11.11.2012 Views

The Role of the Lone Pairs in Hydrogen Bonding

The Role of the Lone Pairs in Hydrogen Bonding

The Role of the Lone Pairs in Hydrogen Bonding

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Monday, February 5 9:30-10:00<br />

<strong>The</strong> <strong>Role</strong> <strong>of</strong> <strong>the</strong> <strong>Lone</strong> <strong>Pairs</strong> <strong>in</strong> <strong>Hydrogen</strong> Bond<strong>in</strong>g<br />

Ivar Olovsson<br />

Materials Chemistry, ˚ Angström Laboratory, Box 538, SE-751 21 Uppsala, Sweden<br />

<strong>The</strong> paper discusses some aspects <strong>of</strong> <strong>the</strong> electron lone-pairs <strong>in</strong> H-bonded structures: <strong>the</strong>ir role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> short-range structure and <strong>the</strong> effect <strong>of</strong> <strong>the</strong> environment on <strong>the</strong> electron density. In <strong>the</strong> water<br />

molecule <strong>the</strong> entire non-bonded region appears to be equally accessible for hydrogen bond<strong>in</strong>g and <strong>the</strong><br />

details <strong>of</strong> <strong>the</strong> hydrogen-bond arrangement are ma<strong>in</strong>ly determ<strong>in</strong>ed by simple geometrical and topological<br />

requirements. On <strong>the</strong> o<strong>the</strong>r hand, <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> OH − ion <strong>the</strong> electron density is concentrated <strong>in</strong><br />

certa<strong>in</strong> directions <strong>in</strong> <strong>the</strong> general lone-pair region and accord<strong>in</strong>gly <strong>the</strong> hydrogen bond donor will preferably<br />

approach <strong>the</strong> OH − ion <strong>in</strong> <strong>the</strong>se directions. Many examples may be taken to illustrate that it is<br />

important to take <strong>the</strong> whole electron and nuclear distribution <strong>in</strong>to account when discuss<strong>in</strong>g <strong>the</strong> relative<br />

arrangement <strong>of</strong> <strong>in</strong>teract<strong>in</strong>g molecules. <strong>The</strong> result<strong>in</strong>g structure <strong>of</strong> one particular compound is determ<strong>in</strong>ed<br />

by <strong>the</strong> net balance <strong>of</strong> many <strong>in</strong>termolecular <strong>in</strong>teractions and not only by <strong>the</strong> hydrogen bond<strong>in</strong>g, even if<br />

<strong>the</strong> result<strong>in</strong>g structure is consistent with hydrogen-bond directionality. From structural data it can be<br />

concluded that <strong>the</strong> immediate acceptor <strong>of</strong> a hydrogen bond is some negative charge accumulation, such<br />

a <strong>in</strong> a lone-pair region, but not specifically any <strong>in</strong>dividual lone pairs <strong>in</strong> <strong>the</strong> traditional, atomic sense.<br />

1


Monday, February 5 10:00-10:30<br />

High-resolution Compton pr<strong>of</strong>iles<br />

Pekka Suortti<br />

Department <strong>of</strong> Physical Sciences, PL 64, FIN-00014 Hels<strong>in</strong>ki University, F<strong>in</strong>land and European Synchrotron<br />

Radiation Facility, BP 220, F-38043 Grenoble, France, e-mail: Pekka.Suortti@hels<strong>in</strong>ki.fi, suortti@esrf.fr<br />

Compton scatter<strong>in</strong>g has played a decisive role <strong>in</strong> some developments <strong>of</strong> modern physics, first <strong>in</strong> <strong>in</strong>terpretation<br />

<strong>of</strong> photon scatter<strong>in</strong>g and conservation laws, <strong>the</strong>n <strong>in</strong> giv<strong>in</strong>g direct evidence that electrons <strong>in</strong><br />

solids obey Fermi-Dirac statistics. <strong>The</strong> history <strong>of</strong> Compton scatter<strong>in</strong>g is that <strong>of</strong> a dialogue between experiment<br />

and <strong>the</strong>ory at <strong>the</strong> deepest level, and <strong>the</strong>ory and experiment have taken <strong>the</strong> lead alternately.<br />

In this work <strong>the</strong> development <strong>of</strong> focus<strong>in</strong>g crystal spectrometers for Compton scatter<strong>in</strong>g studies from<br />

1930s to present is reviewed. <strong>The</strong> design pr<strong>in</strong>ciples have stayed <strong>the</strong> same, but <strong>the</strong> efficiency has improved<br />

much ow<strong>in</strong>g to <strong>the</strong> availability <strong>of</strong> large perfect crystal analyzers and efficient detectors. <strong>The</strong> reflectivity<br />

and energy resolution <strong>of</strong> <strong>the</strong> crystal can be tailored to <strong>the</strong> needs <strong>of</strong> <strong>the</strong> experiment by <strong>the</strong> asymmetric<br />

cut, thickness and bend<strong>in</strong>g radius <strong>of</strong> <strong>the</strong> crystal, and <strong>the</strong> response function <strong>of</strong> <strong>the</strong> spectrometer can be<br />

calculated precisely. <strong>The</strong> spectrometers at synchrotron radiation beaml<strong>in</strong>es achieve better than 0.1 a.u.<br />

momentum resolution, and several statistically accurate Compton spectra can be acquired <strong>in</strong> one day.<br />

<strong>The</strong> latest developments <strong>in</strong>clude spectrometers that operate <strong>in</strong> <strong>the</strong> 100 keV range, and count rates are<br />

enhanced by us<strong>in</strong>g wide energy bands and dispersion compensation. Experimental momentum density <strong>of</strong><br />

crystall<strong>in</strong>e LiH is compared with results <strong>of</strong> a Hartree-Fock calculation <strong>in</strong> terms <strong>of</strong> directional Compton<br />

pr<strong>of</strong>iles and reciprocal form factors. <strong>The</strong> agreement is excellent, and <strong>the</strong> residual differences are attributed<br />

to electron-electron correlation, which is not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> H-F calculation. <strong>The</strong> correlation energy<br />

is calculated from <strong>the</strong> second moment <strong>of</strong> <strong>the</strong> difference between experimental and <strong>the</strong>oretical Compton<br />

pr<strong>of</strong>iles.<br />

2


Monday, February 5 14:30-16:00<br />

Name<br />

Ort<br />

3


Monday, February 5 11:45-13:15<br />

Electron density and density matrix, a key quantity for systems<br />

at and out <strong>of</strong> equilibrium.<br />

Pierre BECKER, Jean Michel GILLET, Bland<strong>in</strong>e COURCOT<br />

Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay Malabry Cedex, France - SPMS CNRS<br />

Unit, pierre.becker@ecp.fr<br />

<strong>The</strong> crucial role <strong>of</strong> one particle reduced density matrices occurs when try<strong>in</strong>g to get complementary<br />

<strong>in</strong>formation from different sources <strong>of</strong> observation for steady state systems. Application to charge, sp<strong>in</strong><br />

and momentum density analysis has been <strong>the</strong> ma<strong>in</strong> research activity <strong>of</strong> our group. Tak<strong>in</strong>g advantage<br />

