

iˆ =<br />

Est<br />

DLE<br />

arg<br />

i<br />

i<br />

i<br />

index of the maximum of the<br />

max R<br />

ki<br />

k<br />

r = −<br />

r<br />

i<br />

r<br />

iˆ<br />

i-th column of the resolution matrix R<br />

d<strong>is</strong>tance between the two sources


Resolution Kernels<br />

k<br />

i<br />

j<br />

x<br />

Est<br />

i<br />

=<br />

N<br />

∑<br />

k<br />

= 1<br />

R<br />

ik<br />

x<br />

True<br />

k<br />

The R ik s define how the different sources other than the i-th<br />

contributed to the estimation to the i-th itself<br />

The R ik s belongs to the i-th row of the resolution matrix and<br />

are called Resolution Kernels


The Resolution Kernel<br />

Bad Resolution<br />

Kernel<br />

large peak around<br />

the maximum<br />

one or more peaks<br />

located far from the<br />

source position<br />

Good Resolution Kernel<br />

narrow peak around<br />

the maximum<br />

one peak located at<br />

the source position


From current strength to probability maps<br />

How obtain a measure of the uncertainty of current<br />

estimations due to the EEG/MEG no<strong>is</strong>e (n) <br />

Under the null hypothes<strong>is</strong> of<br />

no activation the Z <strong>is</strong><br />

d<strong>is</strong>tributed as a Gaussian<br />

d<strong>is</strong>tribution<br />

In the case of three<br />

component for each dipole<br />

the q as a sum of squares <strong>is</strong><br />

d<strong>is</strong>tributed as a F<strong>is</strong>her<br />

d<strong>is</strong>tribution (F 3,n )<br />

σ<br />

Z<br />

q<br />

i<br />

i<br />

2<br />

No<strong>is</strong>e<br />

( t)<br />

=<br />

( t)<br />

=<br />

=<br />

⎡<br />

⎢<br />

⎣<br />

G<br />

Gnn<br />

3<br />

k = 1<br />

3<br />

k = 1<br />

GCG<br />

∑<br />

∑<br />

G<br />

G<br />

k<br />

' G<br />

⋅ b(<br />

t)<br />

k<br />

⋅<br />

'<br />

⋅<br />

'<br />

⎤<br />

b(<br />

t)<br />

⎥<br />

⎦<br />

C<br />

=<br />

⋅<br />

GCG<br />

G<br />

k<br />

2<br />

'<br />

'


Dale et al., 2000<br />

From current strengths to<br />

probability maps<br />

Point spread functions (DLE)<br />

D<strong>is</strong>tribution of the PSF (DLE)


From current strengths to<br />

probability maps<br />

Actual dipole position<br />

Weighted minimum norm<br />

Resolution kernel<br />

No<strong>is</strong>e normalized<br />

Resolution kernel


From scalp to cortical EEG in RoIs<br />

Scalp EEG<br />

Linear inverse estimates<br />

within a RoI are collapsed<br />

(mean)<br />

M1 Hand<br />

area RoI<br />

“Virtual” electrode


Integration of EEG and MEG data<br />

EEG<br />

MEG


Integration of EEG and MEG data<br />

Why:<br />

Different sensitivities to the neural sources<br />

Increased amount of information<br />

Question:How we can fuse femtoTesla and<br />

microVolt<br />

Answer: normalizing the measures with no<strong>is</strong>e<br />

standard deviation<br />

How:<br />

Mahalanob<strong>is</strong> metric for data space<br />

Column normalization for the source<br />

space<br />

ξ = argmin( Ax−b<br />

+<br />

x<br />

2<br />

M<br />

λ<br />

2<br />

x<br />

2<br />

N<br />

)


