11.01.2015 Views

Geant4 Simulations for the Radon Electric Dipole Moment Search at

Geant4 Simulations for the Radon Electric Dipole Moment Search at

Geant4 Simulations for the Radon Electric Dipole Moment Search at

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GEANT4 SIMULATIONS FOR THE RADON ELECTRIC<br />

DIPOLE MOMENT SEARCH AT TRIUMF<br />

A Thesis<br />

Presented to<br />

The Faculty of Gradu<strong>at</strong>e Studies<br />

of<br />

The University of Guelph<br />

by<br />

EVAN THOMAS RAND<br />

In partial fulfilment of requirements<br />

<strong>for</strong> <strong>the</strong> degree of<br />

Master of Science<br />

April, 2011<br />

Evan Thomas Rand, 2011


ABSTRACT<br />

GEANT4 SIMULATIONS FOR THE RADON ELECTRIC<br />

DIPOLE MOMENT SEARCH AT TRIUMF<br />

Evan Thomas Rand<br />

University of Guelph, 2011<br />

Advisors:<br />

Professor C.E. Svensson<br />

The existence ofapermanent electric dipolemoment (EDM) requires <strong>the</strong>viol<strong>at</strong>ion<br />

of time-reversal symmetry (T) or, equivalently, <strong>the</strong> viol<strong>at</strong>ion of charge conjug<strong>at</strong>ion C<br />

and parity P (CP). Although no particle EDM has yet been found, current <strong>the</strong>ories<br />

beyond <strong>the</strong> Standard Model, e.g. multiple-Higgs <strong>the</strong>ories, left-right symmetry, and<br />

supersymmetry (SUSY), generally predict EDMs within current experimental reach.<br />

In fact, present limits on <strong>the</strong> EDMs of <strong>the</strong> neutron, electron and 199 Hg <strong>at</strong>om have<br />

significantly reduced <strong>the</strong> parameter spaces of <strong>the</strong>se models. The measurement of a<br />

non-zero EDM would be <strong>the</strong> first direct measurement of a viol<strong>at</strong>ion of time-reversal<br />

symmetry, and it would represent a clear signal of CP viol<strong>at</strong>ion from physics beyond<br />

<strong>the</strong> Standard Model. The search <strong>for</strong> an EDM with radon has an enticing fe<strong>at</strong>ure.<br />

Recent <strong>the</strong>oretical calcul<strong>at</strong>ions predict substantial enhancements in <strong>the</strong> <strong>at</strong>omic EDMs<br />

<strong>for</strong><strong>at</strong>omswithoctupole-de<strong>for</strong>mednuclei, making odd-ARnisotopesprimecandid<strong>at</strong>es<br />

<strong>for</strong> <strong>the</strong> EDM search. Such measurements require extensive development work and<br />

simul<strong>at</strong>ion studies. The <strong>Geant4</strong> simul<strong>at</strong>ions presented here are an essential aspect<br />

of <strong>the</strong>se developments. They provide an accur<strong>at</strong>e description of γ-ray sc<strong>at</strong>tering and<br />

backgrounds in <strong>the</strong> experimental appar<strong>at</strong>us and γ-ray detectors, and are being used<br />

to study <strong>the</strong> overall sensitivity of <strong>the</strong> RnEDM experiment <strong>at</strong> TRIUMF in Vancouver,<br />

B.C.


Dict<strong>at</strong>ed but not read.<br />

i


Acknowledgements<br />

I would like to take <strong>the</strong> opportunity to thank a number of people who made this<br />

project possible. Firstly, I would like to thank my supervisor Dr. Carl Svensson,<br />

who guided me throughout my research with p<strong>at</strong>ience and much encouragement. I<br />

am truly gr<strong>at</strong>eful <strong>for</strong> <strong>the</strong> opportunities th<strong>at</strong> I have been given in <strong>the</strong> Nuclear Physics<br />

Group. I would also like to thank Dr. Paul Garrett <strong>for</strong> his support, along with<br />

<strong>the</strong> o<strong>the</strong>r members of <strong>the</strong> Nuclear Physics Group, to name a few: Jack Bangay,<br />

Laura Bianco, Sophie Chagnon-Lessard, Greg Demand, Alejandra Diaz Varela, Ryan<br />

Dunlop, Paul Finlay, Kyle Leach, Andrew Phillips, Michael Schumaker, Chandana<br />

Sumithrarachchi andJames Wong. I’ll always cherish <strong>the</strong> memories fromexperiments<br />

and conferences.<br />

FinallyIwouldliketothankmyfamily, whosupportsmethroughoutallmyadventures.<br />

Thanks to my sisters Erin and Lauren, <strong>for</strong> teasing me relentlessly throughout<br />

my childhood, and subsequently higher educ<strong>at</strong>ion. Your unique way of showing support<br />

is gre<strong>at</strong>ly appreci<strong>at</strong>ed, and will be reciproc<strong>at</strong>ed. Thanks to my parents Gerry<br />

and Denise <strong>for</strong> <strong>the</strong>ir continuing encouragement throughout my gradu<strong>at</strong>e studies. And<br />

to Christie, <strong>for</strong> putting up with <strong>the</strong> long hours, travelling and <strong>for</strong> pretending to be<br />

interested in physics and my research in “time travel”.<br />

ii


Contents<br />

Acknowledgements<br />

ii<br />

1 Introduction 1<br />

1.1 Motiv<strong>at</strong>ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1.1.1 CP Viol<strong>at</strong>ion . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.1.2 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.2 Atomic EDMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

1.2.1 <strong>Radon</strong> EDM Enhancements . . . . . . . . . . . . . . . . . . . 7<br />

2 RnEDM Experiment <strong>at</strong> TRIUMF 11<br />

2.1 The ISAC Facility <strong>at</strong> TRIUMF . . . . . . . . . . . . . . . . . . . . . 11<br />

2.2 RnEDM Appar<strong>at</strong>us . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

2.2.1 Transferring Radioactive Noble Gas Isotopes . . . . . . . . . . 15<br />

2.3 Measuring Atomic EDMs . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

2.3.1 Optical Pumping of Rubidium Vapour . . . . . . . . . . . . . 17<br />

2.3.2 Spin Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

2.3.3 RnEDM Measurement . . . . . . . . . . . . . . . . . . . . . . 25<br />

2.3.4 Gamma-Ray Anisotropies . . . . . . . . . . . . . . . . . . . . 26<br />

2.3.5 St<strong>at</strong>istical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

iii


2.4 GRIFFIN Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

3 <strong>Geant4</strong> Developments <strong>for</strong> <strong>the</strong> RnEDM Experiment 32<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

3.1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

3.1.2 Modific<strong>at</strong>ions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

3.2 Simul<strong>at</strong>ion Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

3.2.1 <strong>Geant4</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3.2.2 M<strong>at</strong>erials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3.2.3 Volumes and Geometry . . . . . . . . . . . . . . . . . . . . . . 37<br />

3.2.4 Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

3.2.5 Simul<strong>at</strong>ed D<strong>at</strong>a . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

3.3 Simul<strong>at</strong>ing β-Decay Process . . . . . . . . . . . . . . . . . . . . . . . 40<br />

3.3.1 Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

3.3.2 Particle Emission . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

3.4 Simul<strong>at</strong>ing Angular Distributions . . . . . . . . . . . . . . . . . . . . 47<br />

3.4.1 Beta Particle Anisotropies . . . . . . . . . . . . . . . . . . . . 47<br />

3.4.2 Gamma-Ray Anisotropies . . . . . . . . . . . . . . . . . . . . 49<br />

3.4.3 Tracking m-St<strong>at</strong>es . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

3.5 RnEDM <strong>Geant4</strong> Geometry . . . . . . . . . . . . . . . . . . . . . . . 54<br />

3.5.1 Cell and Oven Design . . . . . . . . . . . . . . . . . . . . . . . 54<br />

3.5.2 LaBr 3 (Ce) Scintill<strong>at</strong>or . . . . . . . . . . . . . . . . . . . . . . 55<br />

3.6 D<strong>at</strong>a Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.6.1 The GUGI Program . . . . . . . . . . . . . . . . . . . . . . . 58<br />

3.6.2 Output D<strong>at</strong>a and Sort Codes . . . . . . . . . . . . . . . . . . 59<br />

iv


4 Results 60<br />

4.1 γ-Ray Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

4.1.1 Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61<br />

4.1.2 223 Rn β-Decay Spectra . . . . . . . . . . . . . . . . . . . . . . 63<br />

4.2 Frequency Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

4.2.1 Multipolarity Effects . . . . . . . . . . . . . . . . . . . . . . . 67<br />

4.2.2 Fitting Process . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />

4.2.3 St<strong>at</strong>istical Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br />

4.3 LaBr 3 (Ce) Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

5 Conclusions and Future Directions 79<br />

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />

Appendix A 83<br />

Appendix B 88<br />

Bibliography 103<br />

v


List of Tables<br />

1.1 Current upper limits on EDMs of <strong>the</strong> neutron, electron and 199 Hg <strong>at</strong>om 6<br />

3.1 Hexidecimal flags in <strong>Geant4</strong> output binary d<strong>at</strong>a . . . . . . . . . . . 40<br />

3.2 X-ray energies and intensities per 100 Fr K-shell vacancies . . . . . . 48<br />

3.3 Three-dimensional γ-ray angular distributions <strong>for</strong> various transtions . 52<br />

4.1 Fit results <strong>for</strong> <strong>the</strong> 416 keV γ-ray M1 transition . . . . . . . . . . . . . 73<br />

vi


List of Figures<br />

1.1 An illustr<strong>at</strong>ion of <strong>the</strong> parity and time-reversal trans<strong>for</strong>m<strong>at</strong>ions . . . . 3<br />

1.2 Timeline of EDM experimental upper limits. . . . . . . . . . . . . . . 7<br />

1.3 Double well potential th<strong>at</strong> arises in octupole-de<strong>for</strong>med nuclei. . . . . 9<br />

2.1 The ISAC-I Hall <strong>at</strong> TRIUMF . . . . . . . . . . . . . . . . . . . . . . 13<br />

2.2 Schem<strong>at</strong>ic of <strong>the</strong> prototype on-line noble gas collection appar<strong>at</strong>us . . 16<br />

2.3 Level diagram <strong>for</strong> a 4 He + ion . . . . . . . . . . . . . . . . . . . . . . . 18<br />

2.4 Level diagram of 85 Rb . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

2.5 Polariz<strong>at</strong>ion transfer processes . . . . . . . . . . . . . . . . . . . . . . 24<br />

2.6 The full 16 detector GRIFFIN array . . . . . . . . . . . . . . . . . . 28<br />

2.7 One GRIFFIN/TIGRESS HPGe clover . . . . . . . . . . . . . . . . . 29<br />

2.8 Cross-section of GRIFFIN heads in <strong>for</strong>ward and back configur<strong>at</strong>ions . 30<br />

2.9 GRIFFIN detectors in <strong>the</strong> <strong>for</strong>ward configur<strong>at</strong>ion . . . . . . . . . . . . 31<br />

2.10 GRIFFIN detectors in <strong>the</strong> back configur<strong>at</strong>ion . . . . . . . . . . . . . 31<br />

3.1 Cross section of <strong>the</strong> RnEDM simul<strong>at</strong>ed appar<strong>at</strong>us . . . . . . . . . . . 38<br />

3.2 <strong>Geant4</strong> simul<strong>at</strong>ion of radioactive decay . . . . . . . . . . . . . . . . 43<br />

3.3 β particle angular distributions <strong>for</strong> various degrees of polariz<strong>at</strong>ion. . . 49<br />

3.4 γ-ray angular distributions <strong>for</strong> various multipolarities and spins . . . 53<br />

3.5 Cross section of <strong>the</strong> EDM cell, oven, magnet and µMetal shielding . . 54<br />

vii


3.6 Cross section of <strong>the</strong> BrilLanCe 380 LaBr 3 (Ce) scintill<strong>at</strong>or . . . . . . . 56<br />

3.7 Screenshots of <strong>the</strong> GUGI program. . . . . . . . . . . . . . . . . . . . 57<br />

3.8 FWHM 2 versus γ-ray energy <strong>for</strong> a LaBr 3 (Ce) and a HPGe detector . 58<br />

4.1 <strong>Geant4</strong> absolute efficiency curve <strong>for</strong> a ring of GRIFFIN detectors . . 62<br />

4.2 <strong>Geant4</strong> absolute efficiency curve <strong>for</strong> <strong>the</strong> RnEDM appar<strong>at</strong>us . . . . . 63<br />

4.3 <strong>Geant4</strong> absolute efficiency curve <strong>for</strong> various thicknesses of µMetal . 64<br />

4.4 Full 223 Rn decay detected by a ring of eight GRIFFIN detectors . . . 65<br />

4.5 The energy g<strong>at</strong>e and time projection of <strong>the</strong> 416 keV γ ray. . . . . . . 66<br />

4.6 Three-dimensional γ-ray angular distributions <strong>for</strong> transitions in 223 Fr 68<br />

4.7 The time projections and fits <strong>for</strong> transitions in 223 Fr . . . . . . . . . . 69<br />

4.8 The fit to <strong>the</strong> 416 keV γ-ray time projection. . . . . . . . . . . . . . . 70<br />

4.9 Weighted average of 20 precession frequency fits . . . . . . . . . . . . 72<br />

4.10 The sensitivity of <strong>the</strong> fitted frequency versus <strong>the</strong> simul<strong>at</strong>ed T 2 time . 74<br />

4.11 The sensitivity of <strong>the</strong> fitted frequency versus <strong>the</strong> number of counts . . 75<br />

4.12 <strong>Geant4</strong> absolute efficiency curve <strong>for</strong> a ring of BrilLanCe 380 detectors 76<br />

4.13 Full 223 Rn decay detected by a ring of eight BrilLanCe 380 detectors . 77<br />

4.14 LaBr 3 (Ce) time projection and fit resulting from a large energy g<strong>at</strong>e . 78<br />

A.1 Simul<strong>at</strong>ed decay scheme (1 of 5) <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr . . 83<br />

A.2 Simul<strong>at</strong>ed decay scheme (2 of 5) <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr . . 84<br />

A.3 Simul<strong>at</strong>ed decay scheme (3 of 5) <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr . . 85<br />

A.4 Simul<strong>at</strong>ed decay scheme (4 of 5) <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr . . 86<br />

A.5 Simul<strong>at</strong>ed decay scheme (5 of 5) <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr . . 87<br />

viii


Chapter 1<br />

Introduction<br />

Thesearch<strong>for</strong>an<strong>at</strong>omicelectricdipolemoment(EDM)inodd-Aisotopesofradon<br />

is beginning <strong>at</strong> TRIUMF, Canada’s n<strong>at</strong>ional sub<strong>at</strong>omic physics labor<strong>at</strong>ory loc<strong>at</strong>ed in<br />

Vancouver, British Columbia. The interest in particle and <strong>at</strong>omic EDMs derives from<br />

<strong>the</strong> desire to understand <strong>the</strong> fundamental symmetries of <strong>the</strong> laws of physics and <strong>the</strong><br />

most basic origins of m<strong>at</strong>ter in <strong>the</strong> universe. The measurement of a permanent nonzero<br />

particle or <strong>at</strong>omic EDM would represent <strong>the</strong> discovery of new physics beyond <strong>the</strong><br />

Standard Model of particle physics and may explain <strong>the</strong> observed asymmetry between<br />

m<strong>at</strong>ter and antim<strong>at</strong>ter in <strong>the</strong> universe.<br />

Despite over 50 years of searching with ever increasing experimental sensitivity, no<br />

permanent non-zero particle or <strong>at</strong>omic EDM has been detected. However, many current<br />

<strong>the</strong>ories <strong>for</strong> physics beyond <strong>the</strong> Standard Model, such as multiple-Higgs <strong>the</strong>ories,<br />

left-right symmetry, and supersymmetry (SUSY), predict EDMs within current experimental<br />

reach [1]. Present limits on <strong>the</strong> EDMs of <strong>the</strong> neutron, electron, and 199 Hg<br />

<strong>at</strong>omhave, infact, alreadysignificantly reduced <strong>the</strong>allowedparameter spaces of<strong>the</strong>se<br />

models. The search <strong>for</strong> an EDM in radon is strongly motiv<strong>at</strong>ed by recent <strong>the</strong>oretical<br />

calcul<strong>at</strong>ions [2, 3, 4, 5, 6, 7] which predict large enhancements in <strong>the</strong> observable<br />

1


<strong>at</strong>omic EDM <strong>for</strong> <strong>at</strong>oms in which <strong>the</strong> nucleus has a non-zero octupole de<strong>for</strong>m<strong>at</strong>ion.<br />

1.1 Motiv<strong>at</strong>ion<br />

The electric dipole moment (EDM), ⃗ d = Σ i e i ⃗r i , of a particle or <strong>at</strong>om in an electric<br />

field ⃗ E can be described by <strong>the</strong> following Hamiltonian,<br />

Ĥ = − ⃗ d· ⃗E . (1.1)<br />

The EDM of a particle or <strong>at</strong>om is a vector quantity th<strong>at</strong> must be ei<strong>the</strong>r aligned or<br />

anti-aligned with <strong>the</strong> total spin S. ⃗ There<strong>for</strong>e d ⃗ can be expressed as αS, ⃗ where α is<br />

a constant of proportionality. The Hamiltonian <strong>for</strong> a system with an electric dipole<br />

moment may thus be rewritten as<br />

Ĥ = −α ⃗ S · ⃗E . (1.2)<br />

The Hamiltonian <strong>for</strong> this system is odd under both <strong>the</strong> parity (ˆP) and time-reversal<br />

(ˆT) oper<strong>at</strong>ions, as can be seen through:<br />

ˆPĤ<br />

= ˆP(−αŜ ·Ê)<br />

ˆTĤ<br />

=<br />

ˆT(−αŜ ·Ê)<br />

= −α(+Ŝ)·(−Ê) = −α(−Ŝ)·(+Ê)<br />

= +αŜ ·Ê = +αŜ ·Ê<br />

= −Ĥ = −Ĥ<br />

Acting with <strong>the</strong> parity oper<strong>at</strong>or (ˆP) on this Hamiltonian leaves <strong>the</strong> spin invariant,<br />

but changes <strong>the</strong> sign of <strong>the</strong> electric field. Conversely, acting with <strong>the</strong> time-reversal<br />

oper<strong>at</strong>or (ˆT) on this Hamiltonian changes <strong>the</strong> direction of <strong>the</strong> spin and leaves <strong>the</strong><br />

electric field invariant. Both oper<strong>at</strong>ions change <strong>the</strong> sign of <strong>the</strong> original Hamiltonian.<br />

If parity or time reversal was a good symmetry of <strong>the</strong> laws of physics we would expect<br />

2


ˆP<br />

ր<br />

ˆT<br />

ց<br />

Figure 1.1: An illustr<strong>at</strong>ion of <strong>the</strong> parity and time-reversal trans<strong>for</strong>m<strong>at</strong>ions oper<strong>at</strong>ing<br />

on a quantum system with a charge distribution and non-zero spin. Acting with <strong>the</strong><br />

parity (ˆP) oper<strong>at</strong>or on this system leaves <strong>the</strong> spin invariant, but changes <strong>the</strong> sign of<br />

<strong>the</strong> electric dipole moment. Conversely, acting with <strong>the</strong> time-reversal (ˆT) oper<strong>at</strong>or<br />

on this system changes <strong>the</strong> direction of <strong>the</strong> spin and leaves <strong>the</strong> electric dipole moment<br />

invariant. The resulting st<strong>at</strong>es on <strong>the</strong> right-hand side are equivalent to each o<strong>the</strong>r<br />

under a rot<strong>at</strong>ion of 180 ◦ . Note th<strong>at</strong> in both cases, <strong>the</strong> constant of proportionality<br />

between ⃗ S and ⃗ d has changed sign under <strong>the</strong> ˆP or ˆT trans<strong>for</strong>m<strong>at</strong>ions.<br />

to find all particle and <strong>at</strong>omic EDMs to be zero. The measurement of a permanent<br />

non-zero EDM would represent a viol<strong>at</strong>ion of both of <strong>the</strong>se symmetries. The viol<strong>at</strong>ion<br />

of parity symmetry by <strong>the</strong> weak nuclear <strong>for</strong>ce is well known. The direct viol<strong>at</strong>ion of<br />

time-reversal symmetry, however, hasnotbeendetected inanyof<strong>the</strong>currently known<br />

fundamental interactions of n<strong>at</strong>ure.<br />

Figure 1.1 illustr<strong>at</strong>es <strong>the</strong> effect of <strong>the</strong> ˆP and ˆT trans<strong>for</strong>m<strong>at</strong>ions on a quantum<br />

system (particle or <strong>at</strong>om) with a charge distribution and non-zero spin. Acting with<br />

<strong>the</strong>parityoper<strong>at</strong>or(ˆP)on<strong>the</strong>quantumsystem flips<strong>the</strong>positionsof<strong>the</strong>charges. This<br />

3


is equivalent to changing <strong>the</strong> sign of <strong>the</strong> electric field ( E) ⃗ in <strong>the</strong> above equ<strong>at</strong>ions. The<br />

ˆP trans<strong>for</strong>m<strong>at</strong>ion in Figure 1.1 changes <strong>the</strong> direction of <strong>the</strong> EDM from <strong>the</strong> upward<br />

direction to <strong>the</strong> downward direction. The EDM is now anti-parallel to <strong>the</strong> total<br />

spin vector S ⃗ and <strong>the</strong> magnetic moment ⃗µ. The magnetic moment, which can be<br />

expressed as ⃗µ = gS ⃗ retains its constant of proportionality with <strong>the</strong> total spin vector<br />

under both <strong>the</strong> ˆP and ˆT trans<strong>for</strong>m<strong>at</strong>ions. Acting with <strong>the</strong> time-reversal oper<strong>at</strong>or<br />

(ˆT) on <strong>the</strong> quantum system changes <strong>the</strong> direction of <strong>the</strong> spin. This is equivalent<br />

to changing <strong>the</strong> sign of <strong>the</strong> total spin vector ( S) ⃗ in <strong>the</strong> above equ<strong>at</strong>ions. The ˆT<br />

trans<strong>for</strong>m<strong>at</strong>ion in Figure 1.1 flips <strong>the</strong> total spin vector S ⃗ from <strong>the</strong> upward direction<br />

to <strong>the</strong> downward direction. The total spin vector S ⃗ and <strong>the</strong> magnetic moment µ now<br />

point in <strong>the</strong> downward direction, anti-parallel to <strong>the</strong> EDM. The resulting quantum<br />

systems on <strong>the</strong> right-hand side of <strong>the</strong> figure are equivalent via a rot<strong>at</strong>ion of 180 ◦ , and<br />

in both cases <strong>the</strong> constant of proportionality between d ⃗ and S ⃗ has changed sign.<br />

One symmetry left out of this discussion so far is <strong>the</strong> charge conjug<strong>at</strong>ion symmetry<br />

(Ĉ), which exchanges particles <strong>for</strong> anti-particles. This symmetry, in combin<strong>at</strong>ion<br />

with <strong>the</strong> ˆP and ˆT <strong>for</strong>m wh<strong>at</strong> is called <strong>the</strong> CPT symmetry. All experimental evidence<br />

to d<strong>at</strong>e supports th<strong>at</strong> CPT is a true symmetry of n<strong>at</strong>ure, known as <strong>the</strong> CPT Theorem<br />

[8]. As <strong>the</strong>se symmetries were discovered, physicists believed th<strong>at</strong> <strong>the</strong> law of<br />

physics should be invariant under each of <strong>the</strong> three symmetries independently. This<br />

view was challenged in 1956 when parity conserv<strong>at</strong>ion in weak interactions was questioned<br />

[9]. Soon after this public<strong>at</strong>ion parity was shown to be viol<strong>at</strong>ed in <strong>the</strong> β decay<br />

of 60 Co nuclei [10]. This result implied viol<strong>at</strong>ions in o<strong>the</strong>r combin<strong>at</strong>ions of C, P and<br />

T in order <strong>for</strong> CPT to remain a good symmetry of <strong>the</strong> laws of n<strong>at</strong>ure.<br />

4


1.1.1 CP Viol<strong>at</strong>ion<br />

Following <strong>the</strong> observ<strong>at</strong>ion of ˆP viol<strong>at</strong>ions in <strong>the</strong> β decay, it was believed th<strong>at</strong> ˆ CP<br />

was a true symmetry of n<strong>at</strong>ure. CP viol<strong>at</strong>ion was, however, observed in <strong>the</strong> decay<br />

of K mesons [11] and also more recently in <strong>the</strong> decay of B mesons [12, 13]. CP<br />

viol<strong>at</strong>ion implies <strong>the</strong> existence of T viol<strong>at</strong>ion via <strong>the</strong> CPT Theorem. Direct evidence<br />