<strong>of</strong> <strong>the</strong> pioneer<strong>in</strong>g work by Vedene Smith and Wolf Weyrich, we were able to develop a ”pseudo-atomic,<br />

pseudo-molecular or clusterëxpansion <strong>of</strong> <strong>the</strong> reduced density matrix. This is a generalisation to density<br />

matrix <strong>of</strong> <strong>the</strong> celebrated pseudo-atomic expansion <strong>of</strong> <strong>the</strong> charge density. Each term takes <strong>in</strong>to account <strong>the</strong><br />

<strong>in</strong>teraction with neighbor<strong>in</strong>g sites. Transferability is an implied concept to be discussed. Applications<br />

go from solids to molecules <strong>in</strong> <strong>in</strong>teraction with <strong>the</strong>ir surround<strong>in</strong>g medium. We were able to jo<strong>in</strong>tly<br />

analyze Bragg and Compton scatter<strong>in</strong>g experiments. A recent generalization to pharmaceuticals and<br />

<strong>the</strong>ir <strong>in</strong>teraction with biological medium is considered. F<strong>in</strong>ally first steps for an approach <strong>of</strong> systems out<br />

<strong>of</strong> equilibrium and undergo<strong>in</strong>g chemical reactions are discussed.<br />

4


Monday, February 5 14:30-16:00<br />

Local chemical bond<strong>in</strong>g <strong>in</strong> metals<br />

Wedig, Ulrich; Nuss, Jürgen; Karpov, Andrey and Jansen, Mart<strong>in</strong><br />

Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569 Stuttgart, Germany<br />

<strong>The</strong> large variety <strong>of</strong> structures and properties <strong>of</strong> solid compounds is caused by a compet<strong>in</strong>g <strong>in</strong>terplay<br />

<strong>of</strong> different bond<strong>in</strong>g types: (1) ionic bond<strong>in</strong>g caused by charge transfer, (2) covalent <strong>in</strong>teractions be<strong>in</strong>g<br />

associated with electron localization, (3) metallic bond<strong>in</strong>g requir<strong>in</strong>g it<strong>in</strong>erant electrons and (4) dispersion<br />

<strong>in</strong>teractions be<strong>in</strong>g related to <strong>the</strong> polarisability <strong>of</strong> closed electronic shells. As <strong>the</strong> terms related to chemical<br />

bond<strong>in</strong>g are <strong>of</strong> conceptual nature and no quantum mechanical observables, it is difficult to identify <strong>the</strong><br />

various contributions and <strong>the</strong>ir impact on <strong>the</strong> properties <strong>of</strong> <strong>the</strong> solid state compounds. Several quantities<br />

like <strong>the</strong> electron localization function (ELF), which can be computed from wavefunctions or Kohn-<br />

Sham orbitals, can help to identify covalent and ionic substructures. However, <strong>in</strong> metals, <strong>the</strong> analysis<br />

is complicated by <strong>the</strong> fact, that <strong>the</strong> subdivision <strong>of</strong> <strong>the</strong> entirety <strong>of</strong> valence electrons <strong>in</strong>to localised and<br />

delocalised parts is not obvious. <strong>The</strong>refore it is necessary to validate <strong>the</strong> application <strong>of</strong> different bond<strong>in</strong>g<br />

concepts by suitable experiments. In <strong>the</strong> follow<strong>in</strong>g, two examples are given. B<strong>in</strong>ary <strong>in</strong>termetallic phases<br />

<strong>of</strong> cesium and barium with plat<strong>in</strong>um conta<strong>in</strong> local anionic structures <strong>in</strong> <strong>the</strong> Pt sublattice like isolated<br />

anions (Cs2Pt 1 and Ba2Pt 2 ), negatively charged dumbbells (Ba3Pt2 3 ) and cha<strong>in</strong>s (BaPt 4 ). Whereas<br />

<strong>the</strong> charge transfer <strong>in</strong> <strong>the</strong> Cs compound is complete, lead<strong>in</strong>g to a band gap, all <strong>the</strong> Ba compounds are<br />

metallic. <strong>The</strong> topological analyses <strong>of</strong> <strong>the</strong> computed electron densities as well as <strong>of</strong> <strong>the</strong> ELF gave rise to<br />

<strong>the</strong> follow<strong>in</strong>g formal description <strong>of</strong> <strong>the</strong> Ba / Pt systems: [(Ba2 +)22e-] ÂPt2-, [(Ba2+)1.5Â1.5e-]ÂPt1.5and<br />

[Ba2+ Âe-]ÂPt-. This charge assignment recently was confirmed by ESCA measurements5 . Even <strong>the</strong><br />

arrangement <strong>of</strong> metal atoms <strong>in</strong> elemental structures bears open questions. E.g. <strong>the</strong> crystal structures <strong>of</strong><br />

Zn and Cd deviate from hexagonal close pack<strong>in</strong>g, as <strong>in</strong>dicated by an exceptional large c/a ratio. <strong>The</strong><br />

causes <strong>of</strong> <strong>the</strong>se deviations are <strong>the</strong> topic <strong>of</strong> a comb<strong>in</strong>ed experimental and <strong>the</strong>oretical study6 , 7. Electron<br />

correlation <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> filled d-shells plays a crucial role <strong>in</strong> <strong>the</strong> <strong>in</strong>traand <strong>in</strong>ter-layer <strong>in</strong>teractions. At<br />

<strong>the</strong> DFT(GGA, PBE) level, <strong>the</strong> potential energy surface with respect to <strong>the</strong> lattice constants is very flat<br />

along <strong>the</strong> c-axis. This is reflected by an unusual hysteresis <strong>in</strong> <strong>the</strong> stress-stra<strong>in</strong> relation8 .<br />

1 Karpov, A.; Nuss, J.; Wedig, U.; Jansen, M.; Angew. Chem. Int. Ed. 2003, 42, 4818-4821. 2 Karpov,<br />

A.; Wedig, U.; D<strong>in</strong>nebier, R. E.; Jansen, M.; Angew. Chem. Int. Ed. 2005, 44, 770-773. 3 Karpov, A.;<br />

Wedig, U.; Jansen, M.; Z. Naturforsch. 2004, 59b, 1387-1394. 4 Karpov, A.; Nuss, J.; Wedig, U.; Jansen,<br />

M.; J. Am. Chem. Soc. 2004, 126,14123-14128. 5 Karpov, A.; Konuma, M.; Jansen, M.; Chem. Commun.<br />

2006, 838-840. 6 Jansen, M.; Wedig, U.; Kirfel, A.; Schlenz, H.; Weyrich, W.; project with<strong>in</strong> <strong>the</strong> DFG<br />

priority program 1178 ExpED. 7 Wedig, U.; Jansen, M.; Paulus, B.; Rosciszewski K.; Sony, P.; to be<br />

submitted. 8 Collaboration with C. Frick, Max-Planck-Institute for Metals research.<br />