Integration of EEG and MEG data<br />

20 ms 23 ms 18..24 ms<br />

EEG<br />

SEPs<br />

MEG<br />

SEFs<br />

EEG +<br />

MEG<br />

Fuchs et al.,<br />

EEG J., 1998


The EEG and MEG movement-related<br />

recordings


EEG, MEG and<br />

EEG/MEG indexes<br />

Liu et al., 2000<br />

Babiloni et al., 2000


Left S1 Left M1 Right S1<br />

Right M1 SMA<br />

EEG/MEG integration<br />

EEG MEG EEG/MEG<br />

EEG MEG EEG-MEG


Integration of EEG or MEG data<br />

with fMRI<br />

EEG<br />

fMRI<br />

MEG


Combining EEG and/or MEG with fMRI<br />

Why:<br />

Different spatial resolution<br />

Different time resolution<br />

• How:<br />

• Mahalanob<strong>is</strong> metric for the data space (M)<br />

• Metric on the source space (N) that takes into<br />

account:<br />

• v<strong>is</strong>ibility from the sensors (column normalization); (|| A .i || 2 )<br />

• source activity as expressed by fMRI signal α; g(α)


Dale et al., <strong>Neuro</strong>n, Vol. 26, 55–67, April, 2000,<br />

Integration of MEG and fMRI<br />

fMRI solutions<br />

MEG solutions<br />

fMRI-constrained MEG solutions


Combining EEG or MEG with fMRI<br />

Solutions ξ are obtained by using x = G b where<br />

G<br />

Proposed metric for integration of EEG, MEG and fMRI data<br />

A.<br />

i<br />

N =<br />

2<br />

=<br />

ii<br />

1+<br />

Kα<br />

Solution of the electromag<strong>net</strong>ic inverse problem with fMRI<br />

constraints when Kα >> 1<br />

Solution of electromag<strong>net</strong>ic inverse problem without fMRI<br />

constraints when Kα


Block-design fMRI signals<br />

Information on hemodynamic behaviour of<br />

cortical sources are provided on a temporal<br />

scale of minutes<br />

Diagonal metric N<br />

N<br />

4%<br />

0%<br />

Percent changes (α)<br />

− 1<br />

=<br />

ii<br />

A<br />

( α ) 2<br />

−<br />

. 2<br />

g<br />

i 2 i


Event-related fMRI signals<br />

1.03<br />

1.025<br />

1.02<br />

strength<br />

1.015<br />

1.01<br />

1.005<br />

1<br />

0.995<br />

0.99<br />

0.985<br />

EMG onset<br />

1 2 3 4 5 6 7 8<br />

seconds<br />

S1<br />

M1<br />

i j<br />

Hemodynamical behavior estimated by the correlation between the eventrelated<br />

fMRI signals from the cortical areas i and j on a seconds scale<br />

Full source metric N<br />

N<br />

ij<br />

−1<br />

=<br />

A.<br />

i<br />

2<br />

−1<br />

⋅<br />

A.<br />

j<br />

2<br />

−1<br />

⋅<br />

g<br />

( ) ( ) α ⋅ g α ⋅Corr<br />

( i,<br />

j)<br />

i<br />

j


Temporal domain:<br />

movement onset (0 msec)<br />

fMRI<br />

no fMRI diag fMRI corr fMRI<br />

4%<br />

0%<br />

Percent changes<br />

+100% Positive -100% Negative<br />

Unilateral right middle finger movement


Temporal domain:<br />

reafference peak (+110 msec)<br />

fMRI<br />

no fMRI diag fMRI corr fMRI<br />

4%<br />

0%<br />

Percent changes<br />

+100% Positive -100% Negative<br />

Unilateral right middle finger movement


Movement-related cortical dynamics<br />

HREEG<br />

HREEG<br />

+ fMRI


From current strength to probability maps<br />

How obtain a measure of the uncertainty of current<br />

estimations due to the EEG/MEG no<strong>is</strong>e (n) <br />

Under the null hypothes<strong>is</strong> of<br />

no activation the Z <strong>is</strong><br />

d<strong>is</strong>tributed as a Gaussian<br />

d<strong>is</strong>tribution<br />

In the case of three<br />

component for each dipole<br />

the q as a sum of squares <strong>is</strong><br />

d<strong>is</strong>tributed as a F<strong>is</strong>her<br />

d<strong>is</strong>tribution (F 3,n )<br />

σ<br />

Z<br />

q<br />

i<br />

i<br />

2<br />

No<strong>is</strong>e<br />

( t)<br />

=<br />

( t)<br />

=<br />

=<br />

⎡<br />

⎢<br />

⎣<br />

G<br />

Gnn<br />

3<br />

k = 1<br />

3<br />

k = 1<br />

GCG<br />

∑<br />

∑<br />

G<br />

G<br />

k<br />

' G<br />

⋅ b(<br />

t)<br />

k<br />

⋅<br />

'<br />

⋅<br />

'<br />

⎤<br />

b(<br />

t)<br />

⎥<br />

⎦<br />

C<br />

=<br />

⋅<br />

GCG<br />

G<br />

k<br />

2<br />

'<br />

'