<strong>for</strong> time-reversal viol<strong>at</strong>ion has been suggested in <strong>the</strong> transition r<strong>at</strong>es of <strong>the</strong> antikaon<br />

to kaon process, and its reverse, kaon to antikaon. However, <strong>the</strong>se results remain<br />

controversial [14, 15].<br />

In1967,AndreiSakharovdemostr<strong>at</strong>ed[16]th<strong>at</strong>CP viol<strong>at</strong>ionisessential<strong>for</strong>baryogenesis,<br />

<strong>the</strong> physical processes required to produce <strong>the</strong> asymmetry between baryons<br />

and antibaryons in <strong>the</strong> early universe. In <strong>the</strong> Standard Model, CP viol<strong>at</strong>ion enters<br />

via weak interaction flavor mixing represented by <strong>the</strong> complex phase δ CKM of <strong>the</strong><br />

Cabibbo-Kobayashi-Maskawa (CKM) m<strong>at</strong>rix and via θ QCD , <strong>the</strong> vacuum expect<strong>at</strong>ion<br />

value of <strong>the</strong> QCD gluon field. These sources of CP viol<strong>at</strong>ion are, however, not sufficient<br />

to account <strong>for</strong> <strong>the</strong> observed asymmetry between m<strong>at</strong>ter and anti-m<strong>at</strong>ter in our<br />

universe. Thus additional sources of CP viol<strong>at</strong>ion are required and provide a strong<br />

motiv<strong>at</strong>ion to search <strong>for</strong> new physics beyond <strong>the</strong> Standard Model.<br />

1.1.2 The Standard Model<br />

The Standard Model of particle physics does predict <strong>the</strong> existence of non-zero<br />

particle EDMs through δ CKM and θ QCD . However, <strong>the</strong>se EDMs are many orders of<br />

magnitude smaller than current experimental sensitivity (see Figure 1.2). On <strong>the</strong><br />

o<strong>the</strong>r hand, models beyond <strong>the</strong> Standard Model, such as multiple-Higgs <strong>the</strong>ories,<br />

left-right symmetry and supersymmetry (SUSY), generally include additional CPviol<strong>at</strong>ing<br />

complex phases and predict EDMs within current experimental reach [1].<br />

5


Current upper limits on <strong>the</strong> EDMs of <strong>the</strong> neutron, electron and 199 Hg <strong>at</strong>om (see<br />

Table 1.1) have, in fact, already significantly reduced <strong>the</strong> allowed parameter spaces<br />

of <strong>the</strong>se models.<br />

Table 1.1: Current upper limits on <strong>the</strong> EDMs of <strong>the</strong> neutron, electron and 199 Hg<br />

<strong>at</strong>om.<br />

Species EDM Upper Limit C.L.<br />

Neutron < 2.9×10 −26 e·cm [17] 90%<br />

Electron < 1.6×10 −27 e·cm [18] 90%<br />

199 Hg Atom < 3.1×10 −29 e·cm [19] 95%<br />

1.2 Atomic EDMs<br />

Measuring an EDM in a neutral <strong>at</strong>om is complic<strong>at</strong>ed by orbiting <strong>at</strong>omic electrons,<br />

which arrange <strong>the</strong>mselves to exactly cancel <strong>the</strong> EDM of a point nucleus. Due to <strong>the</strong><br />

finite size of <strong>the</strong> nucleus, however, <strong>the</strong> screening effect does not completely cancel <strong>the</strong><br />

observable <strong>at</strong>omic EDM. The intrinsic Schiff moment, <strong>the</strong> lowest order time-reversal<br />

odd moment of a nucleus th<strong>at</strong> is measurable in a neutral <strong>at</strong>om [5], is a measure of<br />

<strong>the</strong> difference between <strong>the</strong> charge and dipole distributions in <strong>the</strong> intrinsic frame of<br />

<strong>the</strong> nucleus. It is responsible <strong>for</strong> inducing <strong>the</strong> observable <strong>at</strong>omic EDM in <strong>the</strong> electron<br />

cloud. The intrinsic Schiff moment is given by<br />

⃗S intr = 1 10<br />

∫<br />

er 2 ρ(r)⃗rd 3 r − 1 ∫<br />

d<br />

6Z ⃗ N<br />

ρ s (r)r 2 d 3 r , (1.3)<br />

where ⃗ d N is <strong>the</strong> nuclear EDM, ρ(r) is <strong>the</strong> charge distribution of <strong>the</strong> nucleus and ρ s (r)<br />

<strong>the</strong> spherically symmetric part of <strong>the</strong> <strong>the</strong> charge distribution. It can be thought of as<br />

<strong>the</strong> difference between <strong>the</strong> charge and dipole distribution in a nucleus of finite size.<br />

6


Figure 1.2: Experimental upper limits <strong>for</strong> <strong>the</strong> EDMs of <strong>the</strong> neutron, electron and<br />

199 Hg <strong>at</strong>om as a function of time compared to <strong>the</strong> ranges predicted <strong>for</strong> typical parameter<br />

in various models of particle physics. Adapted from reference [1].<br />

1.2.1 <strong>Radon</strong> EDM Enhancements<br />

The search <strong>for</strong> an <strong>at</strong>omic EDM with odd-A radon isotopes is motiv<strong>at</strong>ed by <strong>the</strong><br />

predictions of large enhancements in <strong>the</strong> observable <strong>at</strong>omic EDM. Recent <strong>the</strong>oretical<br />

calcul<strong>at</strong>ions predict anenhancement factor of ∼600 <strong>for</strong> 223 Rnrel<strong>at</strong>ive to 199 Hg [2, 3, 4,<br />

5,6,7], whichis<strong>the</strong>mostsensitive EDMmeasurement tod<strong>at</strong>e[19]. Thisenhancement<br />

is derived from three sources: octupole de<strong>for</strong>m<strong>at</strong>ion of <strong>the</strong> nucleus, close-lying parity<br />

doublet st<strong>at</strong>es in <strong>the</strong> nucleus, and <strong>the</strong> large Z of <strong>the</strong> isotope.<br />

7


Certain neutron-rich isotopes of radon are predicted to have octupole de<strong>for</strong>med<br />

nuclei[20]. Themagnitudeofoctupolede<strong>for</strong>m<strong>at</strong>ioncanbedescribedby<strong>the</strong>parameter<br />

β 3 , where β 3 measures <strong>the</strong> presence of <strong>the</strong> octupole (L = 3) spherical harmonic in<br />

<strong>the</strong> nuclear shape. The intrinsic Schiff moment of <strong>the</strong> nucleus is proportional to <strong>the</strong><br />

parameter β 3 , hence a largeoctupole de<strong>for</strong>m<strong>at</strong>iongives a large intrinsic Shiff moment.<br />

According to <strong>the</strong> Schiff <strong>the</strong>orem [21], <strong>the</strong> nuclear EDM is “screened” by <strong>the</strong> orbiting<br />

electrons. The observed EDM of <strong>the</strong><strong>at</strong>om is ra<strong>the</strong>r induced by <strong>the</strong> Schiff moment.<br />

The intrinsic Schiff moment of a permanent octupolede<strong>for</strong>med nucleus can bewritten<br />

as [3]<br />

S intr = eZR0<br />

3 9<br />

20π √ 35 β 2β 3 , (1.4)<br />

where R 0 is<strong>the</strong> nuclear radius andβ L measures <strong>the</strong>presence of<strong>the</strong>spherical harmonic<br />

of order L in <strong>the</strong> nuclear shape.<br />

The second enhancement factor is induced by <strong>the</strong> existence of close-lying parity<br />

doublet st<strong>at</strong>es th<strong>at</strong> also arise from <strong>the</strong> nuclear octupole de<strong>for</strong>m<strong>at</strong>ion [3]. The expect<strong>at</strong>ion<br />

value <strong>for</strong> <strong>the</strong> labor<strong>at</strong>ory Schiff moment is <strong>the</strong> result of <strong>the</strong> mixing of <strong>the</strong>se nearby<br />

opposite parity st<strong>at</strong>es by a P and T odd interaction (V PT ),<br />

〈S lab 〉 = 2α I<br />

I +1 S intr , (1.5)<br />

where I is <strong>the</strong> nuclear spin and<br />

α = 〈ψ− | V PT |ψ + 〉<br />

E + −E − , (1.6)<br />

where <strong>the</strong> even- and odd-parity st<strong>at</strong>es (ψ + and ψ − ) have energies E + and E − . These<br />

st<strong>at</strong>esarisefromabreakingof<strong>the</strong>degeneracyofoctupole-de<strong>for</strong>medst<strong>at</strong>esinadoublewell<br />

potential as a function of β 3 (see Figure 1.3). This is similar to <strong>the</strong> ammonia<br />

molecule (NH 3 ) in molecular physics. The nitrogen <strong>at</strong>om experiences a double-well<br />

8


Figure 1.3: Illustr<strong>at</strong>ion of <strong>the</strong> double well potential as a function of β 3 th<strong>at</strong> arises<br />

<strong>for</strong> octupole-de<strong>for</strong>med nuclei. The magnitude of octupole (L = 3) de<strong>for</strong>m<strong>at</strong>ion is described<br />

by <strong>the</strong> parameter β 3 , where β 3 measures <strong>the</strong> presence of<strong>the</strong> octupole spherical<br />

harmonic in <strong>the</strong> nuclear shape.<br />

potential with one potential well <strong>for</strong> <strong>the</strong> N <strong>at</strong>om on ei<strong>the</strong>r side of <strong>the</strong> H 3 plane. The<br />

wave function <strong>for</strong> <strong>the</strong> N <strong>at</strong>om can be ei<strong>the</strong>r symmetric or anti-symmetric with <strong>the</strong><br />

two st<strong>at</strong>es of opposite parity representing equal admixtures of <strong>the</strong> intrinsic st<strong>at</strong>es<br />

popul<strong>at</strong>ed by tunnelling through <strong>the</strong> H 3 plane and split by a small energy difference<br />

∆E associ<strong>at</strong>ed with <strong>the</strong> tunnelling process. The same physics applies to octupole<br />

de<strong>for</strong>med nuclei in which a doublet of st<strong>at</strong>es with opposite parity and a small energy<br />

splitting ∆E results from equal admixtures of <strong>the</strong> two intrinsic st<strong>at</strong>es <strong>at</strong> ±β, and <strong>the</strong><br />

tunnelling through a large potential energy barrier <strong>at</strong> β 3 = 0.<br />

To completely describe <strong>the</strong> P-, T-odd nuclear potential V PT in Equ<strong>at</strong>ion 1.6, a<br />

two-body interaction is required. However <strong>for</strong> <strong>the</strong> purpose of estim<strong>at</strong>ing <strong>the</strong> collective<br />

9


Schiff moment in <strong>the</strong> labor<strong>at</strong>ory frame, an effective one-body potential is sufficient.<br />

The one-body potential describing <strong>the</strong> CP-odd nucleon-nucleon interaction can be<br />

expressed as [3]<br />

V PT 3G<br />

= −η<br />

8π √ δ(R<br />

2mr0<br />

3 0 −r ′ ) , (1.7)<br />

where G is <strong>the</strong> Fermi constant, r 0 is <strong>the</strong> internucleon distance and η parametrizes <strong>the</strong><br />

strength of <strong>the</strong> PT-odd interaction. From Equ<strong>at</strong>ion 1.7, <strong>the</strong> collective Schiff moment<br />

in <strong>the</strong> labor<strong>at</strong>ory frame can be estim<strong>at</strong>ed as [3]<br />

S lab ∼ 0.05eβ 2β 2 3 ZA2/3 ηr 3 0<br />

|E + −E − |<br />

. (1.8)<br />

Equ<strong>at</strong>ion 1.8 characterizes <strong>the</strong> Schiff moment in terms of <strong>the</strong> de<strong>for</strong>m<strong>at</strong>ion parameters,<br />

Z and A of <strong>the</strong> nucleus and <strong>the</strong> energy splitting between <strong>the</strong> opposite parity st<strong>at</strong>es.<br />

The final enhancement factor derives from <strong>the</strong> large Z of <strong>the</strong> radon isotopes. In<br />

1974, M.A. and C. Bouchi<strong>at</strong> demonstr<strong>at</strong>ed th<strong>at</strong> parity-viol<strong>at</strong>ing interactions in <strong>at</strong>oms<br />

increasewith<strong>the</strong><strong>at</strong>omicnumber fasterthanZ 3 [22,23]. Thissignificant enhancement<br />

encouraged (and continues to motiv<strong>at</strong>e) many studies <strong>for</strong> parity-viol<strong>at</strong>ion studies in<br />

heavy <strong>at</strong>oms. An increase of parity-viol<strong>at</strong>ing interactions in <strong>the</strong> <strong>at</strong>om would result<br />

in a larger observed EDM. Thus, heavier <strong>at</strong>oms are also more favourable <strong>for</strong> <strong>at</strong>omic<br />

EDM searches.<br />

These three factors, a collective octupole de<strong>for</strong>m<strong>at</strong>ion of <strong>the</strong> nucleus, close-lying<br />

parity doublet st<strong>at</strong>es and <strong>the</strong> high Z of radon, give certain odd-A radon isotopes a<br />

large enhancement in <strong>the</strong> observable <strong>at</strong>omic EDM and thus make radon an excellent<br />

candid<strong>at</strong>e <strong>for</strong> an EDM search. As noted previously, detailed calcul<strong>at</strong>ions <strong>for</strong> 223 Rn [2]<br />

predict an enhancement of <strong>the</strong> observable <strong>at</strong>omic EDM by a factor of ∼600 rel<strong>at</strong>ive<br />

to <strong>the</strong> 199 Hg <strong>at</strong>om, which currently has <strong>the</strong> best <strong>at</strong>omic EDM upper limit <strong>at</strong> 3.1 ×<br />

10 −29 e·cm [19].<br />

10


Chapter 2<br />

RnEDM Experiment <strong>at</strong> TRIUMF<br />

Certainodd-Aradonisotopesarepredictedtoexhibitpermanentoctupole-de<strong>for</strong>m<strong>at</strong>ion<br />

andareofparticularinterest <strong>for</strong>anEDMexperiment as<strong>the</strong>ycouldhaveasignificantly<br />

enhanced sensitivity to fundamental CP-viol<strong>at</strong>ing interactions [2]. These isotopes of<br />

radon ( 221,223,225 Rn) are rel<strong>at</strong>ively short lived, (half-lives of ≃ 25 minutes) which make<br />

it challenging to obtain large enough quantities to per<strong>for</strong>m an EDM measurement using<br />

standard NMR techniques. Fur<strong>the</strong>rmore, <strong>the</strong>se isotopes do not occur n<strong>at</strong>urally<br />

in <strong>the</strong> decay chains of 238 U and 232 Th. There<strong>for</strong>e, <strong>the</strong> RnEDM experimental program<br />

must be per<strong>for</strong>med <strong>at</strong> a radioactive ion beam facility, such as TRIUMF, capable of<br />

producing exotic nuclei, rapidily ionizing <strong>the</strong>m, and delivering <strong>the</strong>m to experiments<br />

on timescales th<strong>at</strong> are short compared to <strong>the</strong>ir half-lives.<br />

2.1 The ISAC Facility <strong>at</strong> TRIUMF<br />

TRIUMF is Canada’s n<strong>at</strong>ional sub<strong>at</strong>omic physics labor<strong>at</strong>ory loc<strong>at</strong>ed on <strong>the</strong> campus<br />

of <strong>the</strong> University of British Columbia in Vancouver. TRIUMF, TRI-University<br />

11


Meson Facility, is built around a 500 MeV protoncyclotron which provides simultaneously<br />

extracted beams with various intensities. Beams of rare isotopes are produced<br />

<strong>at</strong> <strong>the</strong> Isotope Separ<strong>at</strong>or and ACceler<strong>at</strong>or (ISAC) facility <strong>at</strong> TRIUMF. The ISAC<br />

facility uses an Isotope Separ<strong>at</strong>ion On-Line (ISOL) technique to produce <strong>the</strong> Rare-<br />

Isotope Beams (RIBs). The ISOL system consists of a primary production beam of<br />

500 MeV protons with an intensity up to 100 µA, a primary production target/ion<br />

source, a high-resolution mass separ<strong>at</strong>or and beam transport system.<br />

The production of a RIB <strong>at</strong> ISAC begins with <strong>the</strong> target and ion-source modules,<br />

which are housed two floors below <strong>the</strong> experimental hall and encased in layers of steel<br />

and concrete shielding. A schem<strong>at</strong>ic of <strong>the</strong> ISAC facility is shown in Figure 2.1. The<br />

beam of 500 MeV protons bombards thick layered-foil targets and produce a variety<br />

of exotic nuclides through spall<strong>at</strong>ion reactions. He<strong>at</strong>ing <strong>the</strong> production target causes<br />

<strong>the</strong> reaction products diffuse through <strong>the</strong> target m<strong>at</strong>erial. Once outside <strong>the</strong> target,<br />

a coupled ion source removes one or more electrons from <strong>the</strong> <strong>at</strong>oms, cre<strong>at</strong>ing ions<br />

which can be directed and acceler<strong>at</strong>ed electromagnetically. In principle, any bound<br />

nuclide with proton (Z) and neutron (N) numbers less than or equal to those of <strong>the</strong><br />

target m<strong>at</strong>erial can be produced. However, <strong>the</strong> division of proton and neutrons in <strong>the</strong><br />

spall<strong>at</strong>ion products are st<strong>at</strong>istically distributed, favouring <strong>the</strong> production of isotopes<br />

with N/Z r<strong>at</strong>ios similar to th<strong>at</strong> of <strong>the</strong> target m<strong>at</strong>erial, with decreasing production<br />

yields <strong>for</strong> more exotic isotopes with ei<strong>the</strong>r larger proton or large neutron excess. In<br />

addition, specific ion sources are most efficient <strong>at</strong> ionizing particular elements. The<br />

efficiencyof<strong>the</strong>combin<strong>at</strong>ionoftargetandionsourceislargelydependent onelemental<br />

chemistry. For example, alkai metal elements are readily ionized through a surface<br />

ion source, whereas <strong>the</strong> noble gas Rn isotopes of interest <strong>for</strong> <strong>the</strong> RnEDM experiment<br />

will require ei<strong>the</strong>r a FEBIAD (<strong>for</strong>ced electron beaminduced arcdischarge) oranECR<br />

12


Figure 2.1: A schem<strong>at</strong>ic of <strong>the</strong> ISAC-I Hall <strong>at</strong> TRIUMF illustr<strong>at</strong>ing <strong>the</strong> loc<strong>at</strong>ions<br />

of: <strong>the</strong> acceler<strong>at</strong>ed proton beam, <strong>the</strong> target ion-source modules, high-resolution mass<br />

separ<strong>at</strong>or, beam transport system and <strong>the</strong> RnEDM appar<strong>at</strong>us.<br />

(electron cyclotron resonance) ion source.<br />

The ionized products are sent to a high-resolution mass separ<strong>at</strong>or, which selects<br />

nuclei of a specific charge-to-mass r<strong>at</strong>io according to <strong>the</strong> classical expression,<br />

√<br />

r = 1 2m∆V<br />

, (2.1)<br />

B q<br />

where r is <strong>the</strong> radius of <strong>the</strong> circular orbit, B is <strong>the</strong> applied magnetic field, m is <strong>the</strong><br />

mass of <strong>the</strong> ionized product (proportional to its mass number A), q is <strong>the</strong> charge and<br />

∆V is <strong>the</strong> voltage difference between <strong>the</strong> ion source and <strong>the</strong> mass separ<strong>at</strong>or. The<br />

voltage difference between <strong>the</strong> ion source and <strong>the</strong> mass separ<strong>at</strong>or <strong>at</strong> ISAC is between<br />

30 and 60 kV, <strong>the</strong>re<strong>for</strong>e a singly-charged ion beam has an energy between 30 and<br />

13


60 keV. A pair of adjustable slits downstream of <strong>the</strong> magnet are tuned to select <strong>the</strong><br />

radius of <strong>the</strong> charge-to-mass r<strong>at</strong>io of interest. The resolution of <strong>the</strong> mass separ<strong>at</strong>or,<br />

typically ∆m = 1 , is able to distinguish between neighbouring isotopes (different<br />

m 1000<br />

mass number A), however, isobaric and even molecular contamin<strong>at</strong>ion with <strong>the</strong> same<br />

total A is possible. These contaminants can be reduced or elimin<strong>at</strong>ed by using an ion<br />

source th<strong>at</strong> selectively ionizes specific elements.<br />

TRIUMF is licensed to oper<strong>at</strong>e <strong>the</strong> ISAC facility with proton beam intensities<br />

up to 100 µA on target m<strong>at</strong>erials with Z ≤ 82 [24]. Two actinide targets, uranium<br />

oxide and uranium carbide, have been tested in <strong>the</strong> past two years to study<br />

actinide beam production <strong>at</strong> ISAC. These tests have been conducted with proton<br />

beam intensities of 2 µA <strong>for</strong> licensing reasons. The uranium-oxide target will remain<br />

limited to approxim<strong>at</strong>ely 2 µA due to <strong>the</strong> low oper<strong>at</strong>ing temper<strong>at</strong>ure of <strong>the</strong> m<strong>at</strong>erial.<br />

The uranium-carbide target underwent its first tests in December 2010. This target<br />

is projected to oper<strong>at</strong>e up to 75 µA using similar techniques as <strong>for</strong> o<strong>the</strong>r carbide<br />

targets (silicon carbide, titanium carbide, zirconium carbine) [25]. These actinide<br />

target developments are essential <strong>for</strong> <strong>the</strong> RnEDM experiment. They will not only<br />

extend <strong>the</strong> range of available nuclei to higher masses, but also increase <strong>the</strong> achievable<br />

neutron/proton r<strong>at</strong>io enabling <strong>the</strong> production of more exotic nuclei <strong>at</strong> <strong>the</strong> TRIUMF<br />

ISAC facility.<br />

2.2 RnEDM Appar<strong>at</strong>us<br />

The RnEDM experimental program is beginning <strong>at</strong> TRIUMF. The final design<br />

<strong>for</strong> <strong>the</strong> radon EDM measurement remains under development, however <strong>the</strong> appar<strong>at</strong>us<br />

will be comprised of three basic sections: a target chamber, a transfer chamber and<br />

14


a measurement cell. The RnEDM experiment will implant a beam of Rn ions (likely<br />

221 Rn or 223 Rn) into a thin foil loc<strong>at</strong>ed in <strong>the</strong> target chamber. The collected Rn<br />

<strong>at</strong>oms are <strong>the</strong>n transferred into <strong>the</strong> measurement cell via <strong>the</strong> transfer chamber using<br />

techniques discussed in <strong>the</strong> following section.<br />

2.2.1 Transferring Radioactive Noble Gas Isotopes<br />

Theprocessoftransferringradioactivenoblegasisotopeson-linetoameasurement<br />

cellhasbeenshowntobesuccessful <strong>at</strong>TRIUMF[26]. Aprototypenoblegascollection<br />

appar<strong>at</strong>us, shown inFigure2.2, wastestedwith 120 Xeasbeamsofradonisotopeswere<br />

not available <strong>at</strong> <strong>the</strong> time of <strong>the</strong> tests. The 120 Xe isotope was chosen due its half-life of<br />

40 minutes, comparable to <strong>the</strong> roughly 25 minute half-lives of 221 Rn and 223 Rn. An<br />

initial beam of 120 Cs produced <strong>the</strong> 120 Xe isotopes through β decay; <strong>the</strong> decay chain<br />

is shown in Equ<strong>at</strong>ion 2.2. The beam was implanted in a thin zirconium foil <strong>for</strong> about<br />

two 120 Xe half-lives, after which <strong>the</strong> remaining 120 Cs <strong>at</strong>oms were given roughly 10<br />

minutes to decay into 120 Xe.<br />

120 Cs(64 s) → 120 Xe(40 m) → 120 I(81 m) → 120 Te(stable) . (2.2)<br />

Valve V1 was closed to separ<strong>at</strong>e <strong>the</strong> target chamber from <strong>the</strong> beam line. He<strong>at</strong>ing <strong>the</strong><br />

zirconium foil to about 1350 K released <strong>the</strong> xenon <strong>at</strong>oms into <strong>the</strong> target chamber volume.<br />