5


Monday, February 5 14:30-16:00<br />

<strong>The</strong> Method <strong>of</strong> Increments - a Wavefunction-based Ab-<strong>in</strong>itio<br />

Correlation Methods for Solids<br />

Beate Paulus<br />

Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Stra38, 01187 Dresden, Germany<br />

Due to a localization <strong>of</strong> <strong>the</strong> orbitals it is possible to apply wavefunction-based correlation methods to<br />

solids. <strong>The</strong> so-called method <strong>of</strong> <strong>in</strong>crements is based on a preced<strong>in</strong>g HF treatment explicitly calculates<br />

<strong>the</strong> many-body wavefunction <strong>in</strong> contrast to <strong>the</strong> density-functional <strong>the</strong>ory which relies on <strong>the</strong> groundstate<br />

density <strong>of</strong> <strong>the</strong> system. <strong>The</strong> correlation energy <strong>of</strong> <strong>the</strong> solid is expressed <strong>in</strong> a <strong>in</strong>cremental expansion<br />

<strong>in</strong> terms <strong>of</strong> localised orbitals or <strong>of</strong> a group <strong>of</strong> localised orbitals. <strong>The</strong> method <strong>of</strong> <strong>in</strong>crements which has<br />

been successfully applied to a great variety <strong>of</strong> materials with a band gap 1 , is now extended to metals.<br />

<strong>The</strong>re <strong>the</strong> correlation energy <strong>in</strong>crements are determ<strong>in</strong>ed <strong>in</strong> f<strong>in</strong>ite, properly embedded fragments <strong>of</strong> <strong>the</strong><br />

metal. In detail <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> electronic correlation on <strong>the</strong> ground-state properties <strong>of</strong> solid mercury<br />

are discussed. Whereas <strong>the</strong> DFT treatment yields for mercury not conclud<strong>in</strong>g results, <strong>the</strong> method <strong>of</strong><br />

<strong>in</strong>crements achieves a very good agreement with experimental ground state properties 2 − 4. First results<br />

for <strong>the</strong> structure <strong>of</strong> <strong>the</strong> o<strong>the</strong>r group IIB metals Z<strong>in</strong>c and Cadmium are presented, which <strong>the</strong> hexagonal<br />

close-packed (hcp) structure, but with an anomalous c/a ratio which is far from ideal hcp.<br />

1 B. Paulus, Phys. Rep. 421, 1 (2006). 2 B. Paulus and K. Rosciszewski, Chem. Phys. Lett., 394, 96100<br />

(2004). 3 B. Paulus, K. Rosciszewski, N. Gaston, P. Schwerdtfeger and H. Stoll, Phys. Rev. B 70, 165106<br />

(2004). 4 N. Gaston, B. Paulus, K. Rosciszewski, P. Schwerdtfeger and H. Stoll, Phys. Rev. B 74, 094102<br />

(2006).<br />

6


Monday, February 5 14:30-16:00<br />

WHAT THE SOURCE FUNCTION TELLS US ABOUT CHE-<br />

MICAL BONDING<br />

C. Gatti<br />

CNR-ISTM, Istituto di Scienze e Tecnologie Molecolari, via Golgi 19, 20133 Milano, Italy<br />

Few years ago, 1 Richard Bader and I showed that <strong>the</strong> electron density ? at any po<strong>in</strong>t r with<strong>in</strong> a molecule<br />

may be viewed as consist<strong>in</strong>g <strong>of</strong> contributions from a local source (LS) operat<strong>in</strong>g at all o<strong>the</strong>r po<strong>in</strong>ts r’.<br />

When <strong>the</strong> LS is <strong>in</strong>tegrated over regions ? satisfy<strong>in</strong>g <strong>the</strong> Quantum <strong>The</strong>ory <strong>of</strong> Atoms <strong>in</strong> Molecules (QTAIM)<br />

def<strong>in</strong>ition <strong>of</strong> an atom <strong>in</strong> a molecule, ?(r) may be equated to a sum <strong>of</strong> atomic contributions S(r;?), each<br />

<strong>of</strong> which is termed as <strong>the</strong> source function (SF) from <strong>the</strong> atom ? to ?(r). Such a decomposition enables<br />

one to view <strong>the</strong> properties <strong>of</strong> <strong>the</strong> density from a new perspective and establishes <strong>the</strong> source function<br />

(SF) as an <strong>in</strong>terest<strong>in</strong>g tool to provide chemical <strong>in</strong>sight. 1 , 2, 3 <strong>The</strong> bond critical po<strong>in</strong>ts (BCP) have been<br />

generally taken as <strong>the</strong> least biased choice for po<strong>in</strong>ts representative <strong>of</strong> bond<strong>in</strong>g <strong>in</strong>teractions. Analysis <strong>of</strong><br />

<strong>the</strong> LS(BCP, r’) pr<strong>of</strong>ile, along a bond path, <strong>in</strong>troduces fur<strong>the</strong>r detail. 4<br />

Although depend<strong>in</strong>g on <strong>the</strong> whole set <strong>of</strong> <strong>in</strong>teractions with<strong>in</strong> a system, a bond path is topologically<br />

associated only to <strong>the</strong> two atoms it connects. On <strong>the</strong> contrary, <strong>the</strong> SF details how all <strong>the</strong> o<strong>the</strong>r atoms <strong>in</strong><br />

a system, <strong>in</strong> addition to <strong>the</strong> two l<strong>in</strong>ked atoms, contribute to <strong>the</strong> accumulation <strong>of</strong> electron density along<br />

a bond path and, <strong>in</strong> particular, at BCP. 1 , 2, 5 It so discloses non-local <strong>in</strong>formation on bond<strong>in</strong>g and on<br />

complex bond<strong>in</strong>g patterns, 3 , 5 analogously to <strong>the</strong> QTAIM delocalisation <strong>in</strong>dex or <strong>the</strong> synaptic order <strong>of</strong><br />

an Electron Localization Function (ELF) valence bas<strong>in</strong>. One advantage <strong>of</strong> <strong>the</strong> SF over <strong>the</strong>se two very<br />

powerful <strong>in</strong>terpretive tools is that it is potentially directly amenable to experimental determ<strong>in</strong>ation, s<strong>in</strong>ce<br />

to evaluate it only <strong>the</strong> knowledge <strong>of</strong> <strong>the</strong> system’s electron density and Laplacian is required.<br />

<strong>The</strong> SF can also be used as a very sensitive measure <strong>of</strong> an atom’s or chemical group’s transferability and <strong>of</strong><br />

<strong>the</strong> consequences derived <strong>the</strong>re<strong>of</strong>. 1 , 2Indeed, <strong>the</strong>”perfect”transferability<strong>of</strong>agrouppropertyfromonemoleculeto<br />

In this talk, I´ll present few paradigmatic applications <strong>of</strong> <strong>the</strong> SF concern<strong>in</strong>g chemical transferability and<br />

chemical bond<strong>in</strong>g. In particular Ill show how this function is able to markedly dist<strong>in</strong>guish hydrogen bonds<br />

