10.01.2015 Views

SUSY Dark Matter and Colliders - whepp-9

SUSY Dark Matter and Colliders - whepp-9

SUSY Dark Matter and Colliders - whepp-9

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong><br />

<strong>Colliders</strong><br />

by<br />

Ben Allanach (DAMTP, Cambridge University)<br />

BCA, Lester, hep-ph/0507283; BCA, Belanger, Boudjema, Pukhov,<br />

JHEP 0412 (2004) 020, hep-ph/0410091<br />

Talk outline<br />

• <strong>SUSY</strong> dark matter<br />

• Constraints on <strong>SUSY</strong> models<br />

• Collider measurements<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.1/53


H − 1<br />

Electroweak Breaking<br />

Both Higgs get vacuum expectation values:<br />

( ) ( ) ( ) ( )<br />

H<br />

0<br />

1 v1 H<br />

+<br />

→<br />

2 0<br />

0 H2<br />

0 →<br />

v 2<br />

<strong>and</strong> to get M W correct, match with v SM = 246 GeV:<br />

β<br />

v SM<br />

v 2<br />

tan β = v 2<br />

v 1<br />

v 1<br />

L = h t¯t L H 0 2 t R + h b¯bL H 0 1 b R + h τ ¯τ L H 0 1 τ R<br />

⇒<br />

m t<br />

sin β = h tv SM<br />

√<br />

2<br />

,<br />

m b,τ<br />

cos β = h b,τv SM<br />

√<br />

2<br />

.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.2/53


The Supersymmetric St<strong>and</strong>ard<br />

Model<br />

St<strong>and</strong>ard Model particle<br />

quark, spin 1/2<br />

lepton, spin 1/2<br />

higgs, spin 0<br />

gluon, spin 1<br />

Weak bosons, spin 1<br />

graviton, spin 2<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.3/53


The Supersymmetric St<strong>and</strong>ard<br />

Model<br />

For every particle present in The St<strong>and</strong>ard Model, we<br />

have a heavier supersymmetric copy with the same<br />

quantum numbers <strong>and</strong> couplings to forces but spin<br />

differing by 1/2 ¯h.<br />

St<strong>and</strong>ard Model particle Supersymmetric copy(s)<br />

quark, spin 1/2 2squarks, spin 0<br />

lepton, spin 1/2 2sleptons, spin 0<br />

2× higgs, spin 0 higgsinos, spin 1/2<br />

gluon, spin 1 gluinos, spin 1/2<br />

Weak bosons, spin 1 gauginos, spin 1/2<br />

graviton, spin 2 gravitino, spin 3/2<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.3/53


Broken Symmetry<br />

3 components of the Higgs particles are eaten by<br />

W ± , Z 0 , leaving us with 5 physical states:<br />

h 0 , H 0 (CP+), A 0 (CP-), H ±<br />

<strong>SUSY</strong> breaking <strong>and</strong> electroweak breaking imply<br />

particles with identical quantum numbers mix:<br />

(ũ L , ũ R ) → ũ 1,2<br />

( ˜d L , ˜d R ) → ˜d 1,2<br />

(ẽ L , ẽ R ) → ẽ 1,2<br />

( ˜B, ˜W3 , ˜H 0 1, ˜H 0 2) → χ 0 1,2,3,4<br />

( ˜W ± , ˜H ± ) → χ ± 1,2<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.4/53


<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong><br />

• Galactic rotation curves<br />

• Gravitational lensing effects<br />

• WMAP + large scale structure<br />

Imposing R P , the neutralino is a good c<strong>and</strong>idate.<br />

Must take into account annihilation in the early<br />

universe into ordinary matter:<br />

χ 0 1<br />

p<br />

σ<br />

χ 0 1<br />

p ′<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.5/53


WMAP Results<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.6/53


WMAP Results<br />

0.094 < Ω DM h 2 < 0.129@2σ<br />

ΛCDM fit<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.6/53


<strong>SUSY</strong> Prediction of Ωh 2<br />

• Assume relic in thermal equilibrium with<br />

n eq ∝ (MT ) 3/2 exp(−M/T ).<br />

• Freeze-out with T f ∼ M f /25 once interaction<br />

rate < expansion rate (t eq critical)<br />

• We use microMEGAs : Ωh 2 ∝ 1/< σv > to<br />

solve coupled Boltzmann equations<br />

• Generate <strong>SUSY</strong> spectrum with SOFT<strong>SUSY</strong><br />

linked with SLHA<br />

Belanger et al, CPC 149 (2002) 103<br />

BCA, CPC 143 (2002) 305<br />

BCA et al, JHEP0407 (2004) 036<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.7/53


Additional observables<br />

δ (g − 2) µ<br />

2<br />

∼ 13 × 10 −10 ( 100 GeV<br />

M <strong>SUSY</strong><br />

) 2<br />

tan β<br />

χ ± i<br />

µ ˜ν µ<br />

γ<br />

˜µ γ<br />

χ 0 1<br />

µ µ<br />

BR[b → sγ] ∝ tan β(M W /M <strong>SUSY</strong> ) 2<br />

χ ± i<br />

γ<br />

H ±<br />

γ<br />

b<br />

˜t i<br />

s<br />

b<br />

t<br />

s<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.8/53


Universality<br />

Reduces number of <strong>SUSY</strong> breaking parameters from<br />

100 to 3:<br />

• tan β ≡ v 2 /v 1<br />

• m 0 , the common scalar mass (flavour).<br />

• M 1/2 , the common gaugino mass (GUT/string).<br />

• A 0 , the common trilinear coupling (flavour).<br />

These conditions should be imposed at<br />

M X ∼ O(10 16−18 ) GeV <strong>and</strong> receive radiative<br />

corrections<br />

∝ 1/(16π 2 ) ln(M X /M Z ).<br />

Also, Higgs potential parameter sgn(µ)=±1.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.9/53