Dale et al, <strong>Neuro</strong>n,2000<br />

Liu, 2000, PhD thes<strong>is</strong><br />

Temporal domain: from current strength<br />

to probabil<strong>is</strong>tic map<br />

n i<br />

(t)<br />

b i<br />

(t)<br />

G<br />

i-th dipole<br />

σ<br />

Z<br />

2<br />

No<strong>is</strong>ei<br />

i<br />

( t)<br />

=<br />

=<br />

[ Gnn'<br />

G'<br />

] = [ GCG'<br />

]<br />

[ G ⋅b(<br />

t)<br />

]<br />

i<br />

[ GCG'<br />

] i<br />

i<br />

i


Dale et al., 2000<br />

From current strengths to<br />

probability maps<br />

Point spread functions (DLE)<br />

D<strong>is</strong>tribution of the PSF (DLE)


From current strengths to<br />

probability maps<br />

Actual dipole position<br />

Weighted minimum norm<br />

Resolution kernel<br />

No<strong>is</strong>e normalized<br />

Resolution kernel


Movement-related cortical dynamics<br />

-0.4<br />

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000<br />

-15<br />

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000<br />

+100%<br />

Z=10<br />

t= +50 ms<br />

Current<br />

density<br />

strength<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

-100%<br />

M1<br />

S1<br />

SMA<br />

S1 IPSI<br />

M1 IPSI<br />

Z=-10<br />

Z score<br />

10<br />

5<br />

0<br />

fMRIconstrained<br />

fMRIconstrained<br />

No<strong>is</strong>enormalized<br />

M1<br />

S1<br />

SMA<br />

S1 IPSI<br />

M1 IPSI<br />

-0.1<br />

-0.2<br />

-0.3<br />

-5<br />

-10


Frequency-based linear inverse source<br />

EMG onset<br />

estimation<br />

Alpha desync.<br />

average<br />

ERD<br />

b i<br />

(t)<br />

bCSD ( t)<br />

bCSD<br />

ij<br />

ii<br />

f<br />

( f ; T ) ≡ B ( f ; T ) ⋅ B ( f ; T<br />

i<br />

j<br />

*<br />

)<br />

x(<br />

t)<br />

=<br />

G ⋅b(<br />

t)<br />

G<br />

xCSD (<br />

f<br />

=<br />

⋅bCSD<br />

( f<br />

)<br />

) ⋅G′


Frequency domain: from current<br />

strength to probabil<strong>is</strong>tic map<br />

G<br />

bCSD (∆t)<br />

ii<br />

f<br />

i-th dipole<br />

σ<br />

Z<br />

2<br />

No<strong>is</strong>ei<br />

i<br />

( ∆t,<br />

= Var(<br />

bCSD<br />

f ) =<br />

ii<br />

( Τ,<br />

f ))<br />

[ G⋅bCSD<br />

( ∆t,<br />

f ) G'<br />

]<br />

σ<br />

ii<br />

No<strong>is</strong>ei<br />

i


HREEG-Movies


Conclusions<br />

High resolution EEG improved spatial details of the<br />

raw EEG potential d<strong>is</strong>tributions with respect to the<br />

standard EEG techniques<br />

Multimodal integration of high resolution EEG data<br />

with those provided by MEG and fMRI techniques <strong>is</strong><br />

possible in the framework of linear inverse problem<br />

Information about sources correlation estimated<br />

from event-related fMRI can be inserted in the<br />

solution of the linear inverse problem by using a full<br />

source metric N


Filippo Carducci<br />

Claudio Babiloni<br />

Febo Cincotti<br />

Fabio Babiloni

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!