<strong>of</strong> different strength or to give a description <strong>of</strong> <strong>the</strong> metal-metal (M-M) bond<strong>in</strong>g <strong>in</strong> d-block organometallic<br />

compounds closely related to that provided by <strong>the</strong> localization/delocalization <strong>in</strong>dices. This agreement<br />

persists even when <strong>the</strong> M-M bond is lack<strong>in</strong>g and <strong>the</strong> <strong>in</strong>ternuclear M-M midpo<strong>in</strong>t is taken as a reference<br />

po<strong>in</strong>t for evaluat<strong>in</strong>g <strong>the</strong> SF contributions. However, use <strong>of</strong> <strong>the</strong> local form <strong>of</strong> <strong>the</strong> SF unveils <strong>in</strong>terest<strong>in</strong>g<br />

differences <strong>in</strong> how <strong>the</strong> charge density orig<strong>in</strong>ates at <strong>the</strong> M-M midpo<strong>in</strong>t when <strong>the</strong> system is metal-metal<br />

bonded or not. Conversely, most <strong>of</strong> <strong>the</strong> topological <strong>in</strong>dices conventionally adopted to describe M-M bonds<br />

fail <strong>in</strong> reproduc<strong>in</strong>g <strong>the</strong> expected chemical trends for <strong>the</strong> set <strong>of</strong> <strong>in</strong>vestigated systems. Recent progresses6 <strong>in</strong> deriv<strong>in</strong>g an ambiguity-free full population analysis from <strong>the</strong> SF will be also mentioned.<br />

1 Bader R.F.W., Gatti C., Chem. Phys. Lett., 1998, 287, 233. 2 Gatti C., Cargnoni F., Bert<strong>in</strong>i L., J.<br />

Comput. Chem., 2003, 24, 422. 3 Gatti C, chapter 7 <strong>in</strong> Quantum <strong>The</strong>ory <strong>of</strong> Atoms <strong>in</strong> Molecules , C.<br />

Matta and R. Boyd (Eds.), Wiley-VCH 2007, <strong>in</strong> press, ISBN: 978-3-527-30748-7. 4 Gatti C., Bert<strong>in</strong>i L.,<br />

Acta Cryst. 2004, A60, 438. 5 Gatti C., Lasi D., Faraday Discussion.,2007, 135, 55-78. 6 Gatti C., Lasi<br />

D., 4th European Charge Density Meet<strong>in</strong>g, Branderburg/Havel (Germany), 26-29 January 2006<br />

7


Monday, February 5 16:30-17:30<br />

WHAT COMPTON SCATTERING TELLS ABOUT THE INTRA-<br />

AND INTERMOLECULAR STRUCTURE OF WATER?<br />

M. Hakala<br />

Division <strong>of</strong> X-Ray Physics, Department <strong>of</strong> Physical Sciences, P.O.B. 64, FI-00014 University <strong>of</strong> Hels<strong>in</strong>ki,<br />

F<strong>in</strong>land Email: mikko.o.hakala@hels<strong>in</strong>ki.fi<br />

Besides be<strong>in</strong>g <strong>the</strong> most familiar and ubiquitous liquid, water is most <strong>in</strong>terest<strong>in</strong>g from <strong>the</strong> microscopic<br />

po<strong>in</strong>t <strong>of</strong> view. <strong>The</strong> structure and properties <strong>of</strong> this molecular liquid are determ<strong>in</strong>ed by <strong>the</strong> hydrogen bond<br />

(H bond) network. <strong>The</strong> H-bond network as well as <strong>the</strong> <strong>in</strong>tramolecular geometry (e.g. <strong>the</strong> length <strong>of</strong> <strong>the</strong><br />

covalent O-H bond) depend on <strong>the</strong> <strong>the</strong>rmodynamic state. <strong>The</strong> fact that even <strong>the</strong> structure <strong>of</strong> <strong>the</strong> first<br />

coord<strong>in</strong>ation shell cont<strong>in</strong>ues to be debated [1] gives an ample motivation to study water with new and<br />

improved methods. In this talk I will review our recent Compton scatter<strong>in</strong>g experiments on water us<strong>in</strong>g<br />

synchrotron radiation and <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs we have obta<strong>in</strong>ed with model calculations. <strong>The</strong> experiments we<br />

have carried out <strong>in</strong>clude: (i) temperature effect <strong>of</strong> <strong>the</strong> liquid [2], (ii) ice-liquid transition [3], (iii) isotope<br />

effect, and (iv) temperature effect <strong>of</strong> ice. From each set one can extract difference Compton pr<strong>of</strong>iles (CPs)<br />

J(q), which can be <strong>in</strong>terpreted by <strong>the</strong> changes <strong>in</strong> <strong>the</strong> <strong>in</strong>tramolecular (O-H length, H-O-H angle) and/or<br />

<strong>in</strong>termolecular (H-bond length and angle) parameters. I will discuss two computational approaches used<br />

<strong>in</strong> this work. <strong>The</strong> first one is a nonselfconsistent model [4], <strong>in</strong> which additive nearest-neighbor <strong>in</strong>teractions<br />

are assumed between <strong>the</strong> molecules. <strong>The</strong> model <strong>in</strong>corporates <strong>the</strong> possible changes <strong>in</strong> <strong>the</strong> <strong>in</strong>tramolecular<br />

geometry and <strong>in</strong> <strong>the</strong> local nearest-neighbor <strong>in</strong>teraction, but excludes <strong>the</strong> cooperative and anticooperative<br />

properties <strong>of</strong> <strong>the</strong> H-bonds. I show that when applied to difference CPs, this model gives a good physical<br />

<strong>in</strong>sight <strong>in</strong>to <strong>the</strong> changes <strong>in</strong> <strong>the</strong> H-bond network, and can be adjusted to reasonably well capture <strong>the</strong><br />

ma<strong>in</strong> features observed <strong>in</strong> <strong>the</strong> experiments. <strong>The</strong> second approach is an ab <strong>in</strong>itio method, where <strong>the</strong> CPs<br />

are directly calculated from snapshot structures <strong>of</strong> a Car-Parr<strong>in</strong>ello molecular dynamics simulation. <strong>The</strong><br />

result<strong>in</strong>g difference CP suffices to qualitatively describe <strong>the</strong> experimental temperature effect <strong>of</strong> water.<br />

[1] See, for example, M. Odelius, M. Cavalleri, A. Nilsson, and L. G. M. Pettersson, Phys. Rev. B 73<br />

(2006) 024205; D. Prendergast and G. Galli, Phys. Rev. Lett. 96 (2006) 215502. [2] M. Hakala, K.<br />

Nyg˚ard, S. Mann<strong>in</strong>en, S. Huotari, T. Buslaps, A. Nilsson, L. G. M. Pettersson, and K. Hämälä<strong>in</strong>en, J.<br />

Chem. Phys 125 (2006) 084504. [3] K. Nyg˚ard, M. Hakala, S. Mann<strong>in</strong>en, A. Andrejczuk, M. Itou, Y.<br />

Sakurai, L. G. M. Pettersson and K. Hämälä<strong>in</strong>en, Phys. Rev. E 74 (2006) 031503. [4] M. Hakala, K.<br />