mSUGRA Regions<br />

After WMAP+LEP2, bulk region diminished. Need<br />

specific mechanism to reduce overabundance:<br />

• ˜τ coannihilation: small m 0 , m˜τ1 ≈ m χ<br />

0<br />

1<br />

.<br />

Boltzmann factor exp(−∆M/T f ) controls ratio<br />

of species. ˜τ 1 χ 0 1 → τγ, ˜τ 1˜τ 1 → τ ¯τ.<br />

• Higgs Funnel: χ 0 1 χ0 1 → A → b¯b/τ ¯τ at large<br />

tan β. Also via h at large m 0 small M 1/2 .<br />

• Focus region: Higgsino LSP at large m 0 :<br />

χ 0 1χ 0 1 → W W/ZZ/Zh/t¯t.<br />

• ˜t coannihilation: high −A 0 , m˜t 1<br />

≈ m χ<br />

0<br />

1<br />

.<br />

˜t 1 χ 0 1 → gt, ˜t˜t → tt<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> Datta, <strong>and</strong> <strong>Colliders</strong> Djouadi, Drees, hep-ph/0504090<br />

B.C. Allanach – p.10/53


Constraints on <strong>SUSY</strong> Models<br />

mSUGRA well-studied in literature: eg Ellis, Olive et al PLB565<br />

(2003) 176; Roszkowski et al JHEP 0108 (2001) 024; Baltz, Gondolo, JHEP 0410 (2004) 052;. . .<br />

800<br />

tan β = 10 , µ > 0<br />

700<br />

m h = 114 GeV<br />

m 0 (GeV)<br />

600<br />

500<br />

400<br />

m χ ± = 104 GeV<br />

300<br />

200<br />

100<br />

0<br />

100 200 300 400 500 600 700 800 900 1000<br />

m 1/2 (GeV)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.11/53


Shortcomings<br />

• Really, would like to combine likelihoods from<br />

different measurements<br />

• Typically only 2d scans, but in general we have<br />

α s (M Z ), m t , m b , m 0 , M 1/2 , A 0 , tan β to vary<br />

• Effective 3d type scan done which<br />

parameterises a 2d surface of correct Ωh 2<br />

• Baltz et al managed to perform a 4d scan, but lost<br />

the likelihood interpretation. They used the<br />

impressive Markov Chain Monte Carlo<br />

technique.<br />

Done in 2d in Ellis et al, hep-ph/0310356<br />

Ellis et al, hep-ph/0411218<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.12/53


Markov-Chain Monte Carlo<br />

Markov chain consists of list of parameter points x ( t)<br />

<strong>and</strong> associated likelihoods L (t)<br />

1. Pick a point at r<strong>and</strong>om for x (1)<br />

2. Pick a point around x (t) (say with a Gaussian<br />

width) as the potential new point.<br />

3. If L (t+1) > L (t) , the new point is appended onto<br />

the chain. Otherwise, the proposed point is<br />

accepted with probability L (t+1) /L (t) . If not<br />

accepted, a copy of x (t) is added on to the chain.<br />

Final density of x points ∝ L. Required number of<br />

points goes linearly with number of dimensions.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.13/53


Implementation<br />

Input parameters are: m 0 , A 0 , M 1/2 , tan β<br />

• m t = 172.7 ± 2.9 GeV<br />

• m b (m b ) MS = 4.2 ± 0.2 GeV,<br />

• α s (M Z ) MS = 0.1187 ± 0.002.<br />

For the likelihood, we also use<br />

• Ω DM h 2 = 0.1125 +0.0081<br />

−0.0091<br />

• δ(g − 2) µ /2 = (19 ± 8.4) × 10 −10<br />

• BR[b → sγ] = (3.52 ± 0.42) × 10 −5<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

ln L = − 1 2<br />

∑<br />

i<br />

(p i − m i ) 2<br />

2σ 2 i<br />

+ c<br />

B.C. Allanach – p.14/53


Convergence<br />

We run 9×1 000 000 points. By comparing the 9<br />

independent chains with r<strong>and</strong>om starting points, we<br />

can provide a statistical measure of convergence: an<br />

upper bound r on the excepted variance decrease for<br />

infinite statistics.<br />

2<br />

upper bound<br />

1.8<br />

1.6<br />

r<br />

1.4<br />

1.2<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

1<br />

10 20 30 40 50 60 70 80 90 100<br />

step/10000<br />

B.C. Allanach – p.15/53


m 0 (TeV)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

L/L(max)<br />

0 0.5 1 1.5 2<br />

M 1/2 (TeV)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

m 0 (TeV)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

L/L(max)<br />

0 10 20 30 40 50 60<br />

tan β<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

m 1/2 (TeV)<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

L/L(max)<br />

0 10 20 30 40 50 60<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

A 0 (TeV)<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

-1.5<br />

-2<br />

L/L(max)<br />

0 10 20 30 40 50 60<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

tan β<br />

tan β<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.16/53


Annihilation Mechanism<br />

Define stau co-annihilation when m˜τ is within 10% of<br />

m χ<br />

0<br />

1<br />

<strong>and</strong> Higgs pole when m h,A is within 10% of<br />

2m χ<br />

0<br />

1<br />

.<br />

Region likelihood<br />

h 0 pole 0.02±0.01<br />

A 0 pole 0.41±0.03<br />

˜τ co-an 0.27±0.04<br />

˜t co-an (2.1 ± 4.8) × 10 −4<br />

Table 0: Likelihood of being in a certain region of<br />

mSUGRA parameter space.<br />

Likelihood of chain ˜q L → χ 0 2 → ˜l R → χ 0 1 is 24±4%<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.17/53


