09.01.2015 Views

Two- and Three-Dimensional Analysis of Void ... - Course Notes

Two- and Three-Dimensional Analysis of Void ... - Course Notes

Two- and Three-Dimensional Analysis of Void ... - Course Notes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Two</strong>- <strong>and</strong> <strong>Three</strong>-<strong>Dimensional</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Void</strong><br />

Growth <strong>and</strong> Linkage During Deformation<br />

Jing Li<br />

Supervisor: Dr. David Wilkinson<br />

Graduate Seminar 701


Outline<br />

• Introduction <strong>of</strong> Ductile Fracture<br />

• Literature Review <strong>and</strong> Group Research Summary<br />

• Research Objectives<br />

• Experimental Approach<br />

• Preliminary Results<br />

• Summary <strong>and</strong> Future Work<br />

2


Introduction<br />

Deformation<br />

Ductile fracture process:<br />

• <strong>Void</strong> nucleation<br />

• <strong>Void</strong> growth<br />

• <strong>Void</strong> coalescence/linkage<br />

Longitudinal radius<br />

Linkage<br />

<strong>Void</strong> size<br />

Lateral radius<br />

R 0<br />

e coalescence<br />

strain<br />

R 0<br />

coalescence<br />

e coalescence<br />

Linkage<br />

Callister <strong>and</strong> Rethwisch - 2010; Hosokawa - 2010<br />

3


Introduction<br />

<strong>Void</strong> Nucleation Mechanisms:<br />

Decohesion<br />

Particle Cracking<br />

Al 2 O 3 reinforced Al606 (Kanetake et al – 1995)<br />

Loading direction<br />

4


Introduction<br />

<strong>Void</strong> Coalescence Mechanisms:<br />

Internal Necking<br />

<strong>Void</strong> Sheeting<br />

Loading<br />

Direction<br />

Copper (Puttick – 1959) AISI 4340 Steel (Cox & Low – 1974)<br />

5


Literature Review<br />

Local true strain = ln(R/R0)<br />

<strong>Void</strong> Coalescence Models<br />

McClintock – 1968<br />

Coalescence when<br />

voids impinge each other<br />

2R = L<br />

R<br />

2R<br />

Weck - 2008<br />

L<br />

R e 3 31<br />

n <br />

ln sinh <br />

<br />

<br />

<br />

<br />

Far field true strain = ε<br />

R0<br />

2 1<br />

n 2 (Plane strain condition, n – work hardening rate)


Literature Review<br />

<strong>Void</strong> Coalescence Models<br />

Brown & Embury – 1973<br />

R<br />

Coalescence when<br />

void length = intervoid spacing<br />

2<br />

8<br />

2R1 e R<br />

<br />

<br />

<br />

3V<br />

f<br />

3<br />

<br />

<br />

<br />

Weck - 2006<br />

V<br />

f<br />

– Volume fraction


Literature Review<br />

<strong>Void</strong> Coalescence Models<br />

Thomason – 1968, 1990<br />

• plastic limit load condition for<br />

localized plastic failure <strong>of</strong> the<br />

intervoid matrix<br />

• 2D:<br />

0.3A <br />

1<br />

n-2D<br />

<br />

m<br />

1<br />

<br />

0.6 1V<br />

f <br />

a / c1 An-2D<br />

<br />

<br />

Y 2<br />

• 3D:<br />

<br />

<br />

2/3<br />

2<br />

0.1 1.2 1<br />

3<br />

V<br />

<br />

f b <br />

m<br />

1<br />

<br />

2 1/2 1V<br />

f 1 exp( e ) <br />

<br />

<br />

a<br />

/d<br />

b 4 <br />

b0<br />

Y 2<br />

<br />

<br />

<br />

<br />

b<br />

d <br />

8


Research Highlight by Our Group<br />

Loading<br />

Direction<br />

AA 5052<br />

2D-single sheet<br />

Load<br />

Interrupted in situ SEM<br />

Data points <strong>of</strong> SEM<br />

Displacement<br />

Models<br />

McClintock<br />

Brown & Embury<br />

Thomason<br />

Weck, A. <strong>and</strong> Wilkinson D. S. (2008) Acta Materialia 56(8): 1774-1784.<br />

2D-single sheet<br />

×Valid only at low far field strain<br />

√ Excellent for 90°<br />

×Poor for 45°<br />

×Not working<br />

9


Research Highlight by Our Group<br />

Loading<br />

Direction<br />

Cu(99.999%)<br />

3D-single sheet<br />

Load<br />

Interrupted in situ tomography<br />

Data points <strong>of</strong> tomograms<br />

Models 2D-single sheet 3D-single sheet<br />

Brown & Embury √ Excellent for 90° × Not working<br />

Displacement<br />

Thomason<br />

×Not working<br />

√ Excellent for 90°<br />

×Poor for angular configuration<br />

Weck, A., et al. (2008) Acta Materialia 56(12): 2919-2928.<br />

10


Research Summary by Our Group<br />

3D-multiple sheets<br />

Load<br />

Continuous tomography<br />

Displacement<br />

Cu(99.999%)<br />

Hosokawa, A. PhD Thesis, 2010<br />

11


Research Objectives<br />

• Fabricating 2D single-sheet model materials with different angles with<br />

respect to the tensile direction.<br />

• Analyzing the angular effect by two dimensional methods by using in situ<br />

SEM.<br />

• Comparing experimental results with classic models <strong>and</strong> modification.<br />