Nyg˚ard, S. Mann<strong>in</strong>en, L. G. M. Pettersson and K. Hämälä<strong>in</strong>en, Phys. Rev. B 73 (2006) 035432.<br />

8


Monday, February 5 10:00-10:30<br />

CHARGE DISTRIBUTION AND CHARGE FLOW: DIPOLE<br />

MOMENTS AND POLARIZATION<br />

Michael Spr<strong>in</strong>gborg a Bernard Kirtman b Yi Dong a Viol<strong>in</strong>a Tevekeliyska a<br />

a Physical and <strong>The</strong>oretical Chemistry, University <strong>of</strong> Saarland, 66123 Saarbrücken, Germany b Department<br />

<strong>of</strong> Chemistry and Biochemistry, University <strong>of</strong> California, Santa Barbara, California 93106, U.S.A.<br />

For a f<strong>in</strong>ite molecule, <strong>the</strong> dipole moment is closely related to <strong>the</strong> static charge distribution <strong>in</strong> position<br />

space. For not too small molecules consist<strong>in</strong>g <strong>of</strong> essentially identical units, <strong>the</strong> dipole moment conta<strong>in</strong>s<br />

two contributions: one from <strong>the</strong> charge distribution <strong>in</strong> <strong>the</strong> <strong>in</strong>ner part <strong>of</strong> <strong>the</strong> system and one from <strong>the</strong><br />

term<strong>in</strong>ations. Very <strong>of</strong>ten, such systems are treated as be<strong>in</strong>g <strong>in</strong>f<strong>in</strong>ite and periodic. However, <strong>in</strong> that case<br />

<strong>the</strong> contributions from <strong>the</strong> term<strong>in</strong>ations are, per construction, removed. Apparently, <strong>the</strong> polarization,<br />

i.e., dipole moment per repeated unit, differs <strong>the</strong>n from <strong>the</strong> value found for <strong>the</strong> f<strong>in</strong>ite systems. We shall<br />

show that by assum<strong>in</strong>g that <strong>the</strong> system is <strong>in</strong>f<strong>in</strong>ite and periodic, it is no longer sufficient to consider <strong>the</strong><br />

static charge distribution when calculat<strong>in</strong>g <strong>the</strong> polarization, but an extra term that can be <strong>in</strong>terpreted<br />

as a charge flow has to be <strong>in</strong>cluded, too. In some cases, this extra term may be <strong>the</strong> dom<strong>in</strong>at<strong>in</strong>g one. In<br />

order to illustrate our approach, results <strong>of</strong> model calculations on a quasi-onedimensional system shall<br />

be reported. In particular it shall be demonstrated that <strong>in</strong>f<strong>in</strong>ite-cha<strong>in</strong> calculations and ones for f<strong>in</strong>ite<br />

cha<strong>in</strong>s <strong>of</strong> sufficient length lead to <strong>the</strong> same polarization. Subsequently, it shall be demonstrated how such<br />

systems <strong>in</strong> <strong>the</strong> presence <strong>of</strong> an external, electrostatic field can be treated, whereby <strong>the</strong> correct def<strong>in</strong>ition<br />

<strong>of</strong> polarization becomes crucial. F<strong>in</strong>ally, current limitations and open issues <strong>of</strong> our approach shall be<br />

discussed.<br />

9


Tuesday, February 6 08:45-10:15<br />

Maximum Probability Doma<strong>in</strong>s From Quantum Monte Carlo<br />

Calculations<br />

Anthony Scemama 1 , Michel Caffarel 1 , Andreas Sav<strong>in</strong> 1<br />

1 Laboratoire de Chimie et Physique Quantique, IRSAMC CNRS and Université Paul Sabatier, 118 route<br />

de Narbonne, 31062 Toulouse Cedex, France 2 Laboratoire de Chimie Théorique, CNRS and Université<br />

Paris Pierre et Marie Curie, Case 137, 4 place Jussieu, 75252 Paris Cedex 05, France<br />

Although it would be tempt<strong>in</strong>g to associate <strong>the</strong> Lewis structures to <strong>the</strong> maxima <strong>of</strong> <strong>the</strong> squared wave<br />

func- tion Èy È2 , we use doma<strong>in</strong>s <strong>of</strong> <strong>the</strong> three-dimensional space, which maximize <strong>the</strong> probability<br />

<strong>of</strong> conta<strong>in</strong><strong>in</strong>g opposite-sp<strong>in</strong> electron pairs. We f<strong>in</strong>d for simple systems (CH4, H Â2O, Ne, N2,<br />

C2H2)doma<strong>in</strong>squalitativleycomparabletothoseobta<strong>in</strong>edwith<strong>the</strong>electronlocalizationfunction(ELF )orbylocaliz<br />

and <strong>of</strong> <strong>the</strong> symmetric hydro- gen bond <strong>in</strong> FHF- . Fur<strong>the</strong>rmore, <strong>the</strong> presence <strong>of</strong> multiple solutions has an<br />

analogy with resonant structures, as shown <strong>in</strong> <strong>the</strong> trans-bent structure <strong>of</strong> Si2H2.<br />

Correlated wave functions were used (MCSCF or Slater-Jastrow) <strong>in</strong> <strong>the</strong> Variational Quantum Monte<br />

Carlo framework.<br />

10


Tuesday, February 6 08:45-10:15<br />

On <strong>the</strong> nature and consequences <strong>of</strong> ligand-<strong>in</strong>duced charge concentrations<br />

<strong>in</strong> transition metal oxides and alkyls<br />

Wolfgang Scherer<br />

Institut für Physik, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany, Tel: 49-821-<br />

598-3351, Fax: 49-821-598-3227, wolfgang.scherer@physik.uni-augsburg.de<br />

S<strong>in</strong>ce <strong>the</strong> <strong>the</strong>oretical prediction [ 1] and experimental verification [ 2] <strong>of</strong> so-called ligand-<strong>in</strong>duced charge<br />

concentrations (LICCs) <strong>in</strong> <strong>the</strong> valence shell <strong>of</strong> transition metals <strong>in</strong> electron-deficient complexes several<br />

attempts have been undertaken to understand <strong>the</strong>ir orig<strong>in</strong> and chemical relevance. In pioneer<strong>in</strong>g studies<br />

we could demonstrate that <strong>the</strong>se LICCs not only <strong>in</strong>fluence <strong>the</strong> geometry <strong>of</strong> coord<strong>in</strong>ation compounds<br />

<strong>in</strong> non-VSEPR complexes such as Me2T iCl2, Me3NbCl2 or Me2NbCl3 [ 3] but also serve as controll<strong>in</strong>g<br />

parameters for important chemical reactions like C-H bond activation <strong>in</strong> transition metal alkyls. [ 4] Fur<strong>the</strong>rmore,<br />