m χ1<br />

0 (TeV)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

80 90 100 110 120 130 140<br />

m h (GeV)<br />

L/L(max)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

m χ1<br />

0 (TeV)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5 2 2.5<br />

m A (TeV)<br />

L/L(max)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

m χ1<br />

0 (TeV)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.5 1 1.5 2<br />

m τ (TeV)<br />

L/L(max)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

L per bin<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

RH slepton<br />

gluino<br />

LH squark<br />

light stop<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

m (TeV)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.18/53


0.0015<br />

0.03<br />

0.08<br />

L/GeV<br />

0.001<br />

0.0005<br />

0.02<br />

0.01<br />

0<br />

20%<br />

0 10 20 30<br />

L/bin<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

29%<br />

tanβ<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

37<br />

400<br />

800 1200<br />

m τ - m 0 χ1<br />

(GeV)<br />

0 0.5 1 1.5 2<br />

m A (TeV)<br />

1600<br />

L/L(max)<br />

2000<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

log 10 [BR(B s -> µµ)]<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

0<br />

-9 -8.5 -8 -7.5 -7 -6.5 -6<br />

log 10 (BR[B s ->µµ])<br />

-10.5 -10 -9.5 -9 -8.5<br />

log 10 [δ(g-2) µ /2]<br />

L/L(max)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.19/53


Caveats<br />

• Implicitly assumed that LSP constitutes all of<br />

dark matter<br />

• Assumed radiation domination in post-inflation<br />

era. No clear evidence between freeze-out+BBN<br />

that this is the case (t eq changes).<br />

• Examples of non-st<strong>and</strong>ard cosmology that would<br />

change the prediction:<br />

• Extra degrees of freedom<br />

• Low reheating temperature<br />

• Extra dimensional models<br />

• Anisotropic cosmologies<br />

• Non-thermal production of neutralinos (late<br />

decays)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.20/53


LHC (ATLAS)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.21/53


Collider <strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong><br />

Production<br />

Strong sparticle production <strong>and</strong> decay to dark matter<br />

particles.<br />

7 TeV<br />

p<br />

q<br />

q<br />

q<br />

q<br />

p<br />

7 TeV<br />

q,g<br />

q,g<br />

q<br />

Interaction<br />

q<br />

~ q<br />

~<br />

q<br />

χ 0 1<br />

χ 0 1<br />

Q: Can we measure enough to predict σ<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.22/53


Collider <strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong><br />

Production<br />

Strong sparticle production <strong>and</strong> decay to dark matter<br />

particles.<br />

7 TeV<br />

p<br />

q<br />

q<br />

q<br />

q<br />

p<br />

7 TeV<br />

q,g<br />

q,g<br />

q<br />

Interaction<br />

q<br />

~ q<br />

~<br />

q<br />

χ 0 1<br />

Any dark matter c<strong>and</strong>idate that couples to hadrons can<br />

be produced at the LHC<br />

χ 0 1<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.22/53


LHC vs LC in <strong>SUSY</strong><br />

Measurement<br />

• LHC (start date 2007) produces strongly<br />

interacting particles up to a few TeV. Precision<br />

measurements of mass differences possible if the<br />

decay chains exist: possibly per mille for leptons,<br />

several percent for jets.<br />

• ILC has several energy options: 500-1000 GeV,<br />

CLIC up to 3 TeV. Linear colliders produce less<br />

strong particles but much easier to make<br />

precision measurements of masses/couplings.<br />

Q: What energy for LC<br />

Q: What do we get from LHC <br />

LHC/ILC Working Group Report: hep-ph/0410364<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.23/53


Coannihilation Slope<br />

annihilation (%)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

0 0<br />

χ 1 χ1<br />

0 ~<br />

χ 1 τ<br />

~ ~<br />

τ τ<br />

0 ~<br />

χ 1 l<br />

~ ~<br />

l~ (τ /l )<br />

~ ~<br />

l =µ or<br />

~<br />

e<br />

10<br />

0<br />

100 150 200 250 300 350 400<br />

m~ (GeV)<br />

τ<br />

m 2˜lR ≈ m 2 0 + 0.15M 2 1/2 , M χ 0 1 ≈ 0.4M 1/2<br />

Low enough M 1/2 ⇒ quasi-deegenerate ˜τ, M χ<br />

0<br />

1<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.24/53


Coannihilation Slope<br />

annihilation (%)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

0 0<br />

χ 1 χ1<br />

0 ~<br />

χ 1 τ<br />

~ ~<br />

τ τ<br />

0 ~<br />

χ 1 l<br />

~ ~<br />

l~ (τ /l )<br />

~ ~<br />

l =µ or<br />

~<br />

e<br />

10<br />

0<br />

100 150 200 250 300 350 400<br />

m~ (GeV)<br />

τ<br />

m 2˜lR ≈ m 2 0 + 0.15M 2 1/2 , M χ 0 1 ≈ 0.4M 1/2<br />

If we do not assume mSUGRA, we will also have to<br />

measure selectron <strong>and</strong> smuon properties.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.24/53


Coannihilation Theory<br />

Uncertainties<br />

Ωh 2<br />

0.145<br />

0.14<br />

0.135<br />

0.13<br />

0.125<br />

0.12<br />

0.115<br />

Ωh 2<br />

Scale variation<br />

Ωh 2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

-1 loop tau Yukawa<br />

full calculation<br />

-1 loop neutralino<br />

-2 loop gaugino RGEs<br />

0.11<br />

100 150 200 250 300 350 400<br />

M~ (GeV)<br />

τ<br />

0.02<br />

100 150 200 250 300 350 400 450<br />

M~ (GeV)<br />

τ<br />

Expect higher orders to be 100 times smaller than these<br />

differences: 3-loop terms could possibly be important!<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.25/53