Opening<strong>the</strong>V2valveallowed<strong>the</strong>xenongastodiffuseinto<strong>the</strong>transferchamber,<br />

where <strong>the</strong> xenon <strong>at</strong>oms froze onto a pre-cooled coldfinger. After cryopumping, <strong>the</strong><br />

V2 valve was closed and V3 to <strong>the</strong> cell was opened while simultaneously warming <strong>the</strong><br />

coldfinger to release <strong>the</strong> xenon gas. Once <strong>the</strong> coldfinger was warmed, <strong>the</strong> V4 valve<br />

was opened which released a ballest volume of N 2 gas into <strong>the</strong> transfer chamber. The<br />

N 2 gas expanded and pushed <strong>the</strong> xenon gas into <strong>the</strong> measurement cell. The V3 valve<br />

15


Figure 2.2: Schem<strong>at</strong>ic of <strong>the</strong> prototype on-line noble gas collection appar<strong>at</strong>us tested<br />

<strong>at</strong> TRIUMF with isotopes of 120 Xe [26].<br />

was <strong>the</strong>n closed to trap <strong>the</strong> xenon gas in <strong>the</strong> measurement cell. The trapped radioactive<br />

120 Xe <strong>at</strong>oms were observed in <strong>the</strong> measurement cell using high-purity germanium<br />

(HPGe) γ-ray detectors. This process of transferring <strong>the</strong> xenon from <strong>the</strong> foil to <strong>the</strong><br />

measurement cell was demonstr<strong>at</strong>ed to be gre<strong>at</strong>er than 40% efficient [26].<br />

Improvements and adjustments have since been made to <strong>the</strong> initial prototype<br />

design in order to enhance <strong>the</strong> overall transfer efficiency. In <strong>the</strong> summer of 2008,<br />

improvements in <strong>the</strong> coldfinger design and nitrogen system resulted in a transfer<br />

efficiency gre<strong>at</strong>er than 90% using radioactive isotopes of 121,123 Xe [27].<br />

2.3 Measuring Atomic EDMs<br />

High-precision measurements will be necessary in order to search <strong>for</strong> a non-zero<br />

EDM in radon. Magnetic moments in nuclei aremeasured with gre<strong>at</strong> sensitivity using<br />

16


NMR techniques, and supplementing standard NMR techniques with a strong electric<br />

field provides an excellent method to search <strong>for</strong> an EDM. The process of measuring<br />

an EDM using <strong>the</strong>se techniques begins with polarizing <strong>the</strong> nuclei.<br />

Nuclear spin polariz<strong>at</strong>ion of noble gases is possible through spin-exchange collisions<br />

with optically pumped alkali-metals [28, 29, 30]. This method has been shown<br />

to be successful in <strong>the</strong> polariz<strong>at</strong>ion of radon isotopes ( 209,223 Rn) <strong>at</strong> <strong>the</strong> ISOLDE isotope<br />

separ<strong>at</strong>or <strong>at</strong> CERN [31]. Similar polariz<strong>at</strong>ion studies have been tested and are<br />

continuing to be developed <strong>for</strong> <strong>the</strong> RnEDM experiment <strong>at</strong> TRUMF.<br />

2.3.1 Optical Pumping of Rubidium Vapour<br />

Alkai-metals are commonly used <strong>for</strong> optical pumping since <strong>the</strong>y have only one<br />

valence electron. This electron can be easily excited with photon wavelengths conveniently<br />

in <strong>the</strong> range where diode lasers are available. The measurement cell in<br />

<strong>the</strong> RnEDM appar<strong>at</strong>us will contain an optical pumping region, containing n<strong>at</strong>ural<br />

rubidium ( 85,87 Rb) vapour, radon <strong>at</strong>oms and roughly 1 <strong>at</strong>m of N 2 gas. The n<strong>at</strong>ural<br />

rubidium vapour is <strong>the</strong> alkali-metal used to polarize <strong>the</strong> radon nuclei through spinexchange<br />

collisions and <strong>the</strong> N 2 gas acts as a buffer. The n<strong>at</strong>ural rubidium ( 85,87 Rb)<br />

<strong>at</strong>oms have odd-A nuclei and <strong>the</strong>re<strong>for</strong>e have a non-zero nuclear spin (I) which complic<strong>at</strong>es<br />

its level structure. To illustr<strong>at</strong>e <strong>the</strong> process of optical pumping we will first<br />

consider a much simpler <strong>at</strong>om with no nuclear spin.<br />

Consider <strong>the</strong> 4 He + ion, which is similar to <strong>the</strong> hydrogen <strong>at</strong>om without <strong>the</strong> nuclear<br />

spin. The electron can be in its ground st<strong>at</strong>e (1S 1/2 ), or given enough energy, it can<br />

occupy <strong>the</strong> first excited st<strong>at</strong>e (2P 1/2 ). Placing this <strong>at</strong>om in an external magnetic field<br />

will cause <strong>the</strong> energy levels to spilt, known as <strong>the</strong> Zeeman effect. This is illustr<strong>at</strong>ed in<br />

Figure 2.3. Both energy levels have J = 1/2; in <strong>the</strong> presence of a magnetic field <strong>the</strong><br />

17


Excited St<strong>at</strong>e (2P 1/2<br />

)<br />

m = + 1/2<br />

m = _ 1/2<br />

Energy<br />

Excit<strong>at</strong>ion<br />

Decay<br />

Ground St<strong>at</strong>e (1S 1/2<br />

)<br />

m = + 1/2<br />

m =<br />

_<br />

1/2<br />

Magnetic Field<br />

Figure 2.3: Level diagram <strong>for</strong> a 4 He + ion. The splitting of <strong>the</strong> energy levels of <strong>the</strong><br />

ground st<strong>at</strong>e and first excited st<strong>at</strong>e increase with <strong>the</strong> applied magnetic field (not<br />

drawn to scale). Shining positive helicity circularly polarized light on <strong>the</strong> <strong>at</strong>om drives<br />

<strong>the</strong> transition from <strong>the</strong> m = −1/2 ground st<strong>at</strong>e to <strong>the</strong> m = +1/2 excited st<strong>at</strong>e. The<br />

excited st<strong>at</strong>e can decay into both ground-st<strong>at</strong>e levels. The resulting effect “pumps”<br />

<strong>the</strong> <strong>at</strong>om into <strong>the</strong> m = +1/2 ground st<strong>at</strong>e.<br />

energy levels split into two distinct st<strong>at</strong>es, “spin up” (m = +1/2) and “spin down”<br />

(m = −1/2) st<strong>at</strong>es.<br />

Illumin<strong>at</strong>ing <strong>the</strong> <strong>at</strong>om with laser light of <strong>the</strong> correct frequency will induce transitions<br />

from ei<strong>the</strong>r of <strong>the</strong> ground-st<strong>at</strong>e levels to ei<strong>the</strong>r of <strong>the</strong> excited-st<strong>at</strong>e levels. If<br />

<strong>the</strong> laser light is circularly polarized with positive helicity (σ + ) along <strong>the</strong> axis of<br />

<strong>the</strong> B field, <strong>the</strong> transition must s<strong>at</strong>isfy <strong>the</strong> selection rule ∆m = +1. This selection<br />

rule derives from <strong>the</strong> conserv<strong>at</strong>ion of angular momentum along <strong>the</strong> B axis, since <strong>the</strong><br />

positive helicity circularly polarized light carries a quantum of angular momentum<br />

(). The m = −1/2 ground st<strong>at</strong>e can be driven to <strong>the</strong> m = +1/2 excited st<strong>at</strong>e, but<br />

<strong>the</strong> m = +1/2 ground st<strong>at</strong>e can not be excited since <strong>the</strong>re is no m = +3/2 st<strong>at</strong>e<br />

to transition to. Although <strong>the</strong> <strong>at</strong>oms can relax into ei<strong>the</strong>r of <strong>the</strong> ground-st<strong>at</strong>e levels<br />

18


Occupied<br />

Orbitals<br />

Fine<br />

Structure<br />

Hyperfine<br />

Structure<br />

Zeeman<br />

Effect<br />

2<br />

P3/2<br />

5p<br />

F = 3<br />

m<br />

+3<br />

F<br />

2<br />

P1/2<br />

F = 2<br />

_<br />

3<br />

_ 2<br />

+ 2<br />

D 1<br />

D 2<br />

F = 3<br />

+ 3<br />

5s<br />

2<br />

S1/2<br />

F = 2<br />

_ 3<br />

_ 2<br />

+ 2<br />

Figure 2.4: Level diagram of 85 Rb (not drawn to scale).<br />

(<strong>the</strong> selection rule <strong>for</strong> this process is ∆m = ±1 or 0 since <strong>the</strong> emitted photon can<br />

have any polariz<strong>at</strong>ion), only <strong>the</strong> m = −1/2 level can absorb <strong>the</strong> incident polarized<br />

photons. The result is th<strong>at</strong> <strong>the</strong> <strong>at</strong>oms become trapped in <strong>the</strong> m = +1/2 ground-st<strong>at</strong>e<br />

level, this process is called “optical pumping” and can produce a very high degree of<br />

polariz<strong>at</strong>ion with almost all <strong>at</strong>oms occupying <strong>the</strong> m = +1/2 magnetic subst<strong>at</strong>e of <strong>the</strong><br />

1S 1/2 ground st<strong>at</strong>e.<br />

N<strong>at</strong>ural rubidium ( 85,87 Rb) vapour will be used in <strong>the</strong> RnEDM experiment to<br />

polarize <strong>the</strong> radon nuclei through spin-exchange collisions. The occupied electronic<br />

orbitals of <strong>the</strong> rubidium <strong>at</strong>om in its ground st<strong>at</strong>e are<br />

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s .<br />

The first 36 electrons are in closed sub-shells which gives zero total angular momentum.<br />

The valence electron in <strong>the</strong> 5s orbital behaves similarly to <strong>the</strong> above simplified<br />

19


scenario with 4 He + . The first excited st<strong>at</strong>e <strong>for</strong> this valence electron is <strong>the</strong> 5p level.<br />

The angular momentum of <strong>the</strong> valence electron is given by<br />

J = L+S (2.3)<br />

where L is <strong>the</strong> orbital angular momentum and S is <strong>the</strong> spin angular momentum. To<br />

completely describe <strong>the</strong> total angular momentum of <strong>the</strong> <strong>at</strong>om, we must also consider<br />

<strong>the</strong> nuclear spin I. The total angular momentum of <strong>the</strong> <strong>at</strong>om, F, is given by<br />

F = J+I (2.4)<br />

where <strong>the</strong> nuclear spin <strong>for</strong> 85 Rb is I = 5/2 and <strong>for</strong> 87 Rb is I = 3/2. There are<br />

four principle interactions which determine <strong>the</strong> energy levels in rubidium. In order of<br />

decreasing strength, <strong>the</strong>y are: <strong>the</strong>Coulomb interaction, <strong>the</strong>spin-orbit interaction, <strong>the</strong><br />

hyperfineinteractionand<strong>the</strong>Zeemaneffect. Theseinteractionsand<strong>the</strong>corresponding<br />

splittings <strong>for</strong> <strong>the</strong> case of 85 Rb are illustr<strong>at</strong>ed in Figure 2.4.<br />

The Hamiltonian <strong>for</strong> <strong>the</strong> Coulomb interaction is characterized by <strong>the</strong> principle<br />

quantum number (n) and <strong>the</strong> orbital quantum number (l). It is given by<br />

H o = p2<br />

2m − Ze2<br />

r<br />

. (2.5)<br />

The typical energy scale <strong>for</strong> <strong>the</strong> Coulomb interaction is about 1 eV.<br />

The first leading order perturb<strong>at</strong>ion to H o is due to <strong>the</strong> interaction between <strong>the</strong><br />

spin magnetic moment of <strong>the</strong> electron and <strong>the</strong> magnetic moment produced by <strong>the</strong><br />

orbit of <strong>the</strong> electron around <strong>the</strong> nucleus. This term is called <strong>the</strong> spin-orbit coupling<br />

and its Hamiltonian is given by,<br />

H so = g eZe 2 1<br />

4m 2 c 2 r3L·S , (2.6)<br />

where g e is <strong>the</strong> electronic g-factor. The splittings which result from this interaction<br />

arecalled <strong>the</strong>finestructure andhave anenergy scale of approxim<strong>at</strong>ely 10 −4 eV. These<br />

20


energy levels are separ<strong>at</strong>ed according to <strong>the</strong> value of J. The 5s orbital does not split,<br />

as shown in Figure 2.4, since l = 0. The energy difference between <strong>the</strong> 2 S 1/2 and<br />

2 P 1/2 levels coresponds roughly to a 794.8 nm wavelength and is called <strong>the</strong> D 1 line.<br />

The D 2 line coresponds to <strong>the</strong> energy difference between <strong>the</strong> 2 S 1/2 and 2 P 3/2 levels<br />

and has a wavelength of about 780 nm.<br />

The next correction to H o is due to <strong>the</strong> interaction between <strong>the</strong> magnetic moment<br />

of <strong>the</strong> electron and <strong>the</strong> nuclear magnetic moment. These splittings are called <strong>the</strong><br />

hyperfine structure and are given by <strong>the</strong> following Hamiltonian,<br />

H hf = Ze2 g N 1<br />

2mM N c 2 4π S·[−I∇ 21 ]<br />

r +∇(I·∇)1 , (2.7)<br />

r<br />

where g N is <strong>the</strong> nuclear g-factor. These levels split according to <strong>the</strong> total angular<br />

momentum F. 85 Rb has a nuclear spin of I = 5/2, thus <strong>the</strong> allowed values of F are<br />

5/2−1/2 = 2 and 5/2+1/2 = 3, as shown in Figure 2.4. These splittings are on <strong>the</strong><br />

order of 10 −6 eV.<br />

The final splitting is due to <strong>the</strong> Zeeman effect, also shown in <strong>the</strong> above simplified<br />

example. The splitting occurs in <strong>the</strong> presence of a weak external magnetic field (B).<br />

Classically, <strong>the</strong> magnetic moment of a particle with charge q and angular momentum<br />

L is given by,<br />

µ = q<br />

2mc L . (2.8)<br />

Extending this result into quantum mechanics, <strong>the</strong> magnetic moment due to <strong>the</strong> total<br />

electronic angular momentum is given by,<br />

µ J = −g J<br />

e<br />

2mc J , (2.9)<br />

and <strong>the</strong> magnetic moment of <strong>the</strong> <strong>at</strong>om is given by,<br />

µ F = −g F<br />

e<br />

2mc F , (2.10)<br />

21


where <strong>the</strong> g J and g F are <strong>the</strong> Landé g-factors. These factors arise from <strong>the</strong> addition<br />

of angular momentum oper<strong>at</strong>ors. The Landé g-factors are given by,<br />

g J = 1+<br />

J(J +1)+S(S +1)−L(L+1)<br />

2J(J +1)<br />

, (2.11)<br />

and<br />

g F = g J<br />

F(F +1)+J(J +1)−I(I +1)<br />

2F(F +1)<br />

. (2.12)<br />

The energy splittings <strong>for</strong> an <strong>at</strong>om in a weak magnetic field is given by H B = −µ F ·B,<br />

which results in <strong>the</strong> following first-order perturb<strong>at</strong>ion,<br />

H B = g F µ B m F B z , (2.13)<br />

where µ B is <strong>the</strong> Bohr magneton and m F is <strong>the</strong> eigenvalue of <strong>the</strong> F z oper<strong>at</strong>or. The<br />

energy splittings are approxim<strong>at</strong>ely linear <strong>for</strong> small external magnetic fields. The<br />

splittings of <strong>the</strong> 2 S 1/2 , F = 3 st<strong>at</strong>e in 85 Rb is 1.9293 × 10 −9 eV/Gauss. As st<strong>at</strong>ed<br />

above, <strong>the</strong>linear rel<strong>at</strong>ionship between <strong>the</strong>energy levels and<strong>the</strong> applied magnetic field<br />

is only valid <strong>for</strong> small magnetic fields. With a large applied magnetic field <strong>the</strong> size of<br />

<strong>the</strong> Zeeman splittings become comparable to <strong>the</strong> hyperfine energy difference. At this<br />

point <strong>the</strong> quantum mixing between <strong>the</strong> Zeeman splittings and <strong>the</strong> hyperfine st<strong>at</strong>es<br />

needs to be accounted <strong>for</strong>, i.e. <strong>the</strong> eigenvalues of <strong>the</strong> Hamiltonian H = H hf + H B<br />

need to be solved. This result is known as <strong>the</strong> Breit-Rabi <strong>for</strong>mula:<br />

E(F = I±1/2,m F ) = − E √<br />

hf<br />

2(2I +1) ±1 Ehf 2 2<br />

+ 4m F<br />

2I +1 g Jµ B BE hf +(g J µ B B) 2 . (2.14)<br />

The pumping process <strong>for</strong> <strong>the</strong> 5s 85 Rb electron is similar to <strong>the</strong> simplified example<br />

discussed above <strong>for</strong> 4 He + . Illumin<strong>at</strong>ing <strong>the</strong> 85 Rb <strong>at</strong>om with laser light tuned to <strong>the</strong><br />

D1 line will drive transitions from any of <strong>the</strong> 2 S 1/2 ground st<strong>at</strong>es into any of <strong>the</strong><br />

2 P 1/2 excited st<strong>at</strong>es. If <strong>the</strong> laser light is circularly polarized with positive helicity<br />

22


(σ + ) along <strong>the</strong> axis of <strong>the</strong> B field, <strong>the</strong> transition must s<strong>at</strong>isfy <strong>the</strong> selection rule<br />

∆m F = +1. Because <strong>the</strong>re is no m F = +4 magnetic subst<strong>at</strong>e in <strong>the</strong> 2 P 1/2 excited<br />

st<strong>at</strong>e, see Figure 2.4, any electrons in <strong>the</strong> m F = +3 magnetic subst<strong>at</strong>e of <strong>the</strong> 2 S 1/2<br />

ground st<strong>at</strong>e will remain trapped <strong>the</strong>re. As <strong>the</strong> 2 P 1/2 excited st<strong>at</strong>es relax through<br />

photon emission <strong>the</strong> probability of popul<strong>at</strong>ing <strong>the</strong> m F = +3 magnetic subst<strong>at</strong>e of<br />

<strong>the</strong> 2 S 1/2 ground st<strong>at</strong>e is determined by <strong>the</strong> selection rule ∆m = ±1 or 0 <strong>for</strong> photon<br />

emission. After several S 1/2 - P 1/2 - S 1/2 pumping cycles almost all <strong>the</strong> <strong>at</strong>oms will<br />

end up trapped in <strong>the</strong> m F = +3 magnetic subst<strong>at</strong>e of <strong>the</strong> 2 S 1/2 level, and thus, <strong>the</strong><br />

m F = +3 ground st<strong>at</strong>e has been optically “pumped” into an ensemble of <strong>at</strong>oms with<br />

a very high degree of polariz<strong>at</strong>ion.<br />

2.3.2 Spin Exchange<br />

Opticallypumpedalkali-metal<strong>at</strong>omscanpolarizenoble-gas<strong>at</strong>omsviaspin-exchange<br />

interactions. TheHamiltonianth<strong>at</strong>describes <strong>the</strong>interactionbetween alkali-metaland<br />

noble-gas <strong>at</strong>oms is [29]<br />

H = AI·S+γN·S+αK·S+g s µ B B·S+g I µ B B·I+g K µ B B·K+··· , (2.15)<br />

where S is <strong>the</strong> spin of <strong>the</strong> alkai-metal valence electron, I is <strong>the</strong> alkai-metal nuclear<br />

spin, K is <strong>the</strong> noble-gas nuclear spin, N is <strong>the</strong> rot<strong>at</strong>ional angular momentum of <strong>the</strong><br />

<strong>for</strong>med alkai-metal noble-gas van der Waals molecule, and B is <strong>the</strong> external magnetic<br />

field.<br />

The transfer of angular momentum can occur while <strong>the</strong> <strong>at</strong>oms are bound in shortlived<br />

van der Waals molecules or by simple binary collisions between <strong>at</strong>oms, shown<br />

in Figure 2.5. For light noble gases, such as 3 He, binary collisions domin<strong>at</strong>e <strong>the</strong><br />

transfer of angular momentum and <strong>the</strong> contribution from van der Waals molecules is<br />

23


(a) Form<strong>at</strong>ion and<br />

breakup of an alkalimetal/noble-gas<br />

van<br />

der Waals molecule<br />

(b) Binary collision<br />

between an alkalimetal<br />

<strong>at</strong>om and a<br />

noble-gas <strong>at</strong>om<br />

Figure 2.5: Polariz<strong>at</strong>ion transfer process.<br />

negligible. For heavier noble gases, such as Xe and Rn, <strong>the</strong> contributions of van der<br />

Waals molecules domin<strong>at</strong>e over <strong>the</strong> contribution of binary collisions <strong>at</strong> low pressures.<br />

The pressure of <strong>the</strong> buffer gas particip<strong>at</strong>es in <strong>the</strong> cre<strong>at</strong>ion and destruction of <strong>the</strong><br />

<strong>for</strong>med alkai-metal noble-gas van der Waals molecule (Figure 2.5). At high pressures<br />

(multi<strong>at</strong>mosphere pressures) <strong>the</strong> collisions from N 2 gre<strong>at</strong>ly suppress <strong>the</strong> lifetime of<br />

<strong>the</strong> <strong>for</strong>med van der Waals molecule. Thus binary collisions domin<strong>at</strong>e <strong>the</strong> transfer of<br />

angular momentum.<br />

The RnEDM experiment will use high pressures in <strong>the</strong> measurement cell, where<br />

<strong>the</strong> N 2 gas also plays a role in <strong>the</strong> optical pumping process. The N 2 gas will nonradi<strong>at</strong>ively<br />

de-excite (“quenche”) <strong>the</strong> excited rubidium <strong>at</strong>oms be<strong>for</strong>e <strong>the</strong>y can reradi<strong>at</strong>e<br />

a photon. This avoids radi<strong>at</strong>ion trapping, where a photon is emitted by one<br />

24


<strong>at</strong>om and absorbed by ano<strong>the</strong>r. Radi<strong>at</strong>ion trapping can destroy <strong>the</strong> polariz<strong>at</strong>ion of<br />

rubidium<strong>at</strong>omssince <strong>the</strong>emitted photonscanhave anypolariz<strong>at</strong>ion(∆m = ±1or0).<br />

This can excite an electron in <strong>the</strong> trapped m F = +3 ground st<strong>at</strong>e and thus depolarize<br />

<strong>the</strong> <strong>at</strong>om.<br />

2.3.3 RnEDM Measurement<br />

Once radon nuclei have been polarized inside <strong>the</strong> cell, an EDM will be sought<br />

via NMR techniques. The measurement cell containing <strong>the</strong> radon nuclei will be<br />

loc<strong>at</strong>ed inside coils gener<strong>at</strong>ing a magnetic field. The radon nuclear spins will be<br />

polarized along <strong>the</strong> magnetic field axis by <strong>the</strong> optical pumping and spin-exchange<br />

processes described above. Applying high voltage to integr<strong>at</strong>ed electrodes in <strong>the</strong><br />

measurement cell will gener<strong>at</strong>eanelectric fieldparallel oranti-parallel to<strong>the</strong>direction<br />

of <strong>the</strong> magnetic field. With <strong>the</strong> applic<strong>at</strong>ion of an RF pulse, <strong>the</strong> polarized radon nuclei<br />

will begin to precess about <strong>the</strong> magnetic and electric field axis <strong>at</strong> a frequency<br />

ω ± = 2µB ±2dE , (2.16)<br />

where µ is <strong>the</strong> magnetic moment, B is <strong>the</strong> magnetic field, d is <strong>the</strong> electric dipole<br />

moment andE is <strong>the</strong>electric field. The +(−)corresponds to<strong>the</strong>electric field oriented<br />

parallel (anti-parallel) to <strong>the</strong> magnetic field. The EDM,<br />

d = ∆ω<br />

4E , (2.17)<br />

isextractedthroughameasurement of<strong>the</strong>changeinprecessionfrequency∆ω between<br />

<strong>the</strong> two different electric field orient<strong>at</strong>ions.<br />

25


2.3.4 Gamma-Ray Anisotropies<br />

The short half-life of <strong>the</strong> radon isotopes of interest make it difficult to obtain<br />

sufficient quantities to observe an EDM using standard NMR techniques. There<strong>for</strong>e,<br />