• Evaluating <strong>of</strong> the competition <strong>of</strong> internal necking <strong>and</strong> shear fracture modes.<br />

• Fabricating 3D model materials <strong>and</strong> Extending to three-dimensional analysis<br />

by using XRCT.<br />

12


Experimental Approach - Sample Preparations<br />

Materials:<br />

• Pure Cu (99.9999%)<br />

• α-brass (70 wt% Cu, 30 wt% Zn)<br />

• GlidCop Al-25 (0.5 wt% Al 2 O 3 , Cu balance)<br />

90°<br />

75°<br />

60°<br />

Loading<br />

Direction<br />

45°<br />

Electrical Discharge Machining<br />

Laser Drilling (KJ Marketing Services company)<br />

13


Experimental Approach<br />

Tensile Test Coupled with Environment Scanning Electron Microscope<br />

Development <strong>of</strong> computer assisted tomography<br />

(Cormack – 1960s & Hounsfield – 1970s)<br />

The Nobel Prize in Physiology or Medicine 1979<br />

X-Ray Computed Tomography (XRCT)<br />

SkyScan @ 1172 high-resolution micro-CT<br />

14


Experimental Approach - XRCT Principles<br />

Radiation<br />

beam<br />

Sample rotated<br />

through 180°<br />

SOURCE SAMPLE DETECTOR<br />

X-Rays<br />

CCD camera<br />

I 0<br />

I t<br />

Absorption<br />

image<br />

projected on<br />

CCD camera<br />

I t = I 0 e -μt<br />

Beer–Lambert law<br />

t – sample thickness<br />

μ- absorption coefficient<br />

2D images<br />

processed to give<br />

3D volume<br />

Hosokawa - 2007<br />

15


Preliminary Results<br />

Brass<br />

• <strong>Void</strong> growth <strong>and</strong> linkage <strong>of</strong> brass 30<br />

Loading<br />

Direction<br />

16


Preliminary Results - Fractography<br />

α-brass<br />

Cu (99.9999%)<br />

GlidCop-Al25<br />

17


Preliminary Results<br />

• <strong>Void</strong> growth <strong>and</strong> linkage process <strong>of</strong> brass-45°(Hole #1 to #4)<br />

Loading<br />

Direction<br />

1<br />

• <strong>Void</strong> growth <strong>and</strong> linkage <strong>of</strong> brass 30<br />

2<br />

3<br />

A1 A2 A3 A4<br />

4<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

A5 A6 A7<br />

1<br />

2<br />

3<br />

4<br />

18


4<br />

Preliminary Results<br />

• <strong>Void</strong> growth <strong>and</strong> linkage process <strong>of</strong> brass-45°(Hole #4 to #8)<br />

B1 B2 B3 B4<br />

5<br />

Loading<br />

Direction<br />

6<br />

7<br />

8<br />

B5 B6 B7<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

19<br />

19


Preliminary Results<br />

Brass<br />

• XRCT results <strong>of</strong> brass 45<br />

Loading<br />

Direction<br />

20


Preliminary Results<br />

top surface seen in SEM<br />

A<br />

back surface<br />

B<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Section close to top surface: no Linkage<br />

Section close to the back surface: Linkage!!<br />

21


Preliminary Results<br />

6061 Al alloy reinforced with SiC particles<br />

Buffiere, J. Y., et al. (1999), Acta Materialia 47(5): 1613-1625.<br />

22


Summary<br />

• Classic models cannot give reliable predictions for different type <strong>of</strong><br />

model materials.<br />

• There is limited experimental data for holes with different angle<br />

arrangements.<br />

• Current models don’t treat the effect <strong>of</strong> angular arrangements which is<br />

found to be important from our experimental work.<br />

• <strong>Void</strong> growth <strong>and</strong> linkage in two-dimensional model materials has been<br />

visualized successfully by ESEM coupled with tensile test.<br />

23


Future Work<br />

• Quantitative analysis <strong>of</strong> the 2D experimental results <strong>and</strong> verify classic<br />

models.<br />

• 3D model materials fabrication - Overcoming the delamination <strong>and</strong><br />

alignment problems.<br />

Weck’s delamination problem Hosokawa’s alignment problem My solutions<br />

Hosokawa, A. 2007<br />

24


Acknowledgement<br />

Supervisor:<br />

• Dr. David S. Wilkinson<br />

Group Members:<br />

• Michael Nemcko<br />

• Felicia Annor<br />

• Dr. Yaping Lü<br />

• Dr. Akihide Hosokawa<br />

• Dr. Arnaud Weck<br />

• Dr. Jidong Kang<br />

• Dr. Connie Barry<br />

Technical Support:<br />

• Jim Garret<br />

• Klaus Schultes<br />

• Chris Butcher<br />

• Doug Culley<br />

• Xiaogang Li<br />

• Ed McCaffery<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!