Coannihilation Theory<br />

Uncertainties<br />

Ωh 2<br />

0.145<br />

0.14<br />

0.135<br />

0.13<br />

0.125<br />

0.12<br />

0.115<br />

Ωh 2<br />

Scale variation<br />

Ωh 2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

-1 loop tau Yukawa<br />

full calculation<br />

-1 loop neutralino<br />

-2 loop gaugino RGEs<br />

0.11<br />

100 150 200 250 300 350 400<br />

M~ (GeV)<br />

τ<br />

0.02<br />

100 150 200 250 300 350 400 450<br />

M~ (GeV)<br />

τ<br />

Effect of 2-loop RGE terms suggest a possible effect<br />

from 3 loops. Jack <strong>and</strong> Jones find that it’s not significant<br />

for the neutralino.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.25/53


Iterative Procedure<br />

What change in a parameter produces a 10% change<br />

in Ωh 2 <br />

Take a parameter point with ω −1 ≡ Ωh 2 . Change one<br />

parameter at a time by fraction a 0 . Result is ω 0 , then<br />

iterate<br />

a i+1 = a i ω −1<br />

10%<br />

w i − ω −1<br />

.<br />

Small accuracy a ≡ a ∞ means the parameter has to<br />

be known very accurately in order to predict Ωh 2 to<br />

10%.<br />

For parameters that are zero, we take the absolute value<br />

as a rather than the fractional value.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.26/53


Uncertainties<br />

We use two approaches to determine what variation of<br />

parameters produce a 10% variation in Ωh 2 :<br />

• PmSUGRA - variation of weak scale parameters<br />

(not on mSUGRA trajectory): m χ<br />

0<br />

1<br />

, M A , m b etc.<br />

• mSUGRA - simple variation of mSUGRA<br />

parameters <strong>and</strong> experimental inputs:<br />

m 0 , M 1/2 , α s (M Z ), m t etc.<br />

mSUGRA theory uncertainties estimated by varying<br />

scale at which radiative corrections added to sparticle<br />

masses:<br />

0.5 < x ≡ M <strong>SUSY</strong><br />

√ m˜t 1<br />

m˜t 2<br />

< 2, M <strong>SUSY</strong> > M Z<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.27/53


mSUGRA Coannihilation<br />

Uncertainties<br />

a<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

a(M 1/2 )<br />

a(m 0 )<br />

∆A 0<br />

-<br />

a(tanβ)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

0<br />

60<br />

100 150 200 250 300 350 400 450<br />

m~ (GeV)<br />

τ<br />

∆A 0<br />

- (GeV)<br />

a(m 0 ) ≈ a(M 1/2 ) comes from the sensitivity to<br />

exp[−(m˜τ − M χ<br />

0<br />

1<br />

)]<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.28/53


mSUGRA Coannihilation<br />

Uncertainties<br />

a<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

a(M 1/2 )<br />

a(m 0 )<br />

∆A 0<br />

-<br />

a(tanβ)<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

0<br />

60<br />

100 150 200 250 300 350 400 450<br />

m~ (GeV)<br />

τ<br />

∆A 0<br />

- (GeV)<br />

Unknown whether accuracies can be reached - but it<br />

looks difficult<br />

region.<br />

Polesello, Tovey, JHEP05 (2004) 071<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

: ∆Ωh 2 ∼ .03 in diminished bulk<br />

B.C. Allanach – p.28/53


PmSUGRA Coannihilation<br />

a(tanβ, µ)<br />

0.6<br />

0.007<br />

1400<br />

tanβ<br />

χ 0 2<br />

µ<br />

0.5<br />

M 1<br />

1200<br />

χ 0 3<br />

0.006<br />

χ 0 4<br />

1000<br />

~<br />

0.4<br />

eR<br />

0.005<br />

~<br />

e<br />

800<br />

L<br />

~<br />

0.3<br />

τ 2<br />

0.004<br />

600<br />

0.2<br />

400<br />

0.003<br />

0.1<br />

200<br />

0.002<br />

100 150 200 250 300 350 400<br />

100 150 200 250 300 350 400 450<br />

m~ (GeV) M<br />

τ χ<br />

0 (GeV)<br />

1<br />

a(M 1 )<br />

mass (GeV)<br />

RHS: Spectrum useful for optimal energy of linear collider.<br />

ẽ R , ˜µ R also possible. Cascade ˜q L → χ 0 2 → ẽ R →<br />

χ 0 1 available.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.29/53


PmSUGRA Coannihilation<br />

a(tanβ, µ)<br />

0.6<br />

0.007<br />

1400<br />

tanβ<br />

χ 0 2<br />

µ<br />

0.5<br />

M 1<br />

1200<br />

χ 0 3<br />

0.006<br />

χ 0 4<br />

1000<br />

~<br />

0.4<br />

eR<br />

0.005<br />

~<br />

e<br />

800<br />

L<br />

~<br />

0.3<br />

τ 2<br />

0.004<br />

600<br />

0.2<br />

400<br />

0.003<br />

0.1<br />

200<br />

0.002<br />

100 150 200 250 300 350 400<br />

100 150 200 250 300 350 400 450<br />

m~ (GeV) M<br />

τ χ<br />

0 (GeV)<br />

1<br />

a(M 1 )<br />

LHS: Dependences in left-h<strong>and</strong> plot all come from the<br />

effect on LSP mass.<br />

Need to know M χ<br />

0<br />

1<br />

very accurately.<br />

mass (GeV)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.29/53


PmSUGRA Dependencies<br />

∆M (GeV)<br />

10<br />

1<br />

0.4<br />

∆M<br />

9<br />

cos2θ τ 0.99 0.35<br />

8<br />

0.98<br />

7<br />

0.3<br />

6<br />

0.97<br />

0.25<br />

5<br />

0.96<br />

4<br />

0.2<br />

0.95<br />

3<br />

0.15<br />

0.94<br />

2<br />

1<br />

0.93<br />

0.1<br />

0<br />

0.92 0.05<br />

100 150 200 250 300 350 400 450<br />

m~ (GeV) τ<br />

cos2θ τ<br />

-<br />

∆cos2θ τ required, a(M)<br />

∆cos2θ τ<br />

- required<br />

δM required<br />

a(M χ )<br />

1.3<br />

1.2<br />

1.1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

100 150 200 250 300 350 400 450<br />

m~<br />

τ (GeV)<br />

1<br />

δM required (GeV)<br />

LHS: plots of quantities along mSUGRA slope. Below<br />

∆M = 1.78 GeV, no two-body stau decay. LC studies<br />

indicate ∆M > 5 GeV is OK.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.30/53