<strong>the</strong> RnEDM experiment will measure <strong>the</strong> precession frequency by detecting <strong>the</strong> γ<br />

radi<strong>at</strong>ion from <strong>the</strong> decaying radon nuclei. The angular distribution of <strong>the</strong> γ radi<strong>at</strong>ion<br />

is dependent on <strong>the</strong> angle with respect to <strong>the</strong> precessing polariz<strong>at</strong>ion vector of <strong>the</strong><br />

nuclear spins. In addition to <strong>the</strong> γ rays, <strong>the</strong> emitted β particles from <strong>the</strong> decay of<br />

<strong>the</strong> polarized Rn nuclei also have an anisotropy th<strong>at</strong> would enable <strong>the</strong> precession<br />

frequency to be measured. However, <strong>the</strong>se β particles will be strongly sc<strong>at</strong>tered and<br />

absorbedby<strong>the</strong>glassin<strong>the</strong>measurement cell andoven. Inordertouse<strong>the</strong>β particles<br />

as a means to observe an EDM signal, β detectors would need to be integr<strong>at</strong>ed into<br />

<strong>the</strong> measurement cell. Hence, <strong>the</strong> first stage of <strong>the</strong> RnEDM experiment will use <strong>the</strong><br />

γ-ray anisotropies to measure <strong>the</strong> precession frequency.<br />

2.3.5 St<strong>at</strong>istical Limit<br />

The sensitivity of <strong>the</strong> EDM measurement relies on detecting a small change in<br />

<strong>the</strong> precession frequencies between <strong>the</strong> two different electric field orient<strong>at</strong>ions. The<br />

st<strong>at</strong>istical limit to <strong>the</strong> precision of this measurement can be readily calcul<strong>at</strong>ed [32].<br />

The changein<strong>the</strong>precession frequency (∆ω = 4dE/)will signal anon-zero EDM<br />

in radon. The precision of this measurement <strong>for</strong> N detected γ rays is given by [32]<br />

√<br />

δ ∆ω = 2 1<br />

T 2 A 2 (1−B) 2 N , (2.18)<br />

where T 2 is <strong>the</strong> spin-decoherence time, A is <strong>the</strong> analyzing power <strong>for</strong> a measurement<br />

th<strong>at</strong> detects a change of counts ∆N = AN, and B is <strong>the</strong> fraction of N due to<br />

background. For a ring of eight high-efficiency germanium detectors (see Section 2.4)<br />

26


anaverageof120kHzphotopeakcountr<strong>at</strong>eispossible. Thus, <strong>for</strong>100daysofcounting<br />

we would expect approxim<strong>at</strong>ely N = 1 × 10 12 photopeak counts, with negligable<br />

background when g<strong>at</strong>ed on <strong>the</strong> γ-ray photopeaks. Studies with 209 Rn <strong>at</strong> Stony Brook<br />

[32]havedemonstr<strong>at</strong>ed30seconds<strong>for</strong><strong>the</strong>spin-decoherence time, andavalueof0.2<strong>for</strong><br />

<strong>the</strong>analyzingpower istypical <strong>for</strong>γ-rayanisotropies. Withanelectric fieldof5kV/cm<br />

we calcul<strong>at</strong>e <strong>the</strong> sensitivity <strong>for</strong> <strong>the</strong> EDM measurement (σ d ) to be approxim<strong>at</strong>ely<br />

1×10 −26 e-cmusing <strong>the</strong>γ-rayanisotropytechnique. For<strong>the</strong>β asymmetry method, we<br />

expect larger backgrounds, B ≈ 0.2, but a significantly higher count-r<strong>at</strong>e capability.<br />

Thecount r<strong>at</strong>ein<strong>the</strong>β detectorswillonlybelimitedby<strong>the</strong>decay r<strong>at</strong>eof<strong>the</strong>available<br />

number ofradonnuclei, allowing <strong>at</strong>otaldetected count r<strong>at</strong>eo<strong>for</strong>der 5MHz. AnEDM<br />

sensitivity of 2×10 −27 e-cm is thus expected <strong>for</strong> 100 days of counting using <strong>the</strong> betaasymmetry<br />

technique [32].<br />

These estim<strong>at</strong>es are st<strong>at</strong>istical limits and do not account <strong>for</strong> <strong>the</strong> realistic sources<br />

of backgrounds in <strong>the</strong> actual γ-ray experiment caused by bremsstrahlung production<br />

from <strong>the</strong> stopping β-particles and Compton sc<strong>at</strong>tering of photons both into and out<br />

of <strong>the</strong> γ-ray detectors which can lead to backgrounds underne<strong>at</strong>h <strong>the</strong> γ-ray photopeaks<br />

with different angular distributions than <strong>the</strong> γ-rays of interest. The detailed<br />

simul<strong>at</strong>ions presented in this <strong>the</strong>sis are motiv<strong>at</strong>ed by <strong>the</strong> need to study <strong>the</strong> realistic<br />

signal <strong>for</strong> <strong>the</strong> precession frequencies th<strong>at</strong> will ultim<strong>at</strong>ely determine <strong>the</strong> sensitivity of<br />

<strong>the</strong> RnEDM measurement using <strong>the</strong> γ-ray anisotropy technique (see Chapter 3).<br />

2.4 GRIFFIN Spectrometer<br />

To observe <strong>the</strong> γ radi<strong>at</strong>ion in <strong>the</strong> RnEDM experiment <strong>the</strong> recently funded GRIF-<br />

FIN spectrometer will be utilized. GRIFFIN stands <strong>for</strong> Gamma-Ray Infrastructure<br />

27


For Fundamental Investig<strong>at</strong>ions of Nuclei. The GRIFFIN array, shown in Figure 2.6,<br />

will be comprised of 16 unsegmented large-volume clover-type high-purity germanium<br />

(HPGe) detectors with full Compton-suppression shields constructed of bismuth german<strong>at</strong>e<br />

(Bi 4 Ge 3 O 12 ), commonly referred to as BGO. Each of <strong>the</strong> sixteen GRIFFIN<br />

clover detectors will consist of four individual HPGe cyrstals cut to meet along fl<strong>at</strong><br />

edges (Figure 2.7), to enable efficient packing of <strong>the</strong> detectors.<br />

Figure 2.6: The full 16 detector GRIFFIN array.<br />

The BGO suppression shields around each detector will be comprised of front,<br />

side and back suppression shields. The front shields may be pulled back or pushed<br />

fully <strong>for</strong>ward, giving <strong>the</strong> array two different configur<strong>at</strong>ions illustr<strong>at</strong>ed in Figure 2.8.<br />

When <strong>the</strong> front shields are pulled back, see Figure 2.9, <strong>the</strong> detector is in its highest<br />

efficiency modewith<strong>the</strong>HPGedetectorsclose-packed withaninner radiusof11.0cm.<br />

When <strong>the</strong> front shields are pushed <strong>for</strong>ward, see Figure 2.10, <strong>the</strong> detector is in its<br />

fully suppressed mode optimizing <strong>the</strong> peak-to-total r<strong>at</strong>io. In this configur<strong>at</strong>ion <strong>the</strong><br />

suppression shields are close-packed with <strong>the</strong> HPGe detector faces <strong>at</strong> a radius of<br />

28


Figure 2.7: One GRIFFIN/TIGRESS HPGe clover comprised of four individual crystals.<br />

Each crystal is 90 mm in length and 60 mm in diameter and has an efficiency<br />

of 40% rel<strong>at</strong>ive to a standard 3”× 3” NaI(Tl) crystal <strong>for</strong> 662 keV γ rays.<br />

14.5 cm. The front suppressors in this configur<strong>at</strong>ion also have <strong>the</strong> option of being<br />

collim<strong>at</strong>ed with a dense metal (hevimet). The dense metal, composed mostly of<br />

tungsten, prevents γ rays from directly hitting <strong>the</strong> front suppression shields.<br />

The GRIFFIN spectrometer is very similar in external geometry to its sister array<br />

TIGRESS (TRIUMF-ISAC Gamma-Ray Escape Suppressed Spectrometer) [33],<br />

which currently resides in <strong>the</strong> ISAC-II experimental hall <strong>at</strong> TRIUMF. The primary<br />

difference between <strong>the</strong> two designs is th<strong>at</strong> a TIGRESS detector has each HPGe crystal<br />

electrically segmented into 8 segments. This results in 32 electrical signals (plus<br />

four addition core contacts) per clover, whereas a GRIFFIN detector will have only<br />

4 electrical signals (<strong>the</strong> four core contacts) per clover. The principle reason <strong>for</strong> TI-<br />

GRESS’s highly segmented crystals is to provide three-dimensional localiz<strong>at</strong>ion of<br />

γ-ray interactions inside <strong>the</strong> crystals [34], which is necessary <strong>for</strong> experiments with<br />

<strong>the</strong> acceler<strong>at</strong>ed radioactive ion beams <strong>at</strong> ISAC-II. GRIFFIN, on <strong>the</strong> o<strong>the</strong>r hand, will<br />

reside in <strong>the</strong> ISAC-I hall and will be used primary as a decay spectrometer with<br />

low-energy radioactive ion beams. The segment<strong>at</strong>ion of <strong>the</strong> TIGRESS detectors is<br />

29


(a) Back detector configur<strong>at</strong>ion<br />

(b) Forward detector configur<strong>at</strong>ion<br />

Figure 2.8: <strong>Geant4</strong> renderings of two GRIFFIN detector heads cross-sectioned in<br />

both <strong>for</strong>ward and back configur<strong>at</strong>ions.<br />

<strong>the</strong>re<strong>for</strong>e not necessary <strong>for</strong> GRIFFIN.<br />

A full <strong>Geant4</strong> simul<strong>at</strong>ion <strong>for</strong> TIGRESS detectors has been extensively modelled<br />

and verified by measurements of peak-to-total r<strong>at</strong>ios and rel<strong>at</strong>ive efficiencies [35, 36].<br />

This provided an excellent found<strong>at</strong>ion to build a simul<strong>at</strong>ion of <strong>the</strong> RnEDM experiment<br />

using GRIFFIN detectors. In terms of <strong>Geant4</strong> simul<strong>at</strong>ion, both detector<br />

systems may be modelled identically. Essentially, <strong>the</strong> per<strong>for</strong>mance of a GRIFFIN<br />

detector in terms of γ-ray interactions in <strong>the</strong> detector m<strong>at</strong>erials should be identical<br />

to an unsegmented TIGRESS detector. From this fully verified <strong>Geant4</strong> detector<br />

framework <strong>for</strong> TIGRESS, a realistic <strong>Geant4</strong> simul<strong>at</strong>ion <strong>for</strong> <strong>the</strong> RnEDM experiment<br />

<strong>at</strong> TRIUMF involving 8 GRIFFIN detectors in a ring geometry (see Figures 2.9 and<br />

2.10) was developed as part of <strong>the</strong> work presented in this <strong>the</strong>sis.<br />

30


(a) One GRIFFIN detector in <strong>the</strong> HPGe<br />

<strong>for</strong>ward configur<strong>at</strong>ion<br />

(b) Ring of eight GRIFFIN<br />

detectors close-packed in <strong>for</strong>ward<br />

configur<strong>at</strong>ion<br />

Figure 2.9: <strong>Geant4</strong> renderings of <strong>the</strong> GRIFFIN detectors in <strong>the</strong> <strong>for</strong>ward configur<strong>at</strong>ion<br />

(highest efficiency mode).<br />

(a) One GRIFFIN detector in <strong>the</strong><br />

HPGe back configur<strong>at</strong>ion<br />

(b) Ring of eight GRIF-<br />

FIN detectors close-packedin<br />

back configur<strong>at</strong>ion<br />

Figure 2.10: <strong>Geant4</strong> renderings of <strong>the</strong> GRIFFIN detectors in <strong>the</strong> back configur<strong>at</strong>ion<br />

(optimized peak-to-total).<br />

31


Chapter 3<br />

<strong>Geant4</strong> Developments <strong>for</strong> <strong>the</strong><br />

RnEDM Experiment<br />

Thischapterpresents <strong>the</strong>development of<strong>the</strong><strong>Geant4</strong>simul<strong>at</strong>ions<strong>for</strong><strong>the</strong>RnEDM<br />

experiment <strong>at</strong> TRIUMF. The goal of <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ions is to provide an accur<strong>at</strong>e<br />

description of γ-ray sc<strong>at</strong>tering and backgrounds in <strong>the</strong> experimental appar<strong>at</strong>us<br />

and γ-ray detectors. From this <strong>Geant4</strong> framework, realistic measurements <strong>for</strong> <strong>the</strong><br />

RnEDM experiment can be simul<strong>at</strong>ed and ultim<strong>at</strong>ely test <strong>the</strong> sensitivity of <strong>the</strong> appar<strong>at</strong>us.<br />

The <strong>Geant4</strong> simul<strong>at</strong>ions presented in this <strong>the</strong>sis are an essential aspect of<br />

<strong>the</strong> development towards an EDM measurement.<br />

32


3.1 Introduction<br />

3.1.1 Previous Work<br />

The found<strong>at</strong>ion of <strong>the</strong> RnEDM simul<strong>at</strong>ions was built on <strong>the</strong> existing <strong>Geant4</strong><br />

simul<strong>at</strong>ionsof<strong>the</strong>TRIUMF-ISACGamma-RayEscapeSuppressed Spectrometer (TI-<br />

GRESS) [35]. The geometry of <strong>the</strong> TIGRESS <strong>Geant4</strong> simul<strong>at</strong>ion was constructed<br />

from design drawings of <strong>the</strong> detector and suppression shields. The per<strong>for</strong>mance of<br />

<strong>the</strong>simul<strong>at</strong>ion was valid<strong>at</strong>ed withmeasurements conducted with prototypeTIGRESS<br />

γ-ray detectors [36]. As discussed in Section 2.4, <strong>the</strong> GRIFFIN γ-ray spectrometer<br />

is very similar in external geometry to its sister spectrometer TIGRESS. The primary<br />

difference between <strong>the</strong> two γ-ray spectrometers is <strong>the</strong> crystal segment<strong>at</strong>ion.<br />

The outer electrical contact of a TIGRESS crystal is highly segmented, to allow <strong>for</strong><br />

a three-dimensional localiz<strong>at</strong>ion of γ-ray interactions inside <strong>the</strong> crystal. GRIFFIN,<br />

on <strong>the</strong> o<strong>the</strong>r hand, will be used primarily as a decay spectrometer with low-energy<br />

radioactive ion beams and <strong>the</strong> crystal segment<strong>at</strong>ion is <strong>the</strong>re<strong>for</strong>e not necessary. The<br />

per<strong>for</strong>mance of <strong>the</strong> GRIFFIN γ-ray spectrometer will, however, be very similar to<br />

th<strong>at</strong> of an unsegmented TIGRESS γ-ray spectrometer. As electrical contact segment<strong>at</strong>ion<br />

<strong>for</strong> TIGRESS has been incorpor<strong>at</strong>ed <strong>at</strong> <strong>the</strong> analysis, ra<strong>the</strong>r than simul<strong>at</strong>ion,<br />

stage, <strong>the</strong> fully verified <strong>Geant4</strong> simul<strong>at</strong>ion framework <strong>for</strong> TIGRESS can, in fact, be<br />

used as a <strong>Geant4</strong> simul<strong>at</strong>ion of GRIFFIN.<br />

3.1.2 Modific<strong>at</strong>ions<br />

A significant number of modific<strong>at</strong>ions were made in <strong>the</strong> previous <strong>Geant4</strong> code<br />

used with TIGRESS <strong>for</strong> <strong>the</strong> RnEDM studies presented in this <strong>the</strong>sis. Firstly, <strong>the</strong><br />

code structure was initially “hard-coded” to only allow <strong>for</strong> one detection system in<br />

33


<strong>the</strong> simul<strong>at</strong>ion. For many decay-spectroscopy experiments, multiple detection systems<br />

are used to detect a variety of particles including: γ rays, internal conversion<br />

electrons, β particles and α particles. The code structure was <strong>the</strong>re<strong>for</strong>e rewritten in<br />

an object oriented manner in order to increase flexibility and give <strong>the</strong> user <strong>the</strong> option<br />

of including multiple detection systems and d<strong>at</strong>a streams. Fur<strong>the</strong>rmore, writing <strong>the</strong><br />

code in an object oriented fashion made it much more transferable, allowing easy<br />

integr<strong>at</strong>ion into o<strong>the</strong>r <strong>Geant4</strong> simul<strong>at</strong>ions.<br />

Following <strong>the</strong> code restructuring it was noted th<strong>at</strong> <strong>the</strong> layered volume geometries<br />

in <strong>Geant4</strong> were no longer being handled properly. In <strong>the</strong> original TIGRESS simul<strong>at</strong>ion<br />

if two geometries, composed of different m<strong>at</strong>erials, were overlapping in <strong>the</strong> threedimensional<br />

physical space, <strong>the</strong> last constructed geometry would fill any overlapping<br />

space and this method was frequently used to cre<strong>at</strong>e volumes inside o<strong>the</strong>r volumes. In<br />

<strong>the</strong> rebuilt code, <strong>the</strong> two geometries would simply occupy <strong>the</strong> same space. To resolve<br />

this, <strong>the</strong> proper method of volume subtraction was employed. In this method physical<br />

geometries are “cut” using similar geometric shapes. This avoided all overlapping<br />

volumes and ensured th<strong>at</strong> all geometries were composed of <strong>the</strong> proper m<strong>at</strong>erials with<br />

correct densities.<br />

3.2 Simul<strong>at</strong>ion Properties<br />

The RnEDM simul<strong>at</strong>ion <strong>at</strong> its most fundamental level is a Monte Carlo simul<strong>at</strong>ion<br />

of particle interactions in m<strong>at</strong>ter. The particle interactions are handled by <strong>the</strong><br />

<strong>Geant4</strong> toolkit [37], which uses well-developed electromagnetic processes to Monte<br />

Carlo <strong>the</strong> interaction of γ rays, electrons and positrons in m<strong>at</strong>ter.<br />

The β-decay simul<strong>at</strong>ion developed <strong>for</strong> <strong>the</strong> RnEDM experiment selected particle<br />

34


energies, branching r<strong>at</strong>ios, emission times and angular distributions from calcul<strong>at</strong>ed<br />

probability distributions. Random numbers were gener<strong>at</strong>ed from a uni<strong>for</strong>m distribution<br />

between [0.0, 1.0) to select from <strong>the</strong>se probability distributions. The random<br />

numbers were gener<strong>at</strong>ed with <strong>the</strong> srand48 anddrand48 functions from<strong>the</strong> C++ standard<br />

library, where <strong>the</strong> srand48 function was seeded on <strong>the</strong> system clock to ensure<br />

initial randomness during each use.<br />

3.2.1 <strong>Geant4</strong><br />

<strong>Geant4</strong>isaC++toolkitusedtosimul<strong>at</strong>e<strong>the</strong>passageofparticlesthroughm<strong>at</strong>ter<br />

[37]. Encompassing an abundant set of physical models, <strong>Geant4</strong> handles geometry,<br />

physical processes andparticle interactions. Geant, which isusually pronounced like<br />

<strong>the</strong> French word géant (giant), stands <strong>for</strong> “GEometry ANd Tracking”. The Geant<br />

code was originally developed by CERN <strong>for</strong> high-energy physics simul<strong>at</strong>ions. Today<br />

<strong>Geant4</strong> is <strong>the</strong> leading comput<strong>at</strong>ion method <strong>for</strong> high-energy, nuclear and acceler<strong>at</strong>or<br />

physics simul<strong>at</strong>ions, as well as a growing influence in <strong>the</strong> medical and space science<br />

fields.<br />

<strong>Geant4</strong> simul<strong>at</strong>ions are built upon well-developed Monte Carlo models which<br />

are tested and maintained by <strong>the</strong> <strong>Geant4</strong> collabor<strong>at</strong>ion of scientists and software<br />

engineers [38]. <strong>Geant4</strong> users construct three-dimensional simul<strong>at</strong>ion environments<br />

by defining volumes and m<strong>at</strong>erials. From simple geometrical shapes, such as cubes,<br />

spheres, cylindersandcones, complexgeometriesarebuilt, where<strong>the</strong>m<strong>at</strong>erialsaredefined<br />

by combin<strong>at</strong>ions of <strong>at</strong>omic elements. Inside <strong>the</strong> three-dimensional environment,<br />

usersfireparticles(α,β,γ,neutron, proton,etc.) withdefinedenergiesanddirections.<br />

Interactions which deposit energy in defined m<strong>at</strong>erials lead to <strong>the</strong> recording of energy,<br />

time, and position in<strong>for</strong>m<strong>at</strong>ion. Interactions th<strong>at</strong> lead to <strong>the</strong> cascading production of<br />

35


energetic particles, such as a γ-ray above 1.022 MeV producing an electron-positron<br />

pair or <strong>the</strong> slowing of an energetic β particle emitting bremsstrahlung photons, lead<br />

to all of <strong>the</strong> cascading particles with mean p<strong>at</strong>hs gre<strong>at</strong>er than a user defined cut<br />

off, which was set to 10µm in this work, being tracked by <strong>Geant4</strong>. The simul<strong>at</strong>ions<br />

presented in this <strong>the</strong>sis were per<strong>for</strong>med using <strong>Geant4</strong> version 9.2 p<strong>at</strong>ch 4<br />

(geant4.9.2.p04).<br />

3.2.2 M<strong>at</strong>erials<br />

All m<strong>at</strong>erials in <strong>Geant4</strong> are gener<strong>at</strong>ed from user-defined <strong>at</strong>omic elements. The<br />

elements are defined based on <strong>at</strong>omic numbers and masses. From <strong>the</strong>se basic building<br />

blocks larger volumes of solids, gases and liquids are gener<strong>at</strong>ed. The majority of<br />

m<strong>at</strong>erials used in <strong>the</strong> simul<strong>at</strong>ions were already cre<strong>at</strong>ed and verified in a previous<br />

work [35]. Three significant additions were made to <strong>the</strong> m<strong>at</strong>erials class, namely,<br />

PYREX glass, µMetal shielding and cerium-doped lanthanum bromide crystal.<br />

PYREX glass is used in <strong>the</strong> construction of <strong>the</strong> EDM cell and oven design. The<br />

simul<strong>at</strong>ed glass was <strong>for</strong>mul<strong>at</strong>ed with specific<strong>at</strong>ions from <strong>the</strong> Corning company [39].<br />

PYREX glass has a density of 2.23 g/cm 3 and is composed of (by weight) 80.6%<br />

silicon dioxide (SiO 2 ), 13.0% boron trioxide (B 2 O 3 ), 4.0% sodium oxide (Na 2 O), 2.3%<br />

aluminium oxide (Al 2 O 3 ) and 0.1% miscellaneous traces. In <strong>the</strong>se simul<strong>at</strong>ions <strong>the</strong><br />

miscellaneous traces were composed of equal parts of potassium oxide (K 2 O), calcium<br />

oxide (CaO), dichlorine (Cl 2 ), magnesium oxide (MgO) and iron three oxide (Fe 2 O 3 ).<br />

µMetal is a nickel-iron alloy which has a very high magnetic permeability. The<br />

high magnetic permeability makes µMetal an effective magnetic shield. The RnEDM<br />

experiment is extremely sensitive to magnetic field fluctu<strong>at</strong>ions and µMetal will be<br />

36


used around <strong>the</strong> measurement cell in order to maintain a st<strong>at</strong>ic magnetic field. Un<strong>for</strong>tun<strong>at</strong>ely,<br />

this shielding between <strong>the</strong> EDM cell and <strong>the</strong> γ-ray detectors will also<br />

<strong>at</strong>tenu<strong>at</strong>e <strong>the</strong> emitted γ rays from <strong>the</strong> decaying radon nuclei; <strong>the</strong>reby lowering <strong>the</strong><br />

over-all efficiency of <strong>the</strong> system. This effect was studied in <strong>the</strong> RnEDM simul<strong>at</strong>ions<br />

and is presented in Chapter 4. The simul<strong>at</strong>ed µMetal was <strong>for</strong>mul<strong>at</strong>ed from specific<strong>at</strong>ions<br />

given by The MuShield Company[40]. µMetal has a density of 8.747 g/cm 3<br />

and is composed of (by weight) 80.0% nickel, 14.93% iron, 4.20% molybdenum, 0.50%<br />

manganese, 0.35% silicon and 0.02% carbon.<br />

The simul<strong>at</strong>ed cerium-doped lanthanum bromide crystal was used in <strong>the</strong> construction<br />

of Saint-Gobain’s BrilLanCe 380 detector. The per<strong>for</strong>mance of this scintill<strong>at</strong>or<br />

and its role in <strong>the</strong> RnEDM experiment is discussed in Section 3.5.2. According to<br />