<strong>in</strong> covalent oxides such as polymeric methyltrioxorhenium pronounced LICCs appear to <strong>in</strong>duce<br />

electron localization phenomena as revealed by metal-to-<strong>in</strong>sulator transitions at low temperatures. [ 5] <strong>The</strong><br />

complex <strong>in</strong>terplay <strong>of</strong> ligand-<strong>in</strong>duced charge concentrations with <strong>the</strong> physical and chemical properties <strong>of</strong><br />

molecules and solids is <strong>the</strong>refore <strong>the</strong> central topic <strong>of</strong> this contribution. We will also demonstrate that<br />

LICCs are an <strong>in</strong>tegral part <strong>of</strong> <strong>the</strong> chemical bond between a transition metal atom and its ligands.<br />

Key References:<br />

[1] I. Bye<strong>the</strong>way, R. J. Gillespie, T. H. Tang, R. F. W. Bader, Inorg. Chem. 1995, 34, 2407.<br />

[2] W. Scherer, P. Sirsch, D. Shorokhov, M. Tafipolsky, G. S. McGrady, E. Gullo, Chem. Eur. J. 2003,<br />

9, 6057.<br />

[3] G. S. McGrady, A. Haaland, H. P. Verne, H. V. Volden, A. J. Downs, D. Shorokhov, G. Eickerl<strong>in</strong>g,<br />

W. Scherer, Chem. Eur. J. 2005, 11, 4921.<br />

[4] (a) W. Scherer, G.S. McGrady, Angew. Chem. Int. Ed. 2004, 43, 1782. (b) W. Scherer, G. Eickerl<strong>in</strong>g,<br />

M. Tafipolsky, G. S. McGrady, P. Sirsch, N. P. Chatterton, Chem. Commun. 2006, 2986.<br />

[5] R. Miller, E.-W. Scheidt, G. Eickerl<strong>in</strong>g, Ch. Helbig, F. Mayr, R. Herrmann, W. Scherer, H.-A. Krug<br />

von Nidda, V. Eyert, P. Schwab, Phys. Rev. 2006, 373, 165113.<br />

11


Tuesday, February 6 08:45-10:15<br />

Size Effects <strong>in</strong> Clusters<br />

Jan-Ole Joswig<br />

Physikalische Chemie und Elektrochemie, TU Dresden, 01062 Dresden<br />

Clusters are <strong>in</strong>termediates between atoms and <strong>the</strong> solid state. Usually, <strong>the</strong>y have diameters <strong>of</strong> a few<br />

˚Angström up to several nanometers and conta<strong>in</strong>, <strong>the</strong>refore, up to several thousand atoms. In this size<br />

range, <strong>the</strong> properties <strong>of</strong> <strong>the</strong> system <strong>of</strong> <strong>in</strong>terest are affected by quantum-size effects. Thus, clusters have<br />

different properties compared to those observed <strong>in</strong> <strong>the</strong> macroscopic world. <strong>The</strong>se vary, moreover, with<br />

<strong>the</strong> cluster size. In order to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong> this size-dependence, <strong>the</strong> structural, electronic and optical<br />

properties <strong>of</strong> various metal and semiconductor clusters with up to several hundred atoms have been<br />

studied us<strong>in</strong>g different computational methods and methodological approaches.<br />

12


Tuesday, February 6 10:45-11:45<br />

Electron and Magnetization Density <strong>in</strong> <strong>the</strong> Transition Metal<br />

Oxide Co3V2O8<br />

H. Fuess, N. Qureshi, H. Ehrenberg<br />

Technische Universität Darmstadt, Fachbereich Material- und Geowissenschaften, Fachgebiet Strukturforschung,<br />

Petersenstraße 23, 64287 Darmstadt, Germany E-mail: hfuess@tu-darmstadt.de<br />

Cobaltorthooxovanadate is a sp<strong>in</strong>-3/2 system on a Kagomé staircase which exhibits a sequence <strong>of</strong> five<br />

magnetic phase transitions 1 due to <strong>the</strong> relief <strong>of</strong> frustration by <strong>the</strong> decreased symmetry <strong>of</strong> <strong>the</strong> magnetic<br />

lattice (space group Cmca, Co1 on 4a and Co2 on 8e sites) 2 compared to <strong>the</strong> ideal Kagomé net. It shows a<br />

ferromagnetic ground state below 6K and an <strong>in</strong>termediate antiferromagnetic region between 6K and 11K<br />

with various commensurate and <strong>in</strong>commensurate magnetic structures. Our neutron powder diffraction<br />

experiments 3 revealed that with<strong>in</strong> <strong>the</strong> ferromagnetic phase <strong>the</strong> magnetic moments align along <strong>the</strong> a-axis<br />

with a slight cant<strong>in</strong>g along c with different values for <strong>the</strong> two different Co sites. <strong>The</strong> antiferromagnetic<br />

phase can be described by a propagation vector k=(0,ky,0) with a temperature dependent ky which<br />

changes throughout <strong>the</strong> phase. <strong>The</strong> complexity <strong>of</strong> <strong>the</strong> magnetic structures and phase transitions is be attributed<br />

to <strong>the</strong> balanc<strong>in</strong>g <strong>of</strong> <strong>the</strong> multiple Co-O-Co superexchange <strong>in</strong>teraction pathways. This complexity<br />

can be disturbed by partially substitut<strong>in</strong>g Co with Ni result<strong>in</strong>g <strong>in</strong> antiferromagnetic (CoxNi1 − x)3V2O8<br />

compounds exhibit<strong>in</strong>g only one magnetic phase transition, which has been verified for powder samples<br />

with x=0.27, 0,52 and 0.76 4 . In order to exam<strong>in</strong>e <strong>the</strong> superexchange pathways <strong>in</strong> Co3V2O8, prelim<strong>in</strong>ary<br />

electron and magnetization density measurements have been carried out which should provide a base<br />

for <strong>the</strong>oretical <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> complicated magnetic behaviour by ref<strong>in</strong><strong>in</strong>g <strong>the</strong> obta<strong>in</strong>ed data sets<br />

us<strong>in</strong>g <strong>the</strong> multipole formalism. Hence, <strong>the</strong> anisotropy <strong>of</strong> <strong>the</strong> Co 2 + form factor, i.e. <strong>the</strong> deviation from<br />

<strong>the</strong> spherical model, should be revealed result<strong>in</strong>g <strong>in</strong> important <strong>in</strong>formation about <strong>the</strong> highly <strong>in</strong>terest<strong>in</strong>g<br />

superexchange coupl<strong>in</strong>g mechanisms.<br />

[1] Y. Chen, J.W. Lynn, Q. Huang, F.M. Woodward, T. Yildirim, G. Lawes, A.P. Ramirez, N. Rogado,<br />

R.J. Cava, A. Aharony, O. Ent<strong>in</strong>-Wohlman, A.B. Harris Phys. Rev. B 2006, 74, 014430 [2] H. Fuess, E.F.<br />

Bertaut, R. Pau<strong>the</strong>net, A. Durif Acta Cryst. 1970, B26, 2036. [3] N. Qureshi, H. Fuess, H. Ehrenberg,<br />

T.C. Hansen, D. Schwabe Sol. State Comm., submitted [4] N. Qureshi, H. Fuess, H. Ehrenberg, T.C.<br />