PmSUGRA Dependencies<br />

∆M (GeV)<br />

10<br />

1<br />

0.4<br />

∆M<br />

9<br />

cos2θ τ 0.99 0.35<br />

8<br />

0.98<br />

7<br />

0.3<br />

6<br />

0.97<br />

0.25<br />

5<br />

0.96<br />

4<br />

0.2<br />

0.95<br />

3<br />

0.15<br />

0.94<br />

2<br />

1<br />

0.93<br />

0.1<br />

0<br />

0.92 0.05<br />

100 150 200 250 300 350 400 450<br />

m~ (GeV) τ<br />

cos2θ τ<br />

-<br />

∆cos2θ τ required, a(M)<br />

∆cos2θ τ<br />

- required<br />

δM required<br />

a(M χ )<br />

1.3<br />

1.2<br />

1.1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

100 150 200 250 300 350 400 450<br />

m~<br />

τ (GeV)<br />

1<br />

δM required (GeV)<br />

˜τ 1 χ 0 1 → τγ ∝ 3 cos 2θ τ + 5 from coupling of neutralino<br />

to ˜τ L/R .<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.30/53


PmSUGRA Dependencies<br />

∆M (GeV)<br />

10<br />

1<br />

0.4<br />

∆M<br />

9<br />

cos2θ τ 0.99 0.35<br />

8<br />

0.98<br />

7<br />

0.3<br />

6<br />

0.97<br />

0.25<br />

5<br />

0.96<br />

4<br />

0.2<br />

0.95<br />

3<br />

0.15<br />

0.94<br />

2<br />

1<br />

0.93<br />

0.1<br />

0<br />

0.92 0.05<br />

100 150 200 250 300 350 400 450<br />

m~ (GeV) τ<br />

cos2θ τ<br />

-<br />

∆cos2θ τ required, a(M)<br />

∆cos2θ τ<br />

- required<br />

δM required<br />

a(M χ )<br />

1.3<br />

1.2<br />

1.1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

100 150 200 250 300 350 400 450<br />

m~<br />

τ (GeV)<br />

1<br />

δM required (GeV)<br />

a(M χ ) found by keeping ∆M constant, δM by just<br />

varying stau mass. mẽ, m˜µ needed to about 1.5%<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.30/53


Slepton Dependence<br />

7<br />

δ - (∆M)<br />

6<br />

GeV<br />

5<br />

4<br />

3<br />

2<br />

150 200 250 300 350 400 450<br />

m~ (GeV)<br />

e<br />

Accuracy required on m˜l<br />

− m χ<br />

0<br />

1<br />

for WMAP precision.<br />

LC studies say this is acheivable, but need more work<br />

for cos θ τ (=0.987±0.06 at lower end of slope).<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.31/53


Summary<br />

• Markov chains bring out the multi-dimensionality<br />

of the space: is a lot less constrained than in 2d<br />

• Still, current data is constraining<br />

• LHC could produce copious amounts of <strong>SUSY</strong><br />

dark matter<br />

• Want to measure σ in order to predict Ωh 2 <strong>and</strong><br />

test cosmological assumptions<br />

• 10% accuracy will require ILC+LHC data<br />

• Can control many uncertainties by measuring<br />

additional quantities: Γ A , m˜τ − M χ<br />

0<br />

1<br />

, . . .<br />

• Non mSUGRA case could well be easier.<br />

• Have not discussed direct detection yet<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.32/53


Supplementary Material<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.33/53


Likelihood<br />

L ≡ p(d|m) is pdf of reproducing data d assuming<br />

mSUGRA model m (which depends on parameters).<br />

p(m|d) = p(d|m) p(m)<br />

p(d)<br />

p(m 1 |d)<br />

p(m 2 |d)<br />

= p(d|m 1)p(m 1 )<br />

p(d|m 2 )p(m 2 )<br />

Thus, you can interpret the likelihood distribution as<br />

relative probabilities if your ratio of priors is 1. Otherwise,<br />

convolute it with YOUR priors!<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.34/53


Funnel Slope<br />

GeV<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

m(χ 1 )<br />

m(χ 3 )<br />

Γ A<br />

µ<br />

m(l R )<br />

m(l L )<br />

m(χ 2 )<br />

35<br />

30<br />

25<br />

20<br />

Γ A (GeV)<br />

~<br />

400<br />

200<br />

15<br />

0<br />

300 400 500 600 700 800 900 1000 10<br />

M A (GeV)<br />

< σv > −1 ∼ 4m χ 0Γ ( ( ) )<br />

A MA − 2m 2<br />

1 χ<br />

0<br />

g 2 4 1<br />

+ 1<br />

m χ 0 ˜χ 0 1 A Γ A<br />

1<br />

.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.35/53


Funnel Slope<br />

GeV<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

m(χ 1 )<br />

m(χ 3 )<br />

Γ A<br />

µ<br />

m(l R )<br />

m(l L )<br />

m(χ 2 )<br />

35<br />

30<br />

25<br />

20<br />

Γ A (GeV)<br />

~<br />

400<br />

200<br />

15<br />

0<br />

300 400 500 600 700 800 900 1000 10<br />

M A (GeV)<br />

Notice that spectrum is quite heavy: need a high energy<br />

ILC! Γ A will be important.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.35/53