Saint-Gobain, <strong>the</strong>ir cerium-doped lanthanum bromide (LaBr 3 (Ce)) crystal has a density<br />

of 5.08 g/cm 3 with approxim<strong>at</strong>ely 5.0% cerium [41, 42].<br />

3.2.3 Volumes and Geometry<br />

Complex volumes and geometries are constructed from combin<strong>at</strong>ions of much<br />

simpler shapes (cubes, spheres, cylinders, cones, etc.). Each shape may have its own<br />

defined m<strong>at</strong>erial (see Section 3.2.2). From <strong>the</strong>se basic building blocks complic<strong>at</strong>ed<br />

geometries, such as <strong>the</strong> RnEDM experimental setup shown in Figure 3.1, can be<br />

constructed.<br />

The entire <strong>Geant4</strong> experimental geometry was built in a large cube defined as<br />

<strong>the</strong> “experimental hall”. The “experimental hall” was usually constructed of vacuum,<br />

but couldalsobedefinedasairoranyo<strong>the</strong>r m<strong>at</strong>erial. Eachcomponent of<strong>the</strong>detector<br />

and experimental setup was <strong>the</strong>n added into this volume, defined around a point of<br />

origin in <strong>the</strong> three-dimensional space. The origin was reserved <strong>for</strong> particle emission<br />

37


Figure 3.1: Cross section of <strong>the</strong> RnEDM simul<strong>at</strong>ed appar<strong>at</strong>us. The EDM cell and<br />

oven are surround by a ring of GRIFFIN γ-ray detectors in <strong>the</strong>ir highest efficiency<br />

mode.<br />

due to <strong>the</strong> symmetric construction of <strong>the</strong> detectors.<br />

In<strong>Geant4</strong>, volumes whichrecordin<strong>for</strong>m<strong>at</strong>ionor“hits”aredefinedas“sensitive”.<br />

A hit is a snapshot of a physical interaction or an accumul<strong>at</strong>ion of interactions inside<br />

a sensitive volume. The hit energy, time, and position of <strong>the</strong> interaction can be<br />

recorded and written to an output file.<br />

3.2.4 Physical Processes<br />

The particles involved in <strong>the</strong> RnEDM simul<strong>at</strong>ions were photons, electrons and<br />

positrons, thus <strong>the</strong> physical processes describing <strong>the</strong>ir interactions were entirely electromagnetic.<br />

Only <strong>the</strong> decay products (γ rays, β particles and internal conversion<br />

electrons) were simul<strong>at</strong>ed.<br />

Interaction probabilities <strong>for</strong>γ rays within am<strong>at</strong>erial were calcul<strong>at</strong>ed by <strong>Geant4</strong>’s<br />

built-in electromagnetic processes [37]. The possible physical processes included<br />

photoelectric absorption, Compton sc<strong>at</strong>tering and pair production. Similarly, <strong>the</strong><br />

built-in <strong>Geant4</strong> models were used <strong>for</strong> <strong>the</strong> interaction probabilities of electrons and<br />

positrons. The possible physical processes included multiple sc<strong>at</strong>tering, ioniz<strong>at</strong>ion,<br />

bremsstrahlung cre<strong>at</strong>ion and annihil<strong>at</strong>ion <strong>for</strong> positrons.<br />

38


3.2.5 Simul<strong>at</strong>ed D<strong>at</strong>a<br />

Thecodewaswrittensoth<strong>at</strong><strong>the</strong>outputfrom<strong>the</strong><strong>Geant4</strong>simul<strong>at</strong>ionswaswritten<br />

as binary files, containing all <strong>the</strong> interaction energy, time, and position in<strong>for</strong>m<strong>at</strong>ion<br />

within <strong>the</strong> simul<strong>at</strong>ion. The advantage of writing in<strong>for</strong>m<strong>at</strong>ion in binary files versus<br />

ASCII is its compactness. For example, <strong>the</strong> number 1000000000 in ASCII would<br />

require 10 bytes to store (10 characters long), whereas if it were represented as an<br />

unsigned binary it would only use 4 bytes. The sheer number of simul<strong>at</strong>ions needed<br />

to achieve desirable st<strong>at</strong>istics made use of this compactness. The o<strong>the</strong>r option, of<br />

course, was to write histograms and spectra directly from <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ion.<br />

This method does not preserve <strong>the</strong> correl<strong>at</strong>ions between event energies, times and<br />

loc<strong>at</strong>ions th<strong>at</strong> are included in <strong>the</strong> list-mode binary event d<strong>at</strong>a and often desirable<br />

during <strong>the</strong> analysis phase.<br />

The binary stream was written in small segments which correspond to individual<br />

events. One event represents one β-decay process including <strong>the</strong> subsequent γ decays<br />

and internal conversion processes until <strong>the</strong> daughter nucleus reaches its ground st<strong>at</strong>e.<br />

Every event in <strong>the</strong> output stream begins with <strong>the</strong> hexidecimal flag 0x8000 and ends<br />

with 0xFFFF. The binary d<strong>at</strong>a between <strong>the</strong>se flags encompasses all <strong>the</strong> in<strong>for</strong>m<strong>at</strong>ion<br />

rel<strong>at</strong>ing to a single decay, including <strong>the</strong> energy deposited inside detectors, position<br />

in<strong>for</strong>m<strong>at</strong>ion of <strong>the</strong> γ ray interactions, pair production processes, bremsstrahlung processes,<br />

and <strong>the</strong>ir interaction times. See Table 3.1 <strong>for</strong> a list of all flags used in <strong>the</strong> d<strong>at</strong>a<br />

stream.<br />

39


Table 3.1: Hexidecimal flags in <strong>Geant4</strong> output binary d<strong>at</strong>a<br />

Flag Type Start Flag End Flag<br />

Normal Event D<strong>at</strong>a 0x8000 0xFFFF<br />

Photon Position D<strong>at</strong>a 0x8010 0xFFE0<br />

Pair Production Photon 1 Position D<strong>at</strong>a 0x8020 0xFFD0<br />

Pair Production Photon 2 Position D<strong>at</strong>a 0x8030 0xFFC0<br />

Bremsstrahlung Photon Position D<strong>at</strong>a 0x8040 0xFFB0<br />

Timing D<strong>at</strong>a 0x8050 0xFFA0<br />

3.3 Simul<strong>at</strong>ing β-Decay Process<br />

The simul<strong>at</strong>ions presented in this <strong>the</strong>sis focused on <strong>the</strong> β decay of 223 Rn to 223 Fr,<br />

a likely candid<strong>at</strong>e <strong>for</strong> <strong>the</strong> RnEDM search <strong>at</strong> TRIUMF. A simul<strong>at</strong>ion of <strong>the</strong> entire β-<br />

decay process was developed as part of this <strong>the</strong>sis. This required a significant amount<br />

of input d<strong>at</strong>a including <strong>the</strong> spin, parity and half-life of <strong>the</strong> parent nucleus, <strong>the</strong> proton<br />

number of <strong>the</strong> daughter nucleus, <strong>the</strong> Q-value <strong>for</strong> <strong>the</strong> β decay, level spins, parties, γ-<br />

ray energies, intensities, multipolarities, mixing r<strong>at</strong>ios, internal conversion coefficients<br />

and X-ray shell vacancies in <strong>the</strong> daughter nucleus. Un<strong>for</strong>tun<strong>at</strong>ely, <strong>the</strong> level structure<br />

of 223 Fr [43] is not known to a very high precession. In fact, a significant number of<br />

<strong>the</strong> observed γ rays from an experiment <strong>at</strong> ISOLDE [43] could not be placed in <strong>the</strong><br />

derived level structure. For <strong>the</strong> purposes of simul<strong>at</strong>ion those γ rays were given <strong>the</strong>ir<br />

own energy level with <strong>the</strong> appropri<strong>at</strong>e intensity, see Appendix A on page 83 <strong>for</strong> <strong>the</strong><br />

complete simul<strong>at</strong>ed β decay scheme.<br />

The decay modeof 223 Rnis 100%β − decay. The simul<strong>at</strong>ion of thisdecay beganby<br />

emitting a β particle (electron) into <strong>the</strong> <strong>Geant4</strong> geometry. The energy and angular<br />

distribution of <strong>the</strong> β particle are described in Sections 3.3.2 and 3.4.1 respectfully.<br />

Following <strong>the</strong> initial β decay, <strong>the</strong> daughter nucleus may exist in an excited st<strong>at</strong>e. The<br />

excited daughter nucleus will <strong>the</strong>n undergo γ decay and/or internal conversion to<br />

40


lower its total energy. Internal conversion occurs when <strong>the</strong> excited nucleus interacts<br />

with an electron in one of <strong>the</strong> lower <strong>at</strong>omic orbitals (K, L, etc), causing <strong>the</strong> electron<br />

to be ejected from <strong>the</strong> <strong>at</strong>om. This process becomes domin<strong>at</strong>e <strong>for</strong> higher Z nuclei and<br />

is more probable <strong>for</strong> transitions of lower energy. The γ decay and internal conversion<br />

processes are competitive. For any excited st<strong>at</strong>e <strong>the</strong> probabilities <strong>for</strong> ei<strong>the</strong>r process<br />

are given by<br />

P γ = 1<br />

1+α , P IC = α<br />

1+α , (3.1)<br />

where α is <strong>the</strong> total internal conversion coefficient.<br />

Internal conversion coefficients used in <strong>the</strong> RnEDM simul<strong>at</strong>ions were calcul<strong>at</strong>ed<br />

with <strong>the</strong> BrIcc v2.2b program [44]. The BrIcc program calcul<strong>at</strong>es <strong>the</strong>oretical internal<br />

conversion coefficients based on a rel<strong>at</strong>ivistic self-consistent Dirac-Fock model [44].<br />

Given <strong>the</strong> proton number and energy of <strong>the</strong> transition, <strong>the</strong> program outputs <strong>the</strong> total<br />

and individual shell conversion coefficients <strong>for</strong> multipolarities up to L = 5. For mixed<br />

transitions involving multipolarities L1 and L2, such as an M1+E2 transition, <strong>the</strong><br />

conversion coefficient can be calcul<strong>at</strong>ed by [44]<br />

α = δ2 α L2 +α L1<br />

(1+δ 2 )<br />

(3.2)<br />

where δ, <strong>the</strong> mixing r<strong>at</strong>io, is defined as<br />

δ = 〈J f||L 2 ||J i 〉<br />

〈J f ||L 1 ||J i 〉 . (3.3)<br />

The total internal conversion coefficient is defined as a sum of all <strong>the</strong> individual shell<br />

internal conversion coefficients, such th<strong>at</strong> α Tot = α K + α L + α M + ···. Thus, <strong>the</strong><br />

probabilities <strong>for</strong> an electron to be emitted from a particular shell is easily calcul<strong>at</strong>ed<br />

from <strong>the</strong> BrIcc output. For example, <strong>the</strong> probability <strong>for</strong> an electron to be emitted<br />

from <strong>the</strong> K shell is simply α K /α Tot . Simul<strong>at</strong>ing <strong>the</strong> <strong>at</strong>omic shell structure enabled<br />

41


an accur<strong>at</strong>e description of <strong>the</strong> electron energy and resulting X-ray energy. X rays are<br />

produced when electrons transition from higher orbitals to <strong>the</strong> lower vacant orbitals.<br />

The simul<strong>at</strong>ion of <strong>the</strong> X-rays are described in detail in Section 3.3.2.<br />

3.3.1 Timing<br />

The time of each individual β-decay event from <strong>the</strong> ensemble of 223 Rn nuclei was<br />

gener<strong>at</strong>ed using Monte Carlo from <strong>the</strong> input half-life and number of nuclei remaining.<br />

The time differences between successive events in a radioactive decay can be<br />

simul<strong>at</strong>ed using a well known Monte Carlo method <strong>for</strong> sampling from an exponential<br />

distribution [45]. The time intervals are given by<br />

∆t = −1 ln(1−χ) , (3.4)<br />

N ′ λ<br />

where λ is <strong>the</strong> decay constant (λ = ln(2)<br />

t 1/2<br />

), N ′ is <strong>the</strong> remaining number of nuclei<br />

and χ is a random number gener<strong>at</strong>ed from a uni<strong>for</strong>m distribution between [0.0, 1.0).<br />

Keeping track of <strong>the</strong>se small time differences gener<strong>at</strong>ed <strong>the</strong> absolute time of each<br />

decay event in <strong>the</strong> simul<strong>at</strong>ion. Figure 3.2 illustr<strong>at</strong>es <strong>the</strong> decay of one hundred million<br />

223 Rn nuclei detected by a ring of GRIFFIN detectors and confirms <strong>the</strong> validity of<br />

<strong>the</strong> Monte Carlo by fitting <strong>the</strong> decay with a maximum likelihood function resulting<br />

in excellent agreement of <strong>the</strong> input 24.3 minute half-life.<br />

3.3.2 Particle Emission<br />

Particle emission was handled by <strong>the</strong> <strong>Geant4</strong> Particle Gun. The Particle Gun<br />

was passed <strong>the</strong> type of particle to be emitted (photon, electron or positron), its energy,<br />

initial position and momentum direction. The emission direction generally had<br />

two main user options which were selected in <strong>the</strong> GUGI program be<strong>for</strong>e running <strong>the</strong><br />

42


10000<br />

1000<br />

2<br />

χ red<br />

= 1.21<br />

t 1/2<br />

= 24.300(6) min<br />

Counts<br />

100<br />

10<br />

0 50 100 150 200<br />

Time (min)<br />

Figure 3.2: <strong>Geant4</strong> simul<strong>at</strong>ion of <strong>the</strong> decay of 10 8 223 Rn nuclei detected by a ring of<br />

eight GRIFFIN detectors in <strong>the</strong>ir highest efficiency mode with <strong>the</strong> radi<strong>at</strong>ion emitted<br />

isotropically into 4π. The times were binned into seconds and <strong>the</strong> function used to<br />

fit was y = A 1 + A 2 e −ln(2)t<br />

A 3 , where A 1 is due to background, A 2 is initial count r<strong>at</strong>e<br />

and A 3 is <strong>the</strong> half-life (t 1/2 ).<br />

simul<strong>at</strong>ion. The two options <strong>for</strong> <strong>the</strong> emission of radi<strong>at</strong>ion were an isotropic distribution<br />

or an angle dependent distribution based on <strong>the</strong> initial and final st<strong>at</strong>es of <strong>the</strong><br />

nucleus and <strong>the</strong> orient<strong>at</strong>ion of <strong>the</strong> nuclear spin in space, described by its magnetic<br />

subst<strong>at</strong>e popul<strong>at</strong>ions.<br />

To gener<strong>at</strong>e an isotropic distribution, emitting <strong>the</strong> radi<strong>at</strong>ion evenly into a solid<br />

angle of 4π, <strong>the</strong> following equ<strong>at</strong>ions <strong>for</strong> θ and φ were utilized:<br />

φ = 2πχ 1<br />

θ = cos −1 (1.0−{χ 2 [1.0−cos(α)]})<br />

Where χ i are random numbers gener<strong>at</strong>ed using <strong>the</strong> drand48 function and α is <strong>the</strong><br />

maximum angle of emission (α = π <strong>for</strong> emission into 4π radians).<br />

43


The second option<strong>for</strong> particle emission was anangle dependent distribution based<br />

on <strong>the</strong> orient<strong>at</strong>ion of <strong>the</strong> nucleus. The orient<strong>at</strong>ion of <strong>the</strong> nuclei in <strong>the</strong> RnEDM experiment<br />

refers to <strong>the</strong> polariz<strong>at</strong>ion along a time-dependent axis of quantiz<strong>at</strong>ion rot<strong>at</strong>ing<br />

with <strong>the</strong> polarized ensemble of Rn nuclei, such th<strong>at</strong> <strong>the</strong> popul<strong>at</strong>ion of <strong>the</strong> m = J<br />

sublevel is significantly higher than th<strong>at</strong> of <strong>the</strong> o<strong>the</strong>r 2J sublevels. The 223 Rn nuclear<br />

spins are initially aligned along <strong>the</strong> magnetic field axis. Following <strong>the</strong> applic<strong>at</strong>ion<br />

of an RF pulse, <strong>the</strong>se spins precess in <strong>the</strong> plane of <strong>the</strong> detectors as described in<br />

Section 2.3.3.<br />

The angle of emission, θ, with respect to <strong>the</strong> axis of quantiz<strong>at</strong>ion can be generally<br />

expressed in powers of cos(θ) [46],<br />

W(θ) = ∑<br />

A k cos k (θ) , (3.5)<br />

k=0,1,2,...<br />

where A k are <strong>the</strong> angular-distribution coefficients and k is even <strong>for</strong> γ radi<strong>at</strong>ion and<br />

odd <strong>for</strong> β radi<strong>at</strong>ion. The exact <strong>for</strong>m of W(θ) <strong>for</strong> β and γ radi<strong>at</strong>ion is described in<br />

detail in Section 3.4.<br />

β Particle Emission<br />

In <strong>the</strong> process of β decay, <strong>the</strong> emitted β particle has a range of kinetic energies<br />

between zero and <strong>the</strong> Q-value of <strong>the</strong> β decay. This energy spectrum results from <strong>the</strong><br />

existence of <strong>the</strong> neutrino or anti-neutrino in <strong>the</strong> decay processes shown below:<br />

β − decay:<br />

A<br />

Z X N → A<br />

Z+1 Y N−1 +e − + ¯ν e<br />

β + decay:<br />

A<br />

Z X N → A<br />

Z−1 Y N+1 +e + +ν e<br />

Through <strong>the</strong> conserv<strong>at</strong>ion of energy, <strong>the</strong> electron (or positron) and anti-neutrino (or<br />

neutrino)share<strong>the</strong>kineticenergyof<strong>the</strong>decay, whichgener<strong>at</strong>esanenergydistribution<br />

<strong>for</strong> bothparticles. The spectral intensity <strong>for</strong> <strong>the</strong>electron (or positron) may bewritten<br />

44


as [47]<br />

I(E) =<br />

G<br />

2π 3 7 c 6 | M if | 2 (T 2 e +2T em e c 2 ) 1/2 (Q−T e ) 2 (T e +m e c 2 )F(Z,T e ) , (3.6)<br />

where G is a constant representing <strong>the</strong> strength of <strong>the</strong> weak interaction, M if is <strong>the</strong><br />

transition m<strong>at</strong>rix element, T e is <strong>the</strong> kinetic energy of <strong>the</strong> electron (or positron), Z is<br />

<strong>the</strong> proton number of <strong>the</strong> daughter and F(Z,T e ) is called <strong>the</strong> Fermi function.<br />

The Fermi function accounts <strong>for</strong> Coulomb effects between <strong>the</strong> emitted electron or<br />

positron and <strong>the</strong> charge of <strong>the</strong> daughter nucleus; due to <strong>the</strong> opposite charges of <strong>the</strong><br />

electron and positron <strong>the</strong>ir spectral intensities differ. For example in a semi-classical<br />

view of β − decay, <strong>the</strong> electron cre<strong>at</strong>ed in <strong>the</strong> decay of <strong>the</strong> neutron is held back by <strong>the</strong><br />

<strong>at</strong>tractive Coulomb <strong>for</strong>ce with <strong>the</strong> daughter nucleus decreasing <strong>the</strong> average energy<br />

of <strong>the</strong> emitted electrons. In β + decay, on <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> positively-charged<br />

positron cre<strong>at</strong>ed by <strong>the</strong> decay of <strong>the</strong> proton is repelled by <strong>the</strong> Coulomb <strong>for</strong>ce with <strong>the</strong><br />

daughter nucleus increasing <strong>the</strong> average energy of <strong>the</strong> emitted positrons.<br />

The shape of <strong>the</strong> spectral intensity was calcul<strong>at</strong>ed in <strong>the</strong> RnEDM simul<strong>at</strong>ions <strong>for</strong><br />

every β branch to accur<strong>at</strong>ely describe <strong>the</strong> energy of <strong>the</strong> emitted electrons from <strong>the</strong><br />

decay of 223 Rn into 223 Fr. An analytic approxim<strong>at</strong>ion of <strong>the</strong> Fermi function was used<br />

to calcul<strong>at</strong>e <strong>the</strong> shape of <strong>the</strong> spectrum, given by [48]<br />

F(Z,E) ∼ = 4π(1+s)<br />

[<br />

[(2s)!] 2 (2pρ)2s−2 (s 2 +η 2 ) s−1/2 e<br />

s<br />

2φη−2s+<br />

6(s 2 +η 2 )<br />

]<br />

, (3.7)<br />

where s = [1−(Ze 2 /c) 2 ] 1/2 , ρ = R/(/mc), R is <strong>the</strong> nuclear radius approxim<strong>at</strong>ed<br />

as R = r ◦ A 1/3 with r ◦ = 1.2 fm and A <strong>the</strong> nuclear mass number, p is <strong>the</strong> electron (or<br />

positron) momentum (in units of mc), η = ±Ze 2 /ν (positive sign <strong>for</strong> β − decay and<br />

neg<strong>at</strong>ive<strong>for</strong>β + decay)andν is<strong>the</strong>electron(orpositron)velocity. Thisapproxim<strong>at</strong>ion<br />

does not account <strong>for</strong> electron screening, however this correction is important only <strong>at</strong><br />

very low energies (on <strong>the</strong> order of 100 keV or less) [48].<br />

45


γ-Ray and Internal Conversion Electron Emission<br />

As described in Section 3.3, <strong>the</strong> γ-decay and internal conversion processes are<br />

competitive. Level structure in<strong>for</strong>m<strong>at</strong>ionisrequired toaccur<strong>at</strong>ely describe <strong>the</strong>ir probabilities.<br />

At any particular excited st<strong>at</strong>e in <strong>the</strong> daughter nucleus <strong>the</strong>re are N number<br />

of γ decays which can popul<strong>at</strong>e lower energy levels. The probability <strong>for</strong> a particular<br />

transition is given by (1+α)I γ /I sum , where α is <strong>the</strong> internal conversion coefficient,<br />

I γ is <strong>the</strong> measured γ-ray intensity and I sum = ∑ N (1+α N)I γN , such th<strong>at</strong> <strong>the</strong> total<br />

decay probability <strong>for</strong> th<strong>at</strong> excited st<strong>at</strong>e is normalized to 100%. Through Monte Carlo<br />

techniques, a decay branch is selected and <strong>the</strong> probabilities of γ decay versus internal<br />

conversion are calcul<strong>at</strong>ed from Equ<strong>at</strong>ions 3.1, and again selected by Monte Carlo.<br />

If <strong>the</strong> selected process is γ decay, <strong>the</strong> energy of <strong>the</strong> emitted γ ray is simply read<br />

from <strong>the</strong> input d<strong>at</strong>a. If <strong>the</strong> selected process is internal conversion, <strong>the</strong> energy of <strong>the</strong><br />

emitted electron is<strong>the</strong> γ-rayenergy minus <strong>the</strong> electron binding energy <strong>for</strong> <strong>the</strong>electron<br />

shell. The shell is determined from <strong>the</strong> probabilities given from <strong>the</strong> individual shell<br />

internal conversion coefficients. Atomic electron binding energies [49] were directly<br />

coded into <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ion, resulting in accur<strong>at</strong>e internal conversion electron<br />

energies <strong>for</strong> shells K to N, and a general code th<strong>at</strong> can be used in cases o<strong>the</strong>r than<br />

<strong>the</strong> 223 Rn to 223 Fr decay studied here.<br />

X-ray Emission<br />

Following <strong>the</strong> emission of an internal conversion electron <strong>the</strong>re exists a low lying<br />

vacancy in <strong>the</strong> <strong>at</strong>omic shell structure of <strong>the</strong> daughter <strong>at</strong>om ( 223 Fr). An electron in a<br />

higher orbital will prefer to occupy this lower energy st<strong>at</strong>e. As it transitions into <strong>the</strong><br />

vacancy energy is released in <strong>the</strong> <strong>for</strong>m of a X ray.<br />

The simul<strong>at</strong>ion of <strong>the</strong> X-ray emissions had two main user options. The first option<br />