Hansen, C. Ritter, K. Prokes, A. Podlesnyak, D. Schwabe Phys. Rev. B 2006, 74, 212407<br />

Acknowledgment: This research was supported by <strong>the</strong> Deutsche Forschungsgeme<strong>in</strong>schaft through <strong>the</strong><br />

DFG 125/45 program and <strong>the</strong> Deutscher Akademischer Austausch-Dienst (DAAD).<br />

13


Tuesday, February 6 10:45-11:45<br />

Density-Matrix Study <strong>of</strong> <strong>the</strong> <strong>Hydrogen</strong>-Antihydrogen Molecule<br />

Alejandro Saenz<br />

AG Moderne Optik, Institut für Physik, Humboldt-Universität zu Berl<strong>in</strong> Hausvogteiplatz 5-7, D-10 117<br />

Berl<strong>in</strong>, Germany<br />

<strong>The</strong>re is a long history <strong>of</strong> <strong>the</strong> <strong>in</strong>terest <strong>in</strong> antimatter and its properties. Start<strong>in</strong>g from <strong>the</strong> <strong>the</strong>oretical<br />

prediction <strong>of</strong> its existence by Dirac and its first experimental detection antimatter stimulated scientists,<br />

but even science fiction authors. <strong>The</strong> scientific <strong>in</strong>terest is closely l<strong>in</strong>ked to its role with respect to fundamental<br />

symmetries <strong>of</strong> nature. Accord<strong>in</strong>g to <strong>the</strong> standard model <strong>of</strong> physics, equal amounts <strong>of</strong> matter and<br />

antimatter were formed <strong>in</strong> <strong>the</strong> Big Bang creat<strong>in</strong>g our universe. However, we are evidently (and <strong>in</strong> view<br />

<strong>of</strong> annihilation processes fortunately!) practically only surrounded by matter. <strong>The</strong>re is no evidence for<br />

large matterantimatter annihilation tak<strong>in</strong>g place <strong>in</strong> our (visible) part <strong>of</strong> <strong>the</strong> universe. This leads directly<br />

to a fundamental open question: where is <strong>the</strong> antimatter gone? A good candidate for antimatter research<br />

are antihydrogen atoms that consist <strong>of</strong> an antiproton and a positron. <strong>The</strong>y are polarisable and can thus<br />

be trapped. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>y are electrically neutral which avoids that <strong>the</strong>y are sensitive to stray<br />

fields. In addition, <strong>the</strong> matter analogy (atomic hydrogen) has a long history <strong>of</strong> be<strong>in</strong>g <strong>the</strong> workhorse for<br />

validat<strong>in</strong>g quantum mechanics as well as quantum electrodynamics, because it is accessible to very precise<br />

<strong>the</strong>oretical and experimental studies. This motivated on-go<strong>in</strong>g experiments at CERN and planned<br />

future ones at GSI (Darmstadt). One <strong>in</strong>terest<strong>in</strong>g question <strong>in</strong> <strong>the</strong> context <strong>of</strong> antihydrogen research is<br />

its <strong>in</strong>teraction with ord<strong>in</strong>ary atoms. <strong>The</strong> simplest example is evidently atomic hydrogen. As our studies<br />

have shown, <strong>the</strong> hydrogen-antihydrogen system is an <strong>in</strong>terest<strong>in</strong>g object by itself. Although it is related to<br />

molecular hydrogen, <strong>the</strong> change <strong>of</strong> <strong>the</strong> sign <strong>of</strong> <strong>the</strong> charges and <strong>the</strong> absence <strong>of</strong> exchange <strong>in</strong>teraction leads<br />

to a number <strong>of</strong> effects that are specific to antimatter-matter systems, but absent for ord<strong>in</strong>ary molecules.<br />

Never<strong>the</strong>less, hydrogen-antihydrogen can form an <strong>in</strong> <strong>the</strong> chemical sense bound molecular system. On<br />

<strong>the</strong> first glance, <strong>the</strong> bond<strong>in</strong>g should be <strong>of</strong> electrostatic nature and thus ionic. Based on a study <strong>of</strong> <strong>the</strong><br />

leptonic densities and density matrices <strong>the</strong> character <strong>of</strong> <strong>the</strong> bond is, however, <strong>in</strong>vestigated <strong>in</strong> more detail<br />

<strong>in</strong> this work. Such <strong>in</strong>vestigations are non-trivial, s<strong>in</strong>ce <strong>the</strong> leptons (electron and positron) are highly<br />

correlated. <strong>The</strong> <strong>the</strong>oretical description <strong>of</strong> <strong>the</strong> hydrogen-antihydrogen molecule requires <strong>the</strong>refore very<br />

accurate quantum-chemical approaches.<br />

14


Tuesday, February 6 12:00-13:00<br />

Quantum mechanical simulation <strong>of</strong> <strong>the</strong> vibrational properties<br />

<strong>of</strong> crystall<strong>in</strong>e solids with <strong>the</strong> CRYSTAL06 computer code. <strong>The</strong><br />

case <strong>of</strong> garnets and related m<strong>in</strong>erals.<br />

R. Dovesi<br />

Dipartimento de Chimica IFM, Via P. Giuria 5, I-10125 Tor<strong>in</strong>o, Italia E-mail: roberto.dovesi@unito.it<br />

One <strong>of</strong> <strong>the</strong> new features <strong>of</strong> <strong>the</strong> CRYSTAL06 [1] computer code, <strong>in</strong> distribution s<strong>in</strong>ce September 2006,<br />

is <strong>the</strong> FREQUENCY option, that permits <strong>the</strong> <strong>in</strong>vestigation <strong>of</strong> <strong>the</strong> vibrational properties <strong>of</strong> crystall<strong>in</strong>e<br />

solids at <strong>the</strong> Ã po<strong>in</strong>t <strong>of</strong> <strong>the</strong> Brillou<strong>in</strong> zone. CRYSTAL is a periodic ab <strong>in</strong>itio program, that uses a<br />

local variational basis set (Ätomic Orbitals”) to build <strong>the</strong> crystall<strong>in</strong>e orbitals. An all-electron basis and<br />

<strong>the</strong> B3LYP hamiltonian have been used. <strong>The</strong> vibrational properties <strong>of</strong> pyrope, grossular, andradite and<br />

o<strong>the</strong>r members <strong>of</strong> <strong>the</strong> garnet family (80 atoms/cell) have been generated and compared with IR and<br />

RAMAN experimental data, that for <strong>the</strong> present compounds are very accurate [2], [3]. <strong>The</strong> symmetry<br />