Funnel Theory Uncertainties<br />

Ωh 2<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

full calculation<br />

no m b resummation<br />

1 loop Higgs RGEs<br />

1 loop gaugino RGEs<br />

-2 loop QCD mt correction<br />

Ωh 2<br />

0.145<br />

0.14<br />

0.135<br />

0.13<br />

0.125<br />

0.12<br />

0.115<br />

Ωh 2<br />

(M A - 2M χ1<br />

0)/Γ A<br />

1.65<br />

1.6<br />

1.55<br />

1.5<br />

1.45<br />

1.4<br />

(M A - 2M χ1<br />

0)/Γ A<br />

0<br />

300 400 500 600 700 800 900 10001100<br />

M A (GeV)<br />

0.11<br />

0.6 0.8 1 1.2 1.4<br />

x<br />

1.35<br />

LHS: Γ A affected by large m SM<br />

b<br />

/(1 + ∆ <strong>SUSY</strong> ) corrections<br />

since A → b¯b ∝ Ab¯b coupling ∝ m b tan β, <strong>and</strong><br />

tan β = 50.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.36/53


Funnel Theory Uncertainties<br />

Ωh 2<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

full calculation<br />

no m b resummation<br />

1 loop Higgs RGEs<br />

1 loop gaugino RGEs<br />

-2 loop QCD mt correction<br />

Ωh 2<br />

0.145<br />

0.14<br />

0.135<br />

0.13<br />

0.125<br />

0.12<br />

0.115<br />

Ωh 2<br />

(M A - 2M χ1<br />

0)/Γ A<br />

1.65<br />

1.6<br />

1.55<br />

1.5<br />

1.45<br />

1.4<br />

(M A - 2M χ1<br />

0)/Γ A<br />

0<br />

300 400 500 600 700 800 900 10001100<br />

M A (GeV)<br />

0.11<br />

0.6 0.8 1 1.2 1.4<br />

x<br />

1.35<br />

RHS: x > 1.5 yielded MA 2 < 0 ie no EWSB. Strong<br />

correlation of theory error with its effect on (M A −<br />

2M χ<br />

0<br />

1<br />

)/Γ A - could measure it!<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.36/53


Funnel Accuracies<br />

LHS: mSUGRA. a(m b ) worrying. α s (M Z )<br />

dependence comes about through its effect on<br />

m b (m b ). m 0 , M 1/2 might be feasible at LHC, m t<br />

possible at ILC. tan β looks impossible.<br />

a<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

M 1/2<br />

-<br />

m t<br />

α s (M Z )<br />

m b<br />

m 0<br />

∆A 0<br />

tanβ<br />

0<br />

50 100 150 200 250 300 350 400 450 500<br />

m 0 χ1<br />

(GeV)<br />

200<br />

150<br />

100<br />

50<br />

∆A 0 (GeV)<br />

a<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

a(Γ A )<br />

a(M χ1<br />

0)<br />

a(M A )<br />

a(2M χ1<br />

0 - M A )<br />

a(µ)<br />

2M χ1<br />

0 - M A<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

50 100 150 200 250 300 350 400 450 500<br />

M 0 χ1<br />

(GeV)<br />

0<br />

2M χ1<br />

0 - M A (GeV)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.37/53


Funnel Accuracies<br />

SM inputs <strong>and</strong> tan β uncertainties can be controlled<br />

by measuring M A , Γ A . Aχ 0 1χ 0 1 coupling ∼ 1/µ.<br />

Γ A ∝ M A tan 2 β(m 2 b + m2 τ) (γγ option of LC,<br />

A → µµ at LHC).<br />

a<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

M 1/2<br />

-<br />

m t<br />

α s (M Z )<br />

m b<br />

m 0<br />

∆A 0<br />

tanβ<br />

0<br />

50 100 150 200 250 300 350 400 450 500<br />

m 0 χ1<br />

(GeV)<br />

200<br />

150<br />

100<br />

50<br />

∆A 0 (GeV)<br />

a<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

a(Γ A )<br />

a(M χ1<br />

0)<br />

a(M A )<br />

a(2M χ1<br />

0 - M A )<br />

a(µ)<br />

2M χ1<br />

0 - M A<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

50 100 150 200 250 300 350 400 450 500<br />

M 0 χ1<br />

(GeV)<br />

0<br />

2M χ1<br />

0 - M A (GeV)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.37/53


Funnel Accuracies<br />

Mass of χ 0 1 is important, but not mixing (see a(µ)).<br />

a<br />

10<br />

1<br />

0.1<br />

0.01<br />

0.001<br />

M 1/2<br />

-<br />

m t<br />

α s (M Z )<br />

m b<br />

m 0<br />

∆A 0<br />

tanβ<br />

0<br />

50 100 150 200 250 300 350 400 450 500<br />

m 0 χ1<br />

(GeV)<br />

200<br />

150<br />

100<br />

50<br />

∆A 0 (GeV)<br />

a<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

a(Γ A )<br />

a(M χ1<br />

0)<br />

a(M A )<br />

a(2M χ1<br />

0 - M A )<br />

a(µ)<br />

2M χ1<br />

0 - M A<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

50 100 150 200 250 300 350 400 450 500<br />

M 0 χ1<br />

(GeV)<br />

0<br />

2M χ1<br />

0 - M A (GeV)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.37/53


Focus Point Slope<br />

mass (GeV)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

M χ1<br />

0<br />

χ 2<br />

0<br />

χ 3<br />

0<br />

µ<br />

χ 4<br />

0<br />

M 1<br />

M 2<br />

100<br />

150 200 250 300 350 400 450<br />

M 0 χ1<br />

(GeV)<br />

Heavy sfermions <strong>and</strong> A 0 . M 1 < µ < M 2 , ie significant<br />

Higgsino component ∼ 25%.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.38/53


Focus Channels <strong>and</strong> Theory<br />

annihilation (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

coannihilation30<br />

annihilation<br />

tt -<br />

bb -<br />

WW/ZZ<br />

Zh,hh<br />

Ωh 2<br />

35<br />

25<br />

20<br />

15<br />

10<br />

-neutralinos<br />

-2 loop QCD<br />

-EW/Higgs<br />

-charginos<br />

non re-summed mb<br />

Full calculation<br />

-2 loop Higgs RGEs<br />

0<br />

150 200 250 300 350 400 450<br />

M χ<br />

0 (GeV)<br />

1<br />

5<br />

0<br />

1 2 3 4 5 6 7<br />

m 0 (TeV)<br />

t¯t annihilation predominantly through Z. Coannihilation<br />

≡ χ 0 1χ 0 i or χ0 1χ ± 1<br />

. Several competing channels.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.39/53