46


was to use an average X-ray energy per vacancy. These tables <strong>for</strong> all elements were<br />

coded directly into <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ion. The o<strong>the</strong>r more accur<strong>at</strong>e option was to<br />

provide an input file of <strong>the</strong> X-ray energies and intensities per shell vacancy. This<br />

method was important to accur<strong>at</strong>ely simul<strong>at</strong>e Fr K shell vacancies as <strong>the</strong> energy<br />

of <strong>the</strong> X rays approach 100 keV, which are easily measured and resolved within<br />

<strong>the</strong> GRIFFIN γ-ray detectors. The input d<strong>at</strong>a <strong>for</strong> Fr K shell vacancies is given in<br />

Table 3.2. Careful inspection of <strong>the</strong>se d<strong>at</strong>a reveals <strong>the</strong> intensities total to gre<strong>at</strong>er than<br />

100% (per 100 K-shell vacancies). For every K vacancy one or more X-rays may be<br />

emitted. For example, an electron from <strong>the</strong> L shell can drop down and occupy <strong>the</strong><br />

K shell vacancy, while leaving a new vacancy in <strong>the</strong> L shell. Ano<strong>the</strong>r electron will<br />

cascade down from <strong>the</strong> M shell to fill <strong>the</strong> L shell vacancy and so on. This process<br />

was incorpor<strong>at</strong>ed into <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ions to provide an accur<strong>at</strong>e simul<strong>at</strong>ion of<br />

<strong>the</strong> entire X-ray cascade following internal conversion.<br />

3.4 Simul<strong>at</strong>ing Angular Distributions<br />

3.4.1 Beta Particle Anisotropies<br />

The directional distribution of β particles from aligned nuclei has <strong>the</strong> <strong>for</strong>m [50]<br />

W(θ) = 1+A β P cos(θ), (3.8)<br />

where A β is <strong>the</strong>beta-asymmetry correl<strong>at</strong>ioncoefficient, P is<strong>the</strong>degree ofpolariz<strong>at</strong>ion<br />

and θ is <strong>the</strong> angle of emission rel<strong>at</strong>ive to <strong>the</strong> polariz<strong>at</strong>ion axis. The beta-asymmetry<br />

correl<strong>at</strong>ion coefficient depends on <strong>the</strong> initial and final spins and parities of <strong>the</strong> nuclear<br />

levels, as well as <strong>the</strong> rel<strong>at</strong>ive contributions of Fermi and Gamow-Teller β decay <strong>for</strong><br />

mixed transitions. These input d<strong>at</strong>a are not known <strong>for</strong> many of <strong>the</strong> β decay branches<br />

47


Table 3.2: X-ray energies and intensities per 100 Fr K-shell vacancies [49]. The total<br />

intensity is 130.42 per 100 K-shell vacancies.<br />

Initial K Shell Vacancy Initial L Shell Vacancy<br />

Final L Shell Vacancy Final M Shell Vacancy<br />

Energy (keV) Intensity (%) Energy (keV) Intensity (%)<br />

86.105 45.8 12.031 14.6<br />

83.231 27.9 11.896 1.63<br />

82.496 0.0675 14.770 9.9<br />

97.474 10.70 14.443 3.74<br />

100.214 4.01 14.978 0.106<br />

96.815 5.58 14.319 0.102<br />

100.548 0.10 14.967 0.683<br />

98.069 0.358 13.877 0.251<br />

100.972 0.84 17.302 2.25<br />

101.118 0.114 17.635 0.038<br />

17.800 0.041<br />

17.839 0.47<br />

13.255 0.247<br />

10.381 0.89<br />

of 223 Rn. An average β asymmetry correl<strong>at</strong>ion coefficient over all branches of 223 Rn<br />

decay has been estim<strong>at</strong>ed as A β ≈ 0.45 [32]. As <strong>the</strong> β particle anisotropies are not<br />

used as a signal in <strong>the</strong> current work, and only have a minor effect associ<strong>at</strong>ed with <strong>the</strong><br />

anisotropyof<strong>the</strong>bremsstrahlung photonsproduced by<strong>the</strong>stopping of<strong>the</strong>β particles,<br />

this average β asymmetry parameter was used <strong>for</strong> all 223 Rn β decay branches in <strong>the</strong><br />

simul<strong>at</strong>ions presented here.<br />

The degree of polariz<strong>at</strong>ion, assuming a spin-temper<strong>at</strong>ure distribution of <strong>the</strong> magnetic<br />

subst<strong>at</strong>es, can be written as [27]<br />

P = eβ −1<br />

e β +1 . (3.9)<br />

where β is <strong>the</strong> spin-temper<strong>at</strong>ure parameter. This parameter is rel<strong>at</strong>ed to <strong>the</strong> r<strong>at</strong>ios<br />

of <strong>the</strong> popul<strong>at</strong>ions of neighbouring magnetic subst<strong>at</strong>es by [27]<br />

e β = ρ m<br />

ρ m−1<br />

. (3.10)<br />

48


1.5<br />

1.4<br />

1.3<br />

1.2<br />

P = 100%<br />

P = 75%<br />

P = 50%<br />

P = 25%<br />

P = 0%<br />

1.1<br />

W(θ)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0 π π 3π π 5π 3π 7π 2π<br />

4 2 4 4 2 4<br />

θ<br />

Figure 3.3: β particle angular distributions <strong>for</strong> various degrees of polariz<strong>at</strong>ion. The<br />

beta-asymmetry correl<strong>at</strong>ion coefficient was simul<strong>at</strong>ed to be 0.45.<br />

As <strong>the</strong> degree of polariz<strong>at</strong>ion reduces from its maximum value of 100% to 0% <strong>the</strong><br />

angular distribution of <strong>the</strong> electrons becomes more isotropic as shown in Figure 3.3.<br />

3.4.2 Gamma-Ray Anisotropies<br />

The <strong>the</strong>ory of angular distributions of γ radi<strong>at</strong>ion from oriented nuclei is well<br />

established [51, 52, 53]. The work from H.A. Tolhoek and J.A.M. Cox [51] derives<br />

<strong>for</strong>mula <strong>for</strong> oriented nuclear spins assuming pure multipole transitions. For a more<br />

general approach, T. Yamazaki [52] has outlined <strong>the</strong> general <strong>the</strong>ory and tabul<strong>at</strong>ed<br />

coefficients <strong>for</strong> γ-ray angular distributions <strong>for</strong> aligned and partially-aligned nuclei<br />

<strong>for</strong> pure and mixed multipolarities. Alignment, polariz<strong>at</strong>ion and orient<strong>at</strong>ion can have<br />

variousdefinitions. Inthis workand <strong>the</strong>work ofYamazaki <strong>the</strong>y aredefined asfollows.<br />

Alignment refers to symmetric popul<strong>at</strong>ions of magnetic subst<strong>at</strong>es about m = 0, thus<br />

49


<strong>for</strong> perfectly aligned nuclei with integer nuclear spin P(m = 0) = 100%, where P is<br />

<strong>the</strong> popul<strong>at</strong>ion of <strong>the</strong> m-st<strong>at</strong>es. Polariz<strong>at</strong>ion, on <strong>the</strong> o<strong>the</strong>r hand, has P(m = J) >><br />

P(m ≠ J) and P(m = J) = 100% <strong>for</strong> perfect polariz<strong>at</strong>ion. Finally, orient<strong>at</strong>ion is <strong>the</strong><br />

completely general case, it can refer to any non-uni<strong>for</strong>m popul<strong>at</strong>ion of m-st<strong>at</strong>es. In<br />

<strong>the</strong> RnEDM simul<strong>at</strong>ions <strong>the</strong> m-st<strong>at</strong>es are tracked <strong>at</strong> each step, thus <strong>the</strong>se popul<strong>at</strong>ions<br />

are known exactly. Given this in<strong>for</strong>m<strong>at</strong>ion we can described any degree of orient<strong>at</strong>ion<br />

using Yamazaki’s <strong>the</strong>ory (see Appendix B <strong>for</strong> <strong>the</strong> MATLAB version of <strong>the</strong> γ-ray<br />

angular distribution code).<br />

InYamazaki’snot<strong>at</strong>ion,<strong>the</strong>angular-distributionfunction<strong>for</strong><strong>at</strong>ransitionJ i → J f ,<br />

where J is defined as <strong>the</strong> spin of <strong>the</strong> nuclear st<strong>at</strong>e, is expressed as<br />

W(θ) = 1+A 2 P 2 (cosθ)+A 4 P 4 (cosθ) , (3.11)<br />

where A k are <strong>the</strong> angular-distribution coefficients, P k are Legendre polynomials, and<br />

θ is <strong>the</strong> angle of emission rel<strong>at</strong>ive to <strong>the</strong> alignment axis. For fully aligned nuclei, <strong>the</strong><br />

angular-distribution coefficients are given <strong>the</strong> not<strong>at</strong>ion A max<br />

k . For this ideal case,<br />

A max<br />

k = 1<br />

1+δ 2 {<br />

fk (J j ,L 1 ,L 1 ,J i )+2δf k (J j ,L 1 ,L 2 ,J i )+δ 2 f k (J j ,L 2 ,L 2 ,J i ) } , (3.12)<br />

where δ is <strong>the</strong> mixing r<strong>at</strong>io (defined in Equ<strong>at</strong>ion 3.3) and<br />

f k ≡ B k (J i )F k (J f ,L 1 ,L 2 ,J i ) . (3.13)<br />

The term f k can be broken up into a st<strong>at</strong>istical tensor B k (J),<br />

⎧<br />

⎪⎨ (2J +1) 1/2 (−1) J (J0J0|k0) <strong>for</strong> integral spin,<br />

B k (J) =<br />

and (3.14)<br />

⎪⎩ (2J +1) 1/2 (−1) J−1 2(J 1J 1|k0) <strong>for</strong> half-integral spin. 2 2<br />

F k (J f ,L 1 ,L 2 ,J i ) ≡ (−1) J f−Ji−1 [ (2L 1 +1)(2L 2 +1)(2J i +1) ] 1/2<br />

×(L 1 1L 2 −1|k0)W(J i J i L 1 L 2 ;kJ f ) , (3.15)<br />

50


where (a b c d | e f) are Clebsch-Gordan coefficients and W is a Racah coefficient.<br />

Racah coefficients can be expressed in terms of Wigner 6 j-symbols,<br />

W(a,b,c,d,e,f) = (−1) (a+b+d+c) {<br />

a b c<br />

d e f<br />

}<br />

, (3.16)<br />

and equivalently, combin<strong>at</strong>ions of Clebsch-Gordan coefficients. In <strong>the</strong> RnEDM simul<strong>at</strong>ionsClebsch-Gordan<br />

coefficients werecalcul<strong>at</strong>edusing adeveloped algorithmyielding<br />

high comput<strong>at</strong>ion efficiency and accuracy [54].<br />

In more realistic scenarios, where <strong>the</strong> nuclei are not fully aligned, <strong>the</strong> angulardistribution<br />

coefficients can be written as<br />

A k (J i ,L 1 ,L 2 ,J f ) = α k (J i )A max<br />

k (J i ,L 1 ,L 2 ,J f ) , (3.17)<br />

where α k (J i ) is <strong>the</strong> <strong>at</strong>tenu<strong>at</strong>ion coefficient of <strong>the</strong> alignment. This coefficient may be<br />

represented as<br />

α k (J i ) ≡ ρ k(J i )<br />

B k (J i ) , (3.18)<br />

where ρ k (J) is a st<strong>at</strong>istical tensor defined as<br />

ρ k (J) = (2J +1) 1/2∑ m<br />

(−1) J−m (JmJ −m|k0)P m (J) . (3.19)<br />

Yamazaki discusses <strong>the</strong> experimentally justifiable assumption th<strong>at</strong> partial alignment<br />

may be represented by a Gaussian of m-s<strong>at</strong>es about m = 0 characterized by a parameter<br />

σ which is <strong>the</strong> half-width of <strong>the</strong> Gaussian distribution, given by<br />

P m (J) =<br />

e −m2 /2σ 2<br />

∑m ′ e −m′2 /2σ 2 , (3.20)<br />

where σ = 0 defines <strong>the</strong> fully aligned st<strong>at</strong>e. As st<strong>at</strong>ed earlier, <strong>the</strong> nuclear m-st<strong>at</strong>es<br />

are known <strong>at</strong> each step during <strong>the</strong> RnEDM <strong>Geant4</strong> simul<strong>at</strong>ions. There<strong>for</strong>e we may<br />

describe any degree of orient<strong>at</strong>ion by explicitly inputting <strong>the</strong> m-st<strong>at</strong>e popul<strong>at</strong>ions<br />

51


P m (J). Table 3.3 illustr<strong>at</strong>es three-dimensional γ-ray angular distributions <strong>for</strong> various<br />

L transitions, and Figure 3.4 gives a few examples of angular distributions <strong>for</strong> E2 and<br />

M1 multipolarities.<br />

Table 3.3: γ-ray angular distributions <strong>for</strong> various L transitions. The angular momentum<br />

vector ( ⃗ J) is aligned in <strong>the</strong> “upward” direction.<br />

Various L Transitions “Stretched” L Transitions<br />

J i J f L = 1 L = 2 L J i = 5, J f = J i −L<br />

5 5 2<br />

5 4 3<br />

5 6 4<br />

3.4.3 Tracking m-St<strong>at</strong>es<br />

The magnetic subst<strong>at</strong>es are tracked <strong>at</strong> each step of <strong>the</strong> simul<strong>at</strong>ion. To begin<br />

<strong>the</strong> tracking process, <strong>the</strong> parent 223 Rn m-st<strong>at</strong>e popul<strong>at</strong>ions are calcul<strong>at</strong>ed from <strong>the</strong><br />

52


2<br />

2<br />

1.5<br />

J i = 5/2, J f = 5/2<br />

J i = 7/2, J f = 5/2<br />

J i = 7/2, J f = 3/2<br />

1.5<br />

J i = 5/2, J f = 5/2<br />

J i<br />

= 7/2, J f<br />

= 5/2<br />

J i = 5/2, J f = 5/2 .<br />

(mixed . M1/E2 δ=0.6)<br />

Normalized W(θ)<br />

1<br />

Normalized W(θ)<br />

1<br />

0.5<br />

0.5<br />

0<br />

0 π π 3π π<br />

2<br />

2<br />

θ<br />

0<br />

0 π π 3π π<br />

2<br />

2<br />

θ<br />

(a) E2 multipolarities<br />

(b) M1 and M1+E2 multipolarities<br />

Figure 3.4: γ-ray angular distributions <strong>for</strong> various multipolarities and spins. The<br />

input required to gener<strong>at</strong>e γ-ray angular distributions includes <strong>the</strong> initial and final<br />

nuclear spins, <strong>the</strong> multipolarity of <strong>the</strong> transition (δ if mixed) and <strong>the</strong> m-st<strong>at</strong>e popul<strong>at</strong>ions.<br />

The angular distributions shown here are <strong>for</strong> perfectly polarized nuclei, such<br />

th<strong>at</strong> m = J i .<br />

current polariz<strong>at</strong>ion (see Equ<strong>at</strong>ions 3.9 and 3.10). The β-decay branch is determined<br />

using Monte Carlo and β-branch probabilities; angular momentum coupling between<br />

<strong>the</strong> 223 Rn ground st<strong>at</strong>e and <strong>the</strong> excited st<strong>at</strong>e in 223 Fr is used to calcul<strong>at</strong>e resulting<br />

probabilities <strong>for</strong> m-st<strong>at</strong>e popul<strong>at</strong>ions. From <strong>the</strong>se popul<strong>at</strong>ions an m-st<strong>at</strong>e is chosen<br />

using Monte Carlo. Similarly <strong>for</strong> γ decays, <strong>the</strong> angular momentum coupling between<br />

<strong>the</strong> two st<strong>at</strong>es is used to calcul<strong>at</strong>e probabilities of m-st<strong>at</strong>e popul<strong>at</strong>ions. At each step<br />

of <strong>the</strong> decay an m-st<strong>at</strong>e is found. As shown in <strong>the</strong> previous section, <strong>the</strong> m-st<strong>at</strong>e<br />

in<strong>for</strong>m<strong>at</strong>ion is used to determine <strong>the</strong> angular distribution of γ-ray radi<strong>at</strong>ion.<br />

53


Figure 3.5: Cross section of <strong>the</strong> simul<strong>at</strong>ed EDM cell, oven, magnet and µMetal shielding.<br />

The cell and cylindrical oven wall composed of PYREX glass with <strong>the</strong> oven caps<br />

constructed of delrin. The simul<strong>at</strong>ed magnetic coil was designed to fit tightly around<br />

<strong>the</strong> EDM oven, with a thickness m<strong>at</strong>ching th<strong>at</strong> of 24 AWG wire. The thickness of<br />

<strong>the</strong> µMetal was user-defined in <strong>the</strong> GUGI program.<br />

3.5 RnEDM <strong>Geant4</strong> Geometry<br />

The simul<strong>at</strong>ed geometry <strong>for</strong> <strong>the</strong> RnEDM experiment consists of a ring of eight<br />

GRIFFIN detectors around an EDM cell and oven (see Figure 3.1). The eight GRIF-<br />

FINdetectors areclose-packed in <strong>the</strong>ir highest efficiency mode asshown inFigure2.9.<br />

3.5.1 Cell and Oven Design<br />

The design <strong>for</strong> <strong>the</strong> RnEDM experiment has not been finalized. The experiment<br />

will, however, consist of a few basic components; including a cell, oven, magnetic coil<br />

and magnetic shielding. The spherical cell and cylindrical oven were bothconstructed<br />

of PYREX glass in <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ion. The cell was loc<strong>at</strong>ed inside <strong>the</strong> oven and<br />

was 1 mm thick with an inner radius of 1 cm. The oven was 5 mm thick with an inner<br />

54


of radius 10 cm, allowing <strong>the</strong> GRIFFIN detectors to be close-packed in <strong>the</strong>ir highest<br />

efficiency mode with an inner radius of 11 cm. The oven caps were constructed of<br />

delrin and were 22 cm in diameter and 1 cm thick. The optional solenoidal magnet<br />

was constructed of pure copper and designed to tightly fit around <strong>the</strong> oven. The<br />

thickness of <strong>the</strong> cylinder was equivalent to 24 AWG wire. Finally, <strong>the</strong> µMetal was<br />

given a user-defined thickness and it was placed tightly around <strong>the</strong> magnet. A cross<br />

section of this setup is shown in Figure 3.5. While this does not represent <strong>the</strong> final<br />

designof<strong>the</strong>RnEDMexperiment, itdoesinclude<strong>the</strong>keycomponentsth<strong>at</strong>willsc<strong>at</strong>ter<br />

and absorb γ rays with variable thickness th<strong>at</strong> enable sc<strong>at</strong>tering studies as a function<br />

of component thickness.<br />

3.5.2 LaBr 3 (Ce) Scintill<strong>at</strong>or<br />

The LaBr 3 (Ce) scintill<strong>at</strong>or m<strong>at</strong>erial is used in <strong>the</strong> construction of Saint-Gobain’s<br />

BrilLanCe 380 detector. The BrilLanCe 380 scintill<strong>at</strong>or has excellent fast timing<br />

properties (∼200 ps) and offers a better energy resolution when compared to a standard<br />

NaI(Tl) detector [41]. The impressive count r<strong>at</strong>e capability of LaBr 3 (Ce) could<br />

give a strong advantage over HPGe in <strong>the</strong> RnEDM experiment. The sensitivity of <strong>the</strong><br />

EDM measurement will be st<strong>at</strong>istics limited and will be determined by <strong>the</strong> number of<br />

photopeak events detected. The higher count r<strong>at</strong>e capability of LaBr 3 (Ce) could thus<br />

lead to gre<strong>at</strong>er sensitivity. However, to observe <strong>the</strong> EDM signal, <strong>the</strong> time structure<br />

of a single γ-ray transition needs to be monitored precisely, and <strong>the</strong> energy resolution<br />

of HPGe is much better than LaBr 3 (Ce). Using LaBr 3 (Ce) to identify individual<br />

transitions in <strong>the</strong> decay of 223 Rn may be difficult or impossible. <strong>Geant4</strong> simul<strong>at</strong>ions<br />

of <strong>the</strong> BrilLanCe 380 detector were per<strong>for</strong>med as part if this work (Section 4.3), to<br />

study <strong>the</strong> sensitivity achieved with LaBr 3 (Ce) energy resolution.<br />

55


Figure 3.6: Cross section of Saint-Gobain’s BrilLanCe 380 LaBr 3 (Ce) scintill<strong>at</strong>or.<br />

Saint-Gobain’s BrilLanCe 380 detector contains a 76.2 mm×76.2 mm cylindrical<br />

crystal of LaBr 3 (Ce). The full design of <strong>the</strong> BrilLanCe 380 detector is confidential,<br />

<strong>the</strong>re<strong>for</strong>e a simple can construction was used <strong>for</strong> <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ion. It consisted<br />

of a 76.2 mm×76.2 mm cylindrical crystal of LaBr 3 (Ce) with an aluminium can<br />

surrounding <strong>the</strong> scintill<strong>at</strong>or m<strong>at</strong>erial. The can wall and back pl<strong>at</strong>e were 1 mm thick<br />

and <strong>the</strong> can face was 0.5 mm. Simul<strong>at</strong>ed vacuum was placed between <strong>the</strong> crystal and<br />

can, such th<strong>at</strong> <strong>the</strong> scintill<strong>at</strong>or m<strong>at</strong>erial and Al can were not touching. The vacuum<br />

gap was simul<strong>at</strong>ed to be 1 mm thick, with <strong>the</strong> exception of <strong>the</strong> detector face where it<br />

was only 0.5 mm thick. Figure 3.6 shows a <strong>Geant4</strong> rendering of <strong>the</strong> BrilLanCe 380<br />

detector.<br />

56


(a) Screenshot showing <strong>the</strong> detector options under “Experimental Options”<br />

(b) Screenshot showing <strong>the</strong> equipment options under “Experimental Options”<br />

Figure 3.7: Screenshots of <strong>the</strong> GUGI program.<br />

57


3000<br />

15<br />

2500<br />

y = a + bx + cx 2<br />

y = a + bx + cx 2<br />

FWHM 2 (keV 2 )<br />

2000<br />

1500<br />

a = 1.7006116<br />

b = 0.5009382<br />

c = 6.5451219e-05<br />

FWHM 2 (keV 2 )<br />

10<br />

a = 1.10<br />

b = 0.00183744<br />

c = 0.0000007<br />

1000<br />

5<br />

500<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

γ-ray Energy (keV)<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

γ-ray Energy (keV)<br />

(a) BrilLanCe 380 LaBr 3 (Ce) scintill<strong>at</strong>or<br />

(b) GRIFFIN HPGe detector<br />

Figure 3.8: The square of <strong>the</strong> full-width <strong>at</strong> half-maximum (FWHM 2 ) versus γ-ray<br />

energy <strong>for</strong> a BrilLanCe 380 and a GRIFFIN detector. The resulting fits were used<br />

in <strong>the</strong> calcul<strong>at</strong>ions of realistic energy resolutions <strong>for</strong> <strong>the</strong> LaBr 3 (Ce) scintill<strong>at</strong>or and<br />

HPGe detector.<br />

3.6 D<strong>at</strong>a Management<br />

3.6.1 The GUGI Program<br />

The <strong>Geant4</strong> User Gener<strong>at</strong>ed Input (GUGI) program was written as part of this<br />

work to help manage <strong>the</strong> simul<strong>at</strong>ion input d<strong>at</strong>a in a user-friendly manner. The program<br />

was written in C++ with <strong>the</strong> Qt (version 4.5.3) framework, taking advantage<br />

of <strong>the</strong> Qt GUI toolkit. Its purpose was to allow <strong>the</strong> user to easily change simul<strong>at</strong>ion<br />

parameters. It separ<strong>at</strong>es st<strong>at</strong>ic input, <strong>the</strong> input th<strong>at</strong> will usually never change (e.g.<br />

<strong>the</strong> 223 Fr level scheme), from variable input, <strong>the</strong> input th<strong>at</strong> <strong>the</strong> user would most likely<br />

want to change between runs (e.g. <strong>the</strong> degree of initial polariz<strong>at</strong>ion). The program<br />

linkstoge<strong>the</strong>r<strong>the</strong>se twoinputsinto onefilewhich isreadinto<strong>the</strong><strong>Geant4</strong>simul<strong>at</strong>ion.<br />

See Figure 3.7 <strong>for</strong> a screenshot of <strong>the</strong> GUGI program.<br />