<strong>of</strong> <strong>the</strong> modes is authomatically determ<strong>in</strong>ed by <strong>the</strong> code. <strong>The</strong> eigenvectors <strong>of</strong> <strong>the</strong> dynamical matrix have<br />

been analyzed with different tools, <strong>in</strong>clud<strong>in</strong>g direct <strong>in</strong>spection, isotopic substitution, graphical animation;<br />

some <strong>of</strong> <strong>the</strong> classification<strong>in</strong>terpretation questions raised by previous studies are discussed. <strong>The</strong> agreement<br />

with experiment is, <strong>in</strong> most <strong>of</strong> <strong>the</strong> cases, excellent (6-8 cm−1 <strong>the</strong> mean absolute difference). <strong>The</strong> present<br />

work permits, however, to fill <strong>the</strong> gaps <strong>in</strong> <strong>the</strong> experimental sets, and to solve a few assignement problems<br />

present <strong>in</strong> <strong>the</strong> experimental studies (ma<strong>in</strong>ly due to low <strong>in</strong>tensities) and <strong>in</strong> previous simulations (based<br />

on force fiend models).<br />

[1] Dovesi, R.; Saunders V.R.; Roetti, C.; Orlando, R.; Zicovich-Wilson, C.; Pascale, F; Civalleri, B;<br />

Harison, N.; Doll, K.; Bush, I.; D?Arco, Ph.; Llunell, M. (2003) CRYSTAL2006 user?s manual. University<br />

<strong>of</strong> Tor<strong>in</strong>o, Tor<strong>in</strong>o. [2] Kolesov, B.; Geiger, C. Phys. Chem. M<strong>in</strong>, 2000, 27, 645. [3] H<strong>of</strong>meister, A.;<br />

Chopelas, A. Phys. Chem. M<strong>in</strong>, 1991, 17, 503.<br />

15


Tuesday, February 6 12:00-13:00<br />

ON THE DIFFICULTIES OF JOINT REFINEMENT OF 1-<br />

MATRICES FROM DIFFERENT EXPERIMENTAL DATA<br />

JEAN-MICHEL GILLET<br />

Ecole Centrale Paris ” Laboratoire SPMS, UMR CNRS 8580 ” 92295 Chatenay-Malabry Cedex, France,<br />

jean-michel.gillet@ecp.fr<br />

High resolution x-ray diffraction, convergent beam electron diffraction, deep <strong>in</strong>- elastic x-ray scatter<strong>in</strong>g<br />

(Compton scatter<strong>in</strong>g), e-2e and ◦ -e- ◦ spectroscopies have <strong>in</strong> common to be directly related to <strong>the</strong> Oneelectron<br />

Reduced Density Matrix (1- RDM)[13]. On <strong>the</strong> o<strong>the</strong>r hand, it is well known [7][3] that <strong>the</strong><br />

1-RDM conta<strong>in</strong>s all <strong>the</strong> <strong>in</strong>formation about <strong>the</strong> electronic structure available at <strong>the</strong> one-electron level.<br />

Unfortunately, and to our best knowledge, few attempts for ref<strong>in</strong><strong>in</strong>g 1-RDM models have been carried out<br />

[2][8][5][12][6] [1]. With <strong>the</strong> exceptions <strong>of</strong> Schmider [9][10] for atomic systems, and Schulke and co-workers<br />

[11] only x-ray diffraction data were employed as experimental references. <strong>The</strong> purpose <strong>of</strong> this talk is<br />

to discuss to what extent <strong>the</strong> successfull decomposi- tion <strong>of</strong> <strong>the</strong> electron density <strong>in</strong>to aspherical pseudoatomic<br />

contributions [4] can be adapted to <strong>the</strong> 1-RDM case. Fur<strong>the</strong>rmore, we <strong>in</strong>tend to show that, with<br />

such a model, <strong>the</strong> complementarity between very different experiments can be better ex- ploited through<br />

a jo<strong>in</strong>t ref<strong>in</strong>ement. Emphasis will be made on <strong>the</strong> diffculties which are specific to a jo<strong>in</strong>t ref<strong>in</strong>ement <strong>of</strong><br />

1- matrices from different experimental data as opposed to usual ”mono-experimental”ref<strong>in</strong>ements.<br />

References<br />

1. Y. Aleksandrov, V Tsirelson, I. Reznik, and R. Ozerov, Phys. Status Solidi B 155 (1989), 201-207.<br />

2. W.L. Cl<strong>in</strong>ton and L.J. Massa, Phys. Rev. Lett. 29 (1972), no. 20, 1363. 3. C.A. Coulson, Present<br />

state <strong>of</strong> molecular structure calculations, Review <strong>of</strong> Modern Physics 32 (1960), no. 2, 170-177. 4. N.K.<br />

Hansen and P. Coppens, Test<strong>in</strong>g aspherical atom ref<strong>in</strong>ements on small-molecule data sets, Acta Cryst.<br />

A 34 (1978), 909-913. 5. S.T. Howard, J.P. Hulke, P.R. Mall<strong>in</strong>son, and C.S. Frampton, Density matrix<br />

ref<strong>in</strong>ement for molecular crystals, Phys. Rev. B 49 (1994), no. 11, 7124-7136. 6. D. Jayatilaka and D.J.<br />

Grimwood, Acta Cryst. A 57 (2001), 76-86. 7. P.-O. Löwd<strong>in</strong>, Quantum <strong>the</strong>ory <strong>of</strong> many-particle systems<br />

i, Physical Review 97 (1955), no. 6, 1474. 8. L. Massa, M. Goldberg, C. Frishberg, R.F. Boehme,<br />

and S.J. La Placa, Wavefunctions derived by quantum model<strong>in</strong>g <strong>of</strong> <strong>the</strong> electron density from coherent<br />

x-ray diffraction: Beryllium metal., Phys. Rev. Lett. 55 (85), no. 6, 622-625. 9. H. Schmider, K.E.<br />

Edgecombe, V. H. Smith, and W. Weyrich, One-particle density matrix along <strong>the</strong> molecular bonds <strong>in</strong><br />

l<strong>in</strong>ear molecules, J. Chem. Phys. 96 (1992), no. 11, 8411-8419. 10. H. Schmider, V. H. Smith, and W.<br />

Weyrich, Z. Naturforsch. A 48 (1993), 211-220. 11. W. Schulke, U. Bonse, and S. Mourikis, Phys. Rev.<br />

Lett. 47 (1981), no. 17, 12091212. 12. J.A. Snyder and E.D. Stevens, A wavefunction and energy <strong>of</strong><br />

<strong>the</strong> azyde ion <strong>in</strong> potassium azide obta<strong>in</strong>ed by a quantum-mechanically constra<strong>in</strong>ed fit to x-ray diffraction<br />

data., Chem. Phys. Lett. 313 (1999), 293-298. 13. W. Weyrich, One-electron density matrices and related<br />

observables, Quantum Mechanical Ab- <strong>in</strong>itio Calculation <strong>of</strong> <strong>the</strong> Properties <strong>of</strong> Crystall<strong>in</strong>e Matrials (C.<br />

Pisani, ed.), Spr<strong>in</strong>ger-Verlag, 1996, pp. 245-272.<br />

I wish to express my warm gratitude to N. Ghermani and Y. Sakurai for essential exchanges on experimental<br />

issues. P.J. Becker, B. Courcot and P. Cortona are greatly thanked for stimulated discussions as<br />

well as <strong>the</strong> SSp<strong>in</strong>, Charge and Momentum DensitiesSSagamore community for <strong>in</strong>spir<strong>in</strong>g this work.<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!