Focus mSUGRA Accuracies<br />

a<br />

0.0003<br />

0.05<br />

45<br />

α s (M Z )<br />

∆A 0<br />

m t 0.045<br />

a(m 0 )<br />

a(M<br />

0.00025<br />

0.04<br />

1/2 )<br />

40<br />

a(tanβ)<br />

0.035<br />

35<br />

0.0002<br />

0.03<br />

0.06<br />

0.06<br />

0.05<br />

0.05 0.025<br />

30<br />

0.00015<br />

0.04<br />

0.04<br />

0.02<br />

0.03<br />

0.03<br />

25<br />

0.02<br />

0.02<br />

0.015<br />

0.0001<br />

0.01<br />

0.01 0.01<br />

m 20<br />

0<br />

b<br />

200 300 400 0 0.005<br />

5e-05<br />

0<br />

150 200 250 300 350 400 450 100 200 300 400 500 15<br />

M 0 χ1<br />

(GeV)<br />

M 0 χ1<br />

(GeV)<br />

a<br />

∆A 0 (GeV)<br />

∆A 0 (GeV)<br />

δm t = 30 MeV might be possible at future ILC but<br />

a(m 0 ) < 0.5% looks completely unfeasible.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.40/53


Focus PmSUGRA Accuracies<br />

0.25<br />

0.2<br />

0.15<br />

m t<br />

M 2<br />

tanβ<br />

M 1<br />

µ<br />

M χ3<br />

0<br />

a<br />

0.1<br />

0.05<br />

0<br />

150 200 250 300 350 400 450<br />

M 0 χ1<br />

(GeV)<br />

Easier outside of mSUGRA, eg µ no longer sensitive<br />

to m t (∝ coupling to neutral goldstone).<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.41/53


LHC <strong>SUSY</strong> Measurements<br />

q l + l −<br />

˜q L χ 0 2 ˜l χ 0 1<br />

m 2 ll<br />

= (p l1 + p l2 ) 2 edge<br />

position measures<br />

√<br />

(m<br />

2<br />

χ 0 2−m 2˜l )(m 2˜l −m 2 χ 0 )<br />

1<br />

m 2˜l<br />

Events/0.5 GeV/100 fb -1<br />

400<br />

300<br />

200<br />

100<br />

205.7 / 197<br />

P1 2209.<br />

P2 108.7<br />

P3 1.291<br />

0<br />

0 50 100 150<br />

M ll<br />

(GeV)<br />

BCA, C Lester, A Parker, B Webber, JHEP 09 (2000) 004<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.42/53


Edge Fitting at S5 <strong>and</strong> O1<br />

200<br />

150<br />

100<br />

50<br />

400<br />

300<br />

200<br />

100<br />

200<br />

150<br />

100<br />

50<br />

300<br />

200<br />

100<br />

dσ/dmll (Events/100fb-1 /0.375GeV)<br />

dσ/dmllq (Events/100fb-1 /5GeV)<br />

0<br />

0<br />

0<br />

0<br />

0 50 100 150<br />

0 200 400 600 800 1000<br />

0 50 100 150<br />

0 200 400 600 800 1000<br />

(a) m ll (GeV)<br />

(b) m llq (GeV)<br />

(a) m ll (GeV)<br />

(b) m llq (GeV)<br />

400<br />

300<br />

200<br />

600<br />

400<br />

dσ/dmlq (Events/100fb-1 /5GeV)<br />

dσ/dmlq (Events/100fb-1 /5GeV)<br />

100<br />

200<br />

0<br />

0<br />

0<br />

0<br />

0 200 400 600 800 1000<br />

0 200 400 600 800 1000<br />

0 200 400 600 800 1000<br />

0 200 400 600 800 1000<br />

(c1) High m lq (GeV)<br />

(c2) Low m lq (GeV)<br />

(c1) High m lq (GeV)<br />

(c2) Low m lq (GeV)<br />

150<br />

100<br />

50<br />

100<br />

80<br />

60<br />

40<br />

20<br />

dσ/dmllq (Events/100fb-1 /5GeV)<br />

dσ/dmhq (Events/100fb-1 /5GeV)<br />

dσ/dmll (Events/100fb-1 /0.375GeV)<br />

dσ/dmllq (Events/100fb-1 /5GeV)<br />

200<br />

100<br />

400<br />

300<br />

200<br />

dσ/dmlq (Events/100fb-1 /5GeV)<br />

dσ/dmlq (Events/100fb-1 /5GeV)<br />

100<br />

60<br />

40<br />

20<br />

80<br />

60<br />

40<br />

20<br />

dσ/dmllq (Events/100fb-1 /5GeV)<br />

dσ/dmzq (Events/100fb-1 /5GeV)<br />

0<br />

0<br />

0<br />

0<br />

0 200 400 600 800 1000<br />

0 200 400 600 800 1000<br />

0 200 400 600 800 1000<br />

0 200 400 600 800 1000<br />

(d) m llq (GeV)<br />

(e) m hq (GeV)<br />

(d) m llq (GeV)<br />

(e) m zq (GeV)<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong> B.C. Allanach – p.43/53


Edge Positions<br />

endpoint S5 fit O1 fit<br />

m ll 109.10±0.13 70.47±0.15<br />

m llq edge 532.1±3.2 544.1±4.0<br />

lq high 483.5±1.8 515.8±7.0<br />

lq low 321.5±2.3 249.8±1.5<br />

llq thresh 266.0±6.4 182.2±13.5<br />

Best case lepton mass measurements can be as accurate<br />

as 1 per mille, but jets are a few percent<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.44/53