58


3.6.2 Output D<strong>at</strong>a and Sort Codes<br />

The simul<strong>at</strong>ed d<strong>at</strong>a, described in Section 3.2.5, was written to binary files. The<br />

binaryfilesweresortedtogener<strong>at</strong>espectraandm<strong>at</strong>ricesfiles. Theenergyresolutionof<br />

<strong>the</strong> detectors was modelled during <strong>the</strong> sorting process, since <strong>the</strong> st<strong>at</strong>istical vari<strong>at</strong>ions<br />

and electronic effects th<strong>at</strong> give rise to <strong>the</strong> resolution can not be modelled directly by<br />

<strong>Geant4</strong> . The energies output from <strong>Geant4</strong> were idealized, within 1 keV bins. To<br />

facilit<strong>at</strong>e a comparison between experiment and simul<strong>at</strong>ion, a resolution function was<br />

applied, specific to <strong>the</strong> detector type.<br />

The rel<strong>at</strong>ionship between <strong>the</strong> square of <strong>the</strong> full-width <strong>at</strong> half-maximum (FWHM)<br />

and γ-ray energy was determined <strong>for</strong> each detector by fitting a second order polynomial.<br />

These coefficients <strong>for</strong> <strong>the</strong> TIGRESS/GRIFFIN detectors were previously<br />

calcul<strong>at</strong>ed and verified [35] and are shown in Figure 3.8(b). The coefficients <strong>for</strong> <strong>the</strong><br />

BrilLanCe380detectorswerefittoper<strong>for</strong>mancemeasurementsgivenbySaint-Gobain.<br />

Figure 3.8(a) illustr<strong>at</strong>es <strong>the</strong> measurements and <strong>the</strong> derived fit. The energy resolution<br />

values derived from <strong>the</strong>se functions were converted into standard devi<strong>at</strong>ions, and applied<br />

to <strong>the</strong> idealized energies. The resulting energies were chosen from a Gaussian<br />

distribution with <strong>the</strong> idealized energy as <strong>the</strong> mean [35].<br />

59


Chapter 4<br />

Results<br />

This chapter presents <strong>the</strong> results from <strong>the</strong> RnEDM <strong>Geant4</strong> simul<strong>at</strong>ions and outlines<strong>the</strong>sensitivityof<strong>the</strong>experiment.<br />

Thesensitivitiesarederivedfrom<strong>the</strong>simul<strong>at</strong>ed<br />

precession frequencies fit with a function which describes <strong>the</strong> physics involved in <strong>the</strong><br />

simul<strong>at</strong>ion using a chi-squared minimiz<strong>at</strong>ion method. This method used a maximum<br />

likelihood technique specific <strong>for</strong> counting experiments which are based on <strong>the</strong> Poisson<br />

distribution. The achievable EDM sensitivity according to <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ions<br />

is discussed.<br />

4.1 γ-Ray Spectroscopy<br />

The results from <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ions were analyzed using γ-ray spectroscopy<br />

techniques. One dimensional γ-ray energy spectra and two dimensional γ-ray energytime<br />

m<strong>at</strong>rices were constructed from <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ed d<strong>at</strong>a. Preserving all<br />

energies, times and interaction loc<strong>at</strong>ions in <strong>the</strong> output binary d<strong>at</strong>a files allowed <strong>for</strong><br />

a complete reconstruction of <strong>the</strong> d<strong>at</strong>a into spectra and m<strong>at</strong>rices during <strong>the</strong> sorting<br />

process. Sorting <strong>the</strong> d<strong>at</strong>a had three main tasks, firstly to remove any rejected hits<br />

60


(user-defined option), secondly toapply arealisticenergyresolution responsefunction<br />

<strong>for</strong> <strong>the</strong> detectors (see Section 3.6.2), and finally to gener<strong>at</strong>e <strong>the</strong> output spectrum and<br />

m<strong>at</strong>rix files <strong>for</strong> subsequent analysis.<br />

The GRIFFIN detectors can be oper<strong>at</strong>ed in two different modes to accept “good”<br />

events, namely, <strong>the</strong> suppressed and unsuppressed mode. In <strong>the</strong> unsuppressed mode,<br />

all γ-ray energies deposited in <strong>the</strong> detectors are accepted as valid hits and recorded<br />

in <strong>the</strong> output files. In <strong>the</strong> suppressed mode, however, a GRIFFIN detector which<br />

registered a γ-ray event in a germanium crystal in coincidence with any of <strong>the</strong> BGO<br />

detectors surrounding th<strong>at</strong> detector would not be included in <strong>the</strong> output files. This<br />

mode significantly reduces <strong>the</strong> background in <strong>the</strong> spectrum by suppressing Compton<br />

sc<strong>at</strong>tering in which a γ-ray sc<strong>at</strong>ters out of an HPGe detector without depositing its<br />

fullenergy. All<strong>the</strong>analysispresentedinthisChapterwasconductedin<strong>the</strong>suppressed<br />

mode.<br />

4.1.1 Efficiencies<br />

The first characteristic studied using <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ions was <strong>the</strong> absolute γ-<br />

ray photopeak efficiency <strong>for</strong> <strong>the</strong> RnEDM experiment. The absolute efficiency of a ring<br />

of eight GRIFFIN detectors in both <strong>the</strong> <strong>for</strong>ward and back configur<strong>at</strong>ions is presented<br />

in Figure 4.1. The detectors in <strong>the</strong>ir highest efficiency mode have an efficiency of<br />

26.3% <strong>at</strong> 100 keV and 9.7% <strong>at</strong> 1 MeV, while in <strong>the</strong> fully suppressed mode <strong>the</strong>y have<br />

anefficiencyof17.5%<strong>at</strong>100keVand6.5%<strong>at</strong>1MeV.Theremainderof<strong>the</strong>simul<strong>at</strong>ions<br />

were per<strong>for</strong>med with <strong>the</strong> GRIFFIN detectors in <strong>the</strong> <strong>for</strong>ward position to maximize <strong>the</strong><br />

number of counts detected. The efficiency of <strong>the</strong> entire RnEDM appar<strong>at</strong>us is lower<br />

rel<strong>at</strong>ive to Figure 4.1 due to <strong>the</strong> increased probability of γ-ray sc<strong>at</strong>tering inside <strong>the</strong><br />

EDM cell, oven, magnet and shielding. Figure 4.2 studies <strong>the</strong> decrease in efficiency<br />

61


30<br />

25<br />

26.3%<br />

Forward Configur<strong>at</strong>ion<br />

Back Configur<strong>at</strong>ion<br />

Absolute Efficiency (%)<br />

20<br />

15<br />

10<br />

17.5%<br />

9.7%<br />

6.5%<br />

5<br />

0<br />

10 100 1000 10000<br />

γ-ray Energy (keV)<br />

Figure 4.1: <strong>Geant4</strong> gener<strong>at</strong>ed absolute efficiency curve <strong>for</strong> a ring of eight GRIF-<br />

FIN detectors in <strong>the</strong> highest efficiency mode (<strong>for</strong>ward configur<strong>at</strong>ion) and <strong>the</strong> fully<br />

suppressed mode (back configur<strong>at</strong>ion).<br />

due to various components of <strong>the</strong> appar<strong>at</strong>us. Figure 4.3 illustr<strong>at</strong>es <strong>the</strong> decrease in<br />

efficiency with increasing thicknesses of µMetal shielding.<br />

The efficiency of <strong>the</strong> RnEDM experiment is extremely important as it is directly<br />

rel<strong>at</strong>ed to <strong>the</strong> sensitivity of measurement. The precision of <strong>the</strong> EDM measurement<br />

is limited by <strong>the</strong> number of photopeak counts detected. The st<strong>at</strong>istical limit <strong>for</strong> <strong>the</strong><br />

frequency measurement [32], introduced in Section 2.3.5, is<br />

√<br />

δ ∆ω = 2 1<br />

T 2 A 2 (1−B) 2 N , (4.1)<br />

where T 2 is <strong>the</strong> spin-decoherence time, A is <strong>the</strong> analyzing power <strong>for</strong> a measurement<br />

th<strong>at</strong> detects a change of counts ∆N = AN, and B is <strong>the</strong> fraction of N due to<br />

background. The linearity of δ ∆ω (or equivalently σ f ) with T −1<br />

2 and N −1/2 was<br />

studied using <strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ions and is discussed in Section 4.2.3.<br />

62


30<br />

Absolute Efficiency (%)<br />

25<br />

20<br />

15<br />

10<br />

RnEDM Components<br />

no cell, oven or magnet<br />

cell and oven only<br />

magnet only<br />

cell, oven and magnet<br />

5<br />

0<br />

10 100 1000 10000<br />

γ-ray Energy (keV)<br />

Figure 4.2: <strong>Geant4</strong> gener<strong>at</strong>ed absolute efficiency curves <strong>for</strong> a ring of eight GRIFFIN<br />

detectors in <strong>the</strong> highest efficiency mode (<strong>for</strong>ward configur<strong>at</strong>ion) including various<br />

components of <strong>the</strong> RnEDM appar<strong>at</strong>us.<br />

4.1.2 223 Rn β-Decay Spectra<br />

The β decay of 223 Rn into 223 Fr was simul<strong>at</strong>ed to include all known β decay<br />

branches and subsequent γ-ray, conversion electron and X-ray decays. The full γ-<br />

ray spectrum <strong>for</strong> <strong>the</strong> β decay of 223 Rn is presented in Figure 4.4(a). The <strong>Geant4</strong><br />

simul<strong>at</strong>ion consisted of 1.2 billion β decay events from an initial sample of 8 ×10 10<br />

nucleiinside<strong>the</strong>EDMcell. TheEDMcell, oven, magnetand1mmofµMetalshielding<br />

were included in <strong>the</strong> simul<strong>at</strong>ion. The initial polariz<strong>at</strong>ion was assumed to be 100% and<br />

both<strong>the</strong>spin-relax<strong>at</strong>ion(T 1 )and<strong>the</strong>spin-decoherence(T 2 )timesweresimul<strong>at</strong>edtobe<br />

30 seconds, resulting in a combined depolariz<strong>at</strong>ion time of 15 seconds. The simul<strong>at</strong>ed<br />

decay scheme (See Appendix A) includes 136 levels and 294 γ-ray transitions. The<br />

inclusion of <strong>the</strong> internal conversion process is shown to be important as <strong>the</strong> resulting<br />

X-rays domin<strong>at</strong>e <strong>the</strong> spectrum <strong>at</strong> low energies.<br />

63


Absolute Efficiency (%)<br />

15<br />

10<br />

5<br />

µMetal Thickness<br />

0.10 cm<br />

0.25 cm<br />

0.50 cm<br />

0.75 cm<br />

1.00 cm<br />

0<br />

100 1000 10000<br />

γ-ray Energy (keV)<br />

Figure 4.3: <strong>Geant4</strong> gener<strong>at</strong>ed absolute efficiency curves <strong>for</strong> a ring of eight GRIFFIN<br />

detectors in <strong>the</strong> highest efficiency mode (<strong>for</strong>ward configur<strong>at</strong>ion) including <strong>the</strong> full<br />

RnEDM setup (EDM cell, oven and magnet) with various thicknesses of µMetal.<br />

Timing in<strong>for</strong>m<strong>at</strong>ion was extracted from γ-ray energy-time m<strong>at</strong>rices. Figure 4.4(b)<br />

illustr<strong>at</strong>es a three-dimensional view of a small energy and time slice <strong>for</strong> one detector<br />

in <strong>the</strong> simul<strong>at</strong>ion presented in Figure 4.4(a). The dimension of <strong>the</strong> γ-ray energy-time<br />

m<strong>at</strong>rices were 4096 by 4096, where <strong>the</strong> γ-ray energies were binned into 1 keV bins<br />

resulting in a maximum energy of about 4.1 MeV. The resolution of <strong>the</strong> time bins<br />

was flexible and thus optimized <strong>for</strong> <strong>the</strong> length of each simul<strong>at</strong>ion. Generally <strong>the</strong> times<br />

were binned into 10 ms, resulting in just over 40 seconds of simul<strong>at</strong>ion time.<br />

4.2 Frequency Signal<br />

The frequency signal can be clearly seen in <strong>the</strong> three-dimensional Figure 4.4(b).<br />

To gener<strong>at</strong>e a spectrum of this signal, energy g<strong>at</strong>es were placed around <strong>the</strong> γ-ray<br />

64


11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

1e+06<br />

Counts (e+05)<br />

1e+05<br />

Linear<br />

Logarithmic<br />

Counts<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700<br />

γ-ray Energy (keV)<br />

(a)<br />

(b)<br />

Figure 4.4: a) γ-ray energy spectrum and b) γ-ray energy-time m<strong>at</strong>rix from <strong>the</strong> β<br />

decay of 1.2 billion 223 Rn nuclei from an initial 8×10 10 nuclei loc<strong>at</strong>ed inside <strong>the</strong> EDM<br />

cell surround by a ring of eight GRIFFINdetectors. The EDM cell, oven, magnet and<br />

1 mm of µMetal shielding were included in <strong>the</strong> simul<strong>at</strong>ion. The initial polariz<strong>at</strong>ion<br />

was 100% and both <strong>the</strong> spin-relax<strong>at</strong>ion (T 1 ) and <strong>the</strong> spin-decoherence (T 2 ) times were<br />

simul<strong>at</strong>ed to be 30 seconds, resulting in a combined depolariz<strong>at</strong>ion time of 15 seconds.<br />

65


6<br />

5<br />

1400<br />

1300<br />

1200<br />

Counts<br />

24000<br />

23000<br />

22000<br />

Counts (e+05)<br />

4<br />

3<br />

2<br />

Counts<br />

1100<br />

1000<br />

900<br />

21000<br />

0 5 10 15 20 25 30<br />

Seconds (500ms Time Bins)<br />

1<br />

800<br />

700<br />

0<br />

300 350 400 450 500<br />

γ-ray Energy (keV)<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Seconds (20ms Time Bins)<br />

(a)<br />

(b)<br />

Figure4.5: Thea)energyg<strong>at</strong>eandb)timeprojectionof<strong>the</strong>416keVγ ray<strong>for</strong>twoantiparallel<br />

GRIFFIN detectors. The precession frequency gener<strong>at</strong>ed from <strong>the</strong> polarized<br />

radon nuclei is evident in <strong>the</strong> time projection. The depolariz<strong>at</strong>ion of <strong>the</strong> radon nuclei<br />

results in an increase in counts over <strong>the</strong> short time scale of <strong>the</strong> depolariz<strong>at</strong>ion time<br />

(T 1 and T 2 ).<br />

photopeak and <strong>the</strong> time spectrum was projected. Figure4.5 illustr<strong>at</strong>es <strong>the</strong> g<strong>at</strong>ing and<br />

projection process with <strong>the</strong> 416 keV photopeak. All slicing and projection oper<strong>at</strong>ions<br />

were per<strong>for</strong>med with <strong>the</strong> RadWare software package [55].<br />

Figure 4.5(b) illustr<strong>at</strong>es <strong>the</strong> frequency signal <strong>for</strong> two anti-parallel detectors. The<br />

counts in <strong>the</strong> facing detectors are summed toge<strong>the</strong>r to increase <strong>the</strong> st<strong>at</strong>istics in <strong>the</strong><br />

plot. Dueto<strong>the</strong>symmetryof<strong>the</strong>γ rayangulardistributions<strong>the</strong>twodetectorsobserve<br />

st<strong>at</strong>istically identical signals. The416keV γ rayisanM1transitionwithJ i = J f = 5.<br />

2<br />

The three-dimensional represent<strong>at</strong>ion of <strong>the</strong> γ-ray angular distribution <strong>for</strong> such a<br />

transition is shown in Figure 4.6. The shape and behaviour of <strong>the</strong> frequency signal is<br />

dependent on <strong>the</strong> angular distribution of <strong>the</strong> γ radi<strong>at</strong>ion. Section 4.2.1 investig<strong>at</strong>es<br />

<strong>the</strong> precession frequencies <strong>for</strong> various transitions found in <strong>the</strong> 223 Rn decay.<br />

66


4.2.1 Multipolarity Effects<br />

The shape of <strong>the</strong> γ ray angular distribution has a significant impact on <strong>the</strong> observed<br />

signal in<strong>the</strong> GRIFFINdetectors. Figure4.6 gives examples of some common γ<br />

ray angular distributions in <strong>the</strong> 223 Rn decay. Figure 4.7 illustr<strong>at</strong>es <strong>the</strong> resulting signal<br />

and fits <strong>for</strong> various multipolarities. The simul<strong>at</strong>ions presented in Figure 4.7 consisted<br />

of two million 223 Rn decay events from an initial two billion nuclei. The decay scheme<br />

was modified to enhance <strong>the</strong> 592 keV transition, such th<strong>at</strong> <strong>the</strong> 592 keV γ ray was<br />

emitted in every decay. The multipolarity of <strong>the</strong> 592 keV transition was modified to<br />

reflect th<strong>at</strong> of <strong>the</strong> multipolarity of interest. In <strong>the</strong>se simul<strong>at</strong>ions <strong>the</strong> EDM cell, oven,<br />

magnet and µMetal were absent. The initial polariz<strong>at</strong>ion of <strong>the</strong> 223 Rn nuclei was<br />

100% with a spin-decoherence time (T 2 ) of 10 seconds. The precession frequency was<br />

simul<strong>at</strong>ed to be 1 Hz and <strong>the</strong> ring of eight GRIFFIN detectors were in <strong>the</strong>ir highest<br />

efficiency mode in <strong>the</strong> <strong>for</strong>ward position.<br />

The resulting fits were good, with reduced χ 2 values (see Figure 4.7) of approxim<strong>at</strong>ely<br />

one. The observed precession frequencies are twice <strong>the</strong> input value due to<br />

<strong>the</strong> symmetric n<strong>at</strong>ure of <strong>the</strong> γ ray angular distributions about 180 ◦ . The exception<br />

is <strong>the</strong> J i = 7 2 to J f = 5 2<br />

E2 transition which is four times <strong>the</strong> input frequency due<br />

to its four lobed angular distribution. The second term in <strong>the</strong> fitting Equ<strong>at</strong>ion 4.2<br />

(A 3 e −x<br />

A 4 ) is shown to be necessary as <strong>the</strong> average intensity varies on <strong>the</strong> timescale of<br />

<strong>the</strong> depolariz<strong>at</strong>ion as <strong>the</strong> angular distribution becomes isotropic. A positive polariz<strong>at</strong>ion<br />

intensity (A 3 ) gives an overall decreasing intensity on <strong>the</strong> time scale of <strong>the</strong><br />

depolariz<strong>at</strong>ion time, whereas a neg<strong>at</strong>ive polariz<strong>at</strong>ionintensity gives anoverall increasing<br />

intensity on <strong>the</strong> time scale of <strong>the</strong> depolariz<strong>at</strong>ion time. The polariz<strong>at</strong>ion intensity<br />

(A 3 ) is positive <strong>for</strong> “dumbbell” shaped γ-ray angular distributions and neg<strong>at</strong>ive <strong>for</strong><br />

“donut” shaped γ-ray angular distributions.<br />

67


Figure 4.6: Three-dimensional γ-ray angular distributions <strong>for</strong> various E2 and M1<br />

transitions gener<strong>at</strong>ed by <strong>Geant4</strong>. The angular momentum vector ( ⃗ J) is aligned in<br />

<strong>the</strong> “upward” direction.<br />

68


Figure 4.7: The time projections and fits of various E2 and M1 transitions. The<br />

EDM cell, oven, magnet and µMetal was not included in <strong>the</strong> simul<strong>at</strong>ion. The initial<br />

polariz<strong>at</strong>ion of <strong>the</strong> radon nuclei was 100% and <strong>the</strong> spin-decoherence time (T 2 ) was<br />

simul<strong>at</strong>ed to be 10 seconds. Over <strong>the</strong> short time period of <strong>the</strong> spin-decoherence time,<br />

<strong>the</strong> average count r<strong>at</strong>e detected by <strong>the</strong> two anti-parallel GRIFFIN detectors increase<br />

or decrease depending on <strong>the</strong> shape of <strong>the</strong> γ-ray angular distribution (see Table 4.6).<br />

69


Counts<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

2<br />

χ red<br />

= 1.04<br />

f = 1.9999(2) Hz<br />

Counts<br />

24000<br />

23000<br />

22000<br />

21000<br />

0 5 10 15 20 25 30<br />

Seconds (500ms Time Bins)<br />

900<br />

800<br />

700<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Seconds (20ms Time Bins)<br />

Figure 4.8: The fit to <strong>the</strong> 416 keV γ-ray time projection presented in Figure 4.5 <strong>for</strong><br />

two anti-parallel GRIFFIN detectors. The resulting reduced chi-squared indic<strong>at</strong>es a<br />

good fit and <strong>the</strong> precession frequency agrees with <strong>the</strong> simul<strong>at</strong>ed value of 2 Hz.<br />

4.2.2 Fitting Process<br />

Precession frequencies were extracted through fitting <strong>the</strong> d<strong>at</strong>a to a represent<strong>at</strong>ive<br />

function and using a χ 2 minimiz<strong>at</strong>ion method [56]. This method utilized a maximum<br />

likelihood approach tailored <strong>for</strong> counting experiments based on Poisson st<strong>at</strong>istics.<br />

The function used to fit <strong>the</strong> d<strong>at</strong>a was<br />

y = A 2 e −ln(2)x<br />

A 1<br />

+A 3 e −x<br />

A 4 + { A 7 sin(1A 5 (2πx)+A 6 )<br />

+A 8 sin(3A 5 (2πx)+A 6 )+A 9 sin(5A 5 (2πx)+A 6 )+···}e −x<br />

A 4 , (4.2)<br />

where A i are <strong>the</strong> fit parameters. The first term (A 2 e −ln(2)x<br />

A 1 ) describes <strong>the</strong> radioactive<br />

decay of <strong>the</strong> radonnuclei, where A 1 is<strong>the</strong> half-lifein seconds andA 2 is <strong>the</strong>intensity in<br />

counts per second. The second term (A 3 e −x<br />

A 4 ) describes <strong>the</strong> average intensity (A 3 ) as<br />

a function of <strong>the</strong> depolariz<strong>at</strong>ion time (A 4 ). Depending on <strong>the</strong> shape of γ ray angular<br />

70


distribution, this average intensity can increase or decrease over <strong>the</strong> depolariz<strong>at</strong>ion<br />

time. The 416 keV M1 transition shown in Figure 4.5(b) clearly illustr<strong>at</strong>es this effect.<br />

Even though <strong>the</strong> number of nuclei inside <strong>the</strong> cell, and hence <strong>the</strong> total activity is<br />

decreasing, <strong>the</strong> observed average count r<strong>at</strong>e increases over <strong>the</strong> depolariz<strong>at</strong>ion time<br />

scale (which is short compared to <strong>the</strong> 223 Rn half-life of 24.3 minutes). This change<br />

in <strong>the</strong> average count r<strong>at</strong>e occurs because <strong>the</strong> “donut shaped” distribution depolarizes<br />

into an isotropic distribution th<strong>at</strong> has a larger average γ-ray intensity in <strong>the</strong> plane of<br />

<strong>the</strong> eight GRIFFIN detectors. This effect is fur<strong>the</strong>r studied in Figures 4.6 and 4.7.<br />

The remaining terms describe <strong>the</strong> precession, where A 5 is <strong>the</strong> frequency, A 6 is <strong>the</strong><br />

phase and A 7 , A 8 , A 9 , ··· are <strong>the</strong> intensities of odd-sine oscill<strong>at</strong>ions. A maximum of<br />

14 odd-sine terms were included into <strong>the</strong> fitting program (up to A 20 ), however, often<br />

only <strong>the</strong> first few odd-sine terms were non-zero. In this case all o<strong>the</strong>r sine terms fixed<br />

to zero and removed from <strong>the</strong> fit.<br />

Figure 4.8 illustr<strong>at</strong>es <strong>the</strong> fit to <strong>the</strong> 416 keV time projection d<strong>at</strong>a given in Figure<br />

4.5(b). In <strong>the</strong> fit <strong>the</strong> half-life was “fixed” to its simul<strong>at</strong>ed value of 1458 seconds<br />

and <strong>the</strong> remaining parameters were left “free” to be fitted by <strong>the</strong> program. The fit<br />

resulted in a good reduced χ 2 of 1.04 and a precession frequency which agrees with<br />

<strong>the</strong> simul<strong>at</strong>ed value of 2 Hz. The input precession frequency was 1 Hz, but due to <strong>the</strong><br />

symmetric n<strong>at</strong>ure of <strong>the</strong> γ-ray angular distribution <strong>the</strong> observed frequency is twice<br />