Edge to Mass Measurements<br />

400<br />

350<br />

300<br />

width S5 width O1 250<br />

χ 0 200<br />

1 17 22<br />

150<br />

˜lR 17 20<br />

χ 0 100<br />

2 17 20<br />

50<br />

0<br />

˜q 22 20<br />

m l<br />

(GeV)<br />

0 50 100 150 200 250 300 350 400<br />

m 1<br />

(GeV)<br />

Mass differences well constrained, but overall mass<br />

scale not so well constrained by LHC<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.45/53


Fitting to <strong>SUSY</strong> Breaking<br />

Model<br />

m 1/2 [GeV]<br />

480<br />

460<br />

440<br />

420<br />

400<br />

380<br />

Softsusy<br />

Spheno<br />

Suspect<br />

Isajet<br />

360<br />

200 300 400 500 600<br />

m 0 [GeV]<br />

tan β<br />

2.4<br />

2.2<br />

2.<br />

1.8<br />

1.6<br />

Spheno<br />

Softsusy<br />

Suspect<br />

Isajet<br />

200 300 400 500 600<br />

m 0 [GeV]<br />

• Experimenters pick a <strong>SUSY</strong> breaking point<br />

• They derive observables <strong>and</strong> errors after detector<br />

simulation<br />

• We fit<br />

this “data” with our codes<br />

BCA, S Kraml, W Porod, JHEP 0303 (2003) 016<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.46/53


α −1<br />

i<br />

M<br />

<strong>SUSY</strong><br />

1<br />

2<br />

3<br />

log (E/GeV)<br />

10<br />

M<br />

GUT<br />

SOFT<strong>SUSY</strong><br />

Get g i (M Z ), h t,b,τ (M Z ). ✛<br />

❄<br />

Run to M S .<br />

❄<br />

REWSB, iterative solution of µ<br />

❄<br />

M X . Soft <strong>SUSY</strong> breaking BC.<br />

Run to M S . Calculate<br />

❄<br />

sparticle pole masses.<br />

❄<br />

Run to M Z<br />

BCA, Comp. Phys. Comm. 143 (2002) 305.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.47/53


Other Observables<br />

Often more complicated, eg m llq edge:<br />

[ (m<br />

2˜q − m 2 χ<br />

max 2)(m 2 0 χ<br />

− m 2 0<br />

2 χ<br />

) 0<br />

1<br />

m 2 χ 0 2<br />

]<br />

(m˜q m˜l<br />

− m χ<br />

0<br />

2<br />

m χ<br />

0<br />

1<br />

)(m 2 − m 2˜l )<br />

χ 0 2<br />

m χ<br />

0<br />

2<br />

m˜l<br />

, (m2˜q − m2˜l )(m2˜l − m2 χ ) 0<br />

1<br />

m 2˜l<br />

,<br />

Also m high<br />

lq<br />

, m low<br />

lq , llq threshold , M T 2 2<br />

(m) =<br />

{<br />

}]<br />

min /p1 +/p 2 =/p T<br />

[max m 2 T (p l 1<br />

T<br />

, /p 1 , m), m 2 T (p l 2<br />

T<br />

, /p 2 , m)<br />

,<br />

max[M T2 (m χ<br />

0<br />

1<br />

)] = m˜l]<br />

for dislepton production.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.48/53


Statistics Study<br />

• Choose two model-points: S5 (m 0 = 100, m 1/2 =<br />

300, A 0 = 300, tan β = 2.1, µ > 0) <strong>and</strong> O1<br />

(m˜l<br />

= 177, m 1/2 = 306, A˜q = 137, m˜q = 0, A˜l<br />

=<br />

306, tan β = 10, µ > 0)<br />

• Find cuts to measure “signal” endpoints<br />

• Estimate expected accuracy of ATLAS<br />

measurement: 100 fb −1<br />

• Perform χ 2 fits of sparticle masses to expected<br />

positions of edges expected from an ensemble of<br />

experiments<br />

• Interpret results as statistics of measurement on<br />

sparticle masses<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.49/53


Cuts Example<br />

We use ATLFAST2.16, HERWIG6.0, ISAWIG <strong>and</strong><br />

ISAJET7.42. Assume 100 fb −1 of LHC data.<br />

• |η j | ≤ 5, p j T<br />

≥ 15 GeV<br />

• p e T ≥ 5, pµ T ≥ 6, |η l| ≤ 2.5<br />

• l isolation: 10 GeV in ∆R = 0.2, ∆R(lj) ≥ 0.4.<br />

eg for m ll :<br />

• 2 OSSF leptons, p l 1<br />

T<br />

≥ p l 2<br />

T<br />

≥ 10 GeV.<br />

• n jets ≥ 2, p j 1<br />

T ≥ pj 2<br />

T ≥ 150 GeV, /p T > 300 GeV<br />

OSSF-OSDF subtracts well the St<strong>and</strong>ard Model<br />

background.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.50/53


Uncertainties in Relic Density<br />

Bulk region: ˜B ˜B → Z, h → l¯l. Coannihilation: ˜τχ<br />

0<br />

1 → τ + X<br />

Figure 0: Bulk/coannihilation region. Full:<br />

SoftSusy, dotted: SPheno.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.51/53


Focus Point<br />

Figure 0: Focus point region. Full: SoftSusy, dotted:<br />

SPheno, dashed: SuSpect. Higgsino LSP annihilates<br />

into ZZ/W W<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.52/53


High tan β<br />

BCA, Belanger, Boudjema, Pukhov, Porod, hep-ph/0402161. Baer et<br />

al<br />

Figure 0: High tan β region. Full: SoftSusy, dotted:<br />

SPheno, dashed: SuSpect. Get annihilation into A.<br />

<strong>SUSY</strong> <strong>Dark</strong> <strong>Matter</strong> <strong>and</strong> <strong>Colliders</strong><br />

B.C. Allanach – p.53/53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!