<strong>the</strong> input value. The fitted parameters are summarized in Table 4.1. It should be<br />

noted th<strong>at</strong> <strong>the</strong> analyzing power A in Equ<strong>at</strong>ion 4.1, which th<strong>at</strong> detects a change of<br />

counts ∆N = AN, was estim<strong>at</strong>ed as A = 0.2 in <strong>the</strong> calcul<strong>at</strong>ed st<strong>at</strong>istical limits <strong>for</strong><br />

<strong>the</strong> RnEDM experiment [32]. Figure 4.8 valid<strong>at</strong>es th<strong>at</strong> estim<strong>at</strong>e as <strong>the</strong> r<strong>at</strong>io of <strong>the</strong><br />

signal amplitude to <strong>the</strong> background is approxim<strong>at</strong>ely 0.2.<br />

From this single measurement we can calcul<strong>at</strong>e <strong>the</strong> resulting sensitivity in <strong>the</strong><br />

71


2.003<br />

2.002<br />

Weighted Average: 2.00000(8) Hz<br />

2<br />

χ red<br />

= 1.869<br />

2.001<br />

Frequency (Hz)<br />

2.000<br />

1.999<br />

1.998<br />

1.997<br />

1.996<br />

0 100 200 300 400 500 600 700 800<br />

γ-ray Energy (keV)<br />

Figure 4.9: The resulting frequency from <strong>the</strong> weighted average of 20 precession frequency<br />

fits <strong>for</strong> various photopeaks. The fits were gener<strong>at</strong>ed from <strong>the</strong> d<strong>at</strong>a set present<br />

in Figure 4.4 <strong>for</strong> two anti-parallel GRIFFIN detectors.<br />

EDM measurement using Equ<strong>at</strong>ion 2.17. The sensitivity is given by,<br />

σ d = π<br />

2E σ f . (4.3)<br />

Givenanelectricfieldof5kV/cmandσ f = 0.0002Hzwefindasensitivity in<strong>the</strong>EDM<br />

measurement of 4.14×10 −23 ecm <strong>for</strong> two anti-parallel GRIFFIN detectors, detecting<br />

<strong>the</strong> 416 keV γ-ray from <strong>the</strong> decay of 1.2×10 9 223 Rn nuclei with a spin-depolariz<strong>at</strong>ion<br />

time of 15 seconds.<br />

This fitting process was repe<strong>at</strong>ed <strong>for</strong> every significant photopeak which produced<br />

a frequency signal in <strong>the</strong> 223 Rn decay. The weighted averaged of <strong>the</strong>se measurements<br />

is given in Figure 4.9. The weighting function used was<br />

w i = 1 σ 2 i<br />

, (4.4)<br />

72


Table 4.1: The fit results <strong>for</strong> <strong>the</strong> 416 keV γ-ray M1 transition given in Figure 4.8<br />

Description Parameter Fixed/Free Value<br />

Half-life A 1 Fixed 1458 sec<br />

Primary Intensity A 2 Free 46921(98) counts/sec<br />

Polariz<strong>at</strong>ion Intensity A 3 Free −2816(170) counts/sec<br />

Depolariz<strong>at</strong>ion Time A 4 Free 16.7(5) sec<br />

Precession Frequency A 5 Free 1.9999(2) Hz<br />

Phase A 6 Free 4.71(2) rad<br />

1st Signal Intensity A 7 Free 8422(157) counts/sec<br />

2nd Signal Intensity A 8 Free 160(107) counts/sec<br />

3rd Signal Intensity A 9 Free 117(112) counts/sec<br />

4th Signal Intensity A 10 Free 264(120) counts/sec<br />

5th Signal Intensity A 11 Free −153(131) counts/sec<br />

6th Signal Intensity A 12 Free 216(148) counts/sec<br />

7th Signal Intensity A 13 Free −259(177) counts/sec<br />

10th Signal Intensity A 16 Free −683(366) counts/sec<br />

11th Signal Intensity A 17 Free −720(575) counts/sec<br />

where <strong>the</strong> average is given by,<br />

¯x =<br />

∑ n<br />

i=1 (x i/σ 2 i)<br />

∑ n<br />

i=1 (1/σ2 i ) , (4.5)<br />

and its variance is given by,<br />

σ 2¯x = 1<br />

∑ n<br />

i=1 (1/σ2 i ) . (4.6)<br />

The resulting sensitivity <strong>for</strong> 20different γ-raysis 1.65×10 −23 ecm <strong>for</strong>two anti-parallel<br />

GRIFFIN detectors and a spin-depolariz<strong>at</strong>ion time of 15 seconds. This accounts <strong>for</strong><br />

a total of approxim<strong>at</strong>ely 13 million counts in two anti-parallel GRIFFIN detectors.<br />

The RnEDM experiment is planned to run <strong>for</strong> a total of 100 days, which gives an<br />

estim<strong>at</strong>e of 1×10 12 photopeak counts in our GRIFFIN detectors [32], and is expected<br />

to achieve a spin-depolariz<strong>at</strong>ion time of <strong>at</strong> least 30 seconds. Section 4.2.3 calcul<strong>at</strong>es<br />

<strong>the</strong> achievable sensitivity <strong>for</strong> 100 days of counting.<br />

73


6<br />

5<br />

linear regression:<br />

y = 0.005926 x - 1.3452e-04<br />

4<br />

σ f<br />

(e-04 Hz)<br />

3<br />

2<br />

1<br />

0<br />

0.05 0.06 0.07 0.08 0.09 0.1<br />

T2 -1 (sec -1 )<br />

Figure 4.10: The sensitivity of <strong>the</strong> fitted frequency versus <strong>the</strong> simul<strong>at</strong>ed spindecoherence<br />

time (T 2 ). The linear behaviour valid<strong>at</strong>es <strong>the</strong> st<strong>at</strong>istical precision equ<strong>at</strong>ion<br />

(see Equ<strong>at</strong>ion 4.1) <strong>for</strong> <strong>the</strong> RnEDM measurement.<br />

4.2.3 St<strong>at</strong>istical Limit<br />

The validity of Equ<strong>at</strong>ion 4.1 was explored using <strong>Geant4</strong>. According to Equ<strong>at</strong>ion4.1<br />

<strong>the</strong>sensitivity in <strong>the</strong>frequency improves linearly with N −1<br />

2 andT −1<br />

2 , where N<br />

is <strong>the</strong> number of counts and T 2 is <strong>the</strong> spin-decoherence time. Figure 4.10 confirms <strong>the</strong><br />

linearity of <strong>the</strong> sensitivity in <strong>the</strong> frequency with <strong>the</strong> inverse of <strong>the</strong> spin-decoherence<br />

times T 2 . In <strong>the</strong>se simul<strong>at</strong>ions <strong>the</strong> most intense 592 keV γ ray was fit over 30 seconds<br />

with varying spin-decoherence times ranging from 10 to 20 seconds. The fits were<br />

similar to <strong>the</strong> example given in Table 4.1 with <strong>the</strong> spin-decoherence times fixed to <strong>the</strong><br />

simul<strong>at</strong>ed values. Similarly, Figure 4.11 confirms <strong>the</strong> linearity of <strong>the</strong> sensitivity with<br />

N −1/2 . In <strong>the</strong>se simul<strong>at</strong>ions <strong>the</strong> full 223 Rn decay was simul<strong>at</strong>ed up to a maximum<br />

number of 4.5 billion events from an initial 9×10 10 nuclei, this resulted in just over<br />

74


12<br />

10<br />

linear regression:<br />

y = 0.22432 x - 1.0887e-06<br />

8<br />

σ f<br />

(e-04 Hz)<br />

6<br />

4<br />

2<br />

0<br />

0 1 2 3 4 5 6<br />

N -1/2 (e-03 counts -1/2 )<br />

Figure 4.11: The sensitivity of <strong>the</strong> fitted frequency versus <strong>the</strong> number of counts fitted.<br />

The linear behaviour valid<strong>at</strong>es <strong>the</strong> st<strong>at</strong>istical precision equ<strong>at</strong>ion (see Equ<strong>at</strong>ion 4.1)<br />

<strong>for</strong> <strong>the</strong> RnEDM measurement.<br />

100 seconds of simul<strong>at</strong>ion time. Of <strong>the</strong> 14 signal intensities in <strong>the</strong> fitting program,<br />

only<strong>the</strong>first signal intensity (A 7 ) was fit in<strong>the</strong>analysis. The EDMcell, oven, magnet<br />

and µMetal were not included in <strong>the</strong>se simul<strong>at</strong>ions.<br />

Figure 4.11 can be extrapol<strong>at</strong>ed to estim<strong>at</strong>e <strong>the</strong> sensitivity th<strong>at</strong> will be achieved<br />

by <strong>the</strong> RnEDM experiment. Estim<strong>at</strong>es <strong>for</strong> 100 days of counting with <strong>the</strong> GRIFFIN<br />

detectorsrunning <strong>at</strong><strong>at</strong>otalcount r<strong>at</strong>eof120kHzresults in1×10 12 photopeakcounts.<br />

With a stable electric field of 5 kV/cm an EDM sensitivity of 4.64 × 10 −26 ecm is<br />

calcul<strong>at</strong>ed from <strong>the</strong> slope in Figure 4.11 if <strong>the</strong> spin-decoherence time is 15 seconds<br />

as used in <strong>the</strong>se simul<strong>at</strong>ions. Increasing <strong>the</strong> electric field beyond 5 kV/cm and increasing<br />

<strong>the</strong> spin-decoherence time beyond <strong>the</strong> 15 seconds simul<strong>at</strong>ed here through<br />

<strong>the</strong> design of <strong>the</strong> EDM measurement cell will each improve <strong>the</strong> EDM sensitivity linearly.<br />

Taking advantage of <strong>the</strong> predicted EDM enhancement factor of ∼ 600 <strong>for</strong><br />

75


25<br />

20<br />

20.48%<br />

Absolute Efficiency (%)<br />

15<br />

10<br />

5<br />

6.92%<br />

0<br />

10 100 1000 10000<br />

γ-ray Energy (keV)<br />

Figure4.12: <strong>Geant4</strong>gener<strong>at</strong>ed absoluteefficiency curve <strong>for</strong>aring ofeight BrilLanCe<br />

380 detectors.<br />

223 Rn rel<strong>at</strong>ive to 199 Hg, <strong>the</strong> RnEDM experiment would need a sensitivity on <strong>the</strong> order<br />

1 × 10 −26 ecm [27], to be competitive with <strong>the</strong> current 199 Hg measurement of<br />

d( 199 Hg) ≤ 3.1×10 −29 ecm [19].<br />

4.3 LaBr 3 (Ce) Detectors<br />

The cerium-doped lanthanum bromide detectors (Saint-Gobain’s BrilLanCe 380<br />

detectors) could offer a unique advantageto <strong>the</strong> RnEDMexperiment. The fast timing<br />

properties of LaBr 3 (Ce) (∼200 ps) provides a drastically increased count r<strong>at</strong>e capability<br />

compared to HPGe detectors. However, <strong>the</strong> compromise is in energy resolution,<br />

as shown in Figures 3.8(a) and 3.8(b) <strong>for</strong> a direct comparison between <strong>the</strong> energy<br />

resolution of a BrilLanCe 380 detector and a GRIFFIN detector. Unlike high-purity<br />

germanium detectors <strong>the</strong> cerium-doped lanthanum bromide detectors will not be able<br />

76


15<br />

Linear<br />

Counts (e+04)<br />

10<br />

5<br />

0<br />

1e+05<br />

10000<br />

Logarithmic<br />

Counts<br />

1000<br />

100<br />

10<br />

1<br />

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700<br />

γ-ray Energy (keV)<br />

Figure 4.13: γ-ray energy spectrum from <strong>the</strong> β decay of 120 million 223 Rn nuclei from<br />

an initial 8 billion nuclei loc<strong>at</strong>ed inside <strong>the</strong> EDM cell surround by a ring of eight<br />

BrilLanCe 380 detectors. The EDM cell, oven, magnet and 1 mm of µMetal shielding<br />

were included in <strong>the</strong> simul<strong>at</strong>ion. The initial polariz<strong>at</strong>ion was 100% and both <strong>the</strong> spinrelax<strong>at</strong>ion<br />

(T 1 ) and <strong>the</strong> spin-decoherence (T 2 ) times were simul<strong>at</strong>ed to be 30 seconds,<br />

resulting in a combined depolariz<strong>at</strong>ion time of 15 seconds.<br />

to resolve most individual photopeaks in <strong>the</strong> 223 Rn decay spectrum. There<strong>for</strong>e <strong>the</strong><br />

time projections which produce <strong>the</strong> frequency signal will be “contamin<strong>at</strong>ed” with<br />

o<strong>the</strong>r photopeaks.<br />

The absolute efficiency of eight BrilLanCe 380 detectors in a ring configur<strong>at</strong>ion<br />

is presented in Figure 4.12; <strong>the</strong> detectors have an efficiency of 20.5% <strong>at</strong> 100 keV<br />

and 6.9% <strong>at</strong> 1 MeV. Figure 4.13 illustr<strong>at</strong>es <strong>the</strong> γ ray singles spectrum from <strong>the</strong> β<br />

decay of 120 million 223 Rn nuclei, from an initial 8 billion nuclei inside <strong>the</strong> EDM cell.<br />

The EDM cell, oven, magnet and 1 mm of µMetal shielding were also included in<br />

this simul<strong>at</strong>ion. The simul<strong>at</strong>ion had identical properties to th<strong>at</strong> of <strong>the</strong> simul<strong>at</strong>ion of<br />

77


200<br />

2<br />

χ red<br />

= 1.001<br />

f = 2.0010(2) Hz<br />

Counts<br />

3400<br />

3200<br />

3000<br />

2800<br />

2600<br />

0 5 10 15 20 25 30<br />

Seconds (500ms Time Bins)<br />

Counts<br />

150<br />

100<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Seconds (20ms Time Bins)<br />

Figure 4.14: The fit of <strong>the</strong> 565 keV to 614 keV energy g<strong>at</strong>e time projection <strong>for</strong> two<br />

anti-parallel BrilLanCe 380 LaBr 3 (Ce) detectors.<br />

Figure 4.4(a). The figure shows th<strong>at</strong> not all individual photopeaks are resolved with<br />

<strong>the</strong> LaBr 3 (Ce) detectors. Figure 4.14 illustr<strong>at</strong>es <strong>the</strong> time projection and fit of a g<strong>at</strong>e<br />

set between 565 and 614 keV. Although <strong>the</strong> g<strong>at</strong>e encompasses many photopeaks <strong>the</strong><br />

frequency signal is still clearly visible and fur<strong>the</strong>r explor<strong>at</strong>ion of <strong>the</strong> use of <strong>the</strong> highr<strong>at</strong>e<br />

capabilities of LaBr 3 (Ce) scintill<strong>at</strong>ors in <strong>the</strong> RnEDM experiment is warranted.<br />

78


Chapter 5<br />

Conclusions and Future Directions<br />

5.1 Conclusions<br />

The <strong>Geant4</strong> simul<strong>at</strong>ions presented in this work accur<strong>at</strong>ely describe <strong>the</strong> physics<br />

involved in <strong>the</strong> RnEDM experiment <strong>at</strong> TRIUMF. The radioactive decay simul<strong>at</strong>ion<br />

package developed as part of this <strong>the</strong>sis is capable of simul<strong>at</strong>ing any β-decaying nucleus<br />

given <strong>the</strong> half-life, <strong>the</strong> β-decay branching r<strong>at</strong>io to <strong>the</strong> ground st<strong>at</strong>e, Q-value,<br />

daughter level spins and parities, γ-ray energies, intensities, mixing r<strong>at</strong>ios, internal<br />

conversion coefficients, and <strong>the</strong> resulting X-ray energies and intensities. Along with<br />

reproducing <strong>the</strong> entire decay scheme and realistic β, γ, electron and X-ray energies<br />

and probabilities, <strong>the</strong> package also simul<strong>at</strong>es <strong>the</strong> angular distribution of <strong>the</strong> emitted<br />

β particles and γ rays. This is a highly vers<strong>at</strong>ile radioactive decay simul<strong>at</strong>ion<br />

package th<strong>at</strong> will find many applic<strong>at</strong>ions, not only in fur<strong>the</strong>r studies of <strong>the</strong> RnEDM<br />

experiment, but also <strong>the</strong> entire decay spectroscopy research program with GRIF-<br />

FIN <strong>at</strong> ISAC. The RnEDM appar<strong>at</strong>us (cell, oven, magnet and µMetal shielding) was<br />

included in <strong>Geant4</strong> to realistically simul<strong>at</strong>e <strong>the</strong> γ-ray sc<strong>at</strong>tering and backgrounds<br />

present in <strong>the</strong> experimental appar<strong>at</strong>us. The GRIFFIN γ-ray spectrometer (based on<br />

79


a fully verified <strong>Geant4</strong> framework <strong>for</strong> <strong>the</strong> TIGRESS array [35]) was simul<strong>at</strong>ed to<br />

<strong>the</strong> highest degree of reality. The GUGI program was written to allow <strong>for</strong> a simple<br />

graphical manipul<strong>at</strong>ion of <strong>the</strong> input simul<strong>at</strong>ion parameters, allowing <strong>the</strong> user to<br />

quickly and effectively study many different aspects of <strong>the</strong> RnEDM simul<strong>at</strong>ion. The<br />

entire simul<strong>at</strong>ion package provides a powerful tool <strong>for</strong> fur<strong>the</strong>r studies of <strong>the</strong> RnEDM<br />

experiment <strong>at</strong> TRIUMF.<br />

The RnEDMexperiment will achieve anextremely sensitive measurement th<strong>at</strong> demands<br />

expertise in <strong>at</strong>omic and nuclear physics alongside advances in technology. The<br />

<strong>Geant4</strong> simul<strong>at</strong>ions <strong>for</strong> <strong>the</strong> RnEDM experiment valid<strong>at</strong>e <strong>the</strong> feasibility of measuring<br />

an <strong>at</strong>omic EDM using NMR techniques and γ-ray detection. The EDM measurement<br />

of 223 Rn would need a sensitivity on <strong>the</strong> order 1×10 −26 ecm [27], to be competitive<br />

with <strong>the</strong> current 199 Hg measurement of d( 199 Hg) ≤ 3.1×10 −29 ecm [19], while taking<br />

advantage of <strong>the</strong> predicted EDM enhancement factor of ∼ 600 <strong>for</strong> 223 Rn rel<strong>at</strong>ive to<br />

199 Hg [2]. The results presented in Chapter 4 show th<strong>at</strong> with 1 × 10 12 photopeak<br />

counts (equivalent to 100 days of counting [32]) detected in <strong>the</strong> GRIFFIN detectors,<br />

a sensitivity of 4.64×10 −26 ecm would be reached with an electric field of 5 kV/cm<br />

and a spin-decoherence time of 15 seconds. Increases in both E and/or T 2 through<br />

<strong>the</strong> EDM cell design will each improve <strong>the</strong> achievable sensitivity linearly.<br />

5.2 Future Directions<br />

The <strong>Geant4</strong> framework <strong>for</strong> <strong>the</strong> RnEDM experiment can be applied to many<br />

different applic<strong>at</strong>ions beyond <strong>the</strong> ones studied in this work. Firstly, <strong>the</strong> β decay<br />

package th<strong>at</strong> handles particle emission is a very general code. Any β process can be<br />

80


simul<strong>at</strong>ed given sufficient parent and daughter nucleus in<strong>for</strong>m<strong>at</strong>ion. A n<strong>at</strong>ural extension<br />

to <strong>the</strong> simul<strong>at</strong>ion would be <strong>the</strong> option of including of radioactive contamin<strong>at</strong>ion.<br />

The first tests with <strong>the</strong> ISAC uranium-carbide target in December 2010 indic<strong>at</strong>ed<br />

an overwhelming presence of francium. Alkali metals, such as francium, are readily<br />

ionized through surface ioniz<strong>at</strong>ion. It is very likely th<strong>at</strong> <strong>the</strong> RnEDM experiment will<br />

have some contamin<strong>at</strong>ion from francium. Including radioactive contamin<strong>at</strong>es into<br />

<strong>the</strong> <strong>Geant4</strong> simul<strong>at</strong>ion could help study <strong>the</strong> contamin<strong>at</strong>ion effect on <strong>the</strong> observed<br />

precession frequencies, and thus <strong>the</strong> EDM sensitivity.<br />

The final design <strong>for</strong> <strong>the</strong> RnEDM measurement remains under development. The<br />

<strong>Geant4</strong> simul<strong>at</strong>ions can be used to study <strong>the</strong> effect of γ-ray sc<strong>at</strong>tering and backgrounds<br />

in <strong>the</strong> experimental appar<strong>at</strong>us <strong>for</strong> various m<strong>at</strong>erials and geometries. The<br />

optimiz<strong>at</strong>ion of <strong>the</strong> m<strong>at</strong>erials and geometries of <strong>the</strong> RnEDM appar<strong>at</strong>us can lead to<br />

improved detection efficiencies.<br />

Finally, <strong>the</strong> simul<strong>at</strong>ion of Saint-Gobain’s BrilLanCe 380 LaBr 3 (Ce) detector can<br />

be improved by modeling <strong>the</strong> true aluminum construction around <strong>the</strong> crystal and<br />

including <strong>the</strong> radioactive n<strong>at</strong>ure of 138 La. 138 La is a n<strong>at</strong>urally occurring radioisotope<br />

(0.09% abundance [41]) with a long half-life of 1.05×10 11 years[49]. It decays with<br />

a 66.4% probability of electron capture into an excited st<strong>at</strong>e in 138 Ba, which in turn<br />

decays by <strong>the</strong> emission of a 1426keV γ ray. The remaining 33.6%decays via β − decay<br />

into an excited st<strong>at</strong>e in 138 Ce, which in turn decays by <strong>the</strong> emission of a 789 keV γ<br />

ray in coincidence with <strong>the</strong> emitted electron [49]. There<strong>for</strong>e <strong>the</strong> LaBr 3 (Ce) detectors<br />

contain internal radi<strong>at</strong>ion peaks which can be incorpor<strong>at</strong>ed into <strong>the</strong> <strong>Geant4</strong><br />

simul<strong>at</strong>ions <strong>for</strong> added realism.<br />

The search <strong>for</strong> particle and <strong>at</strong>omic EDMs is an important area of physics research<br />

today, as it directly probes <strong>the</strong> fundamental symmetries of <strong>the</strong> laws of physics.<br />

81


Current upper limits on <strong>the</strong> EDMs of <strong>the</strong> neutron, electron and 199 Hg have already<br />

significantly reduced <strong>the</strong> allowed parameter spaces of models beyond <strong>the</strong> Standard<br />

Model of particle physics. A measurement of a permanent non-zero <strong>at</strong>omic EDM<br />

in radon would represent <strong>the</strong> discovery of new physics beyond <strong>the</strong> Standard Model<br />

of particle physics and could explain <strong>the</strong> observed asymmetry between m<strong>at</strong>ter and<br />

antim<strong>at</strong>ter in <strong>the</strong> universe.<br />

82


Appendix A<br />

Figure A.1: Simul<strong>at</strong>ed decay scheme [1 of 5] <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr. The<br />

decay scheme was constructed from experimental d<strong>at</strong>a [43, 57]; incomplete in<strong>for</strong>m<strong>at</strong>ion<br />

was replaced with conserv<strong>at</strong>ive estim<strong>at</strong>es. The level diagrams shown here were<br />

used <strong>for</strong> simul<strong>at</strong>ion purposes, <strong>the</strong>y do not represent <strong>the</strong> current knowledge of <strong>the</strong> excited<br />

st<strong>at</strong>es in 223 Fr. For unlabelled multipolarities, <strong>the</strong> lowest order L was assumed.<br />

Figures adapted from reference [57].<br />

83


Figure A.2: Simul<strong>at</strong>ed decay scheme [2 of 5] <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr. The<br />

decay scheme was constructed from experimental d<strong>at</strong>a [43, 57]; incomplete in<strong>for</strong>m<strong>at</strong>ion<br />

was replaced with conserv<strong>at</strong>ive estim<strong>at</strong>es. The level diagrams shown here were<br />

used <strong>for</strong> simul<strong>at</strong>ion purposes, <strong>the</strong>y do not represent <strong>the</strong> current knowledge of <strong>the</strong> excited<br />

st<strong>at</strong>es in 223 Fr. For unlabelled multipolarities, <strong>the</strong> lowest order L was assumed.<br />

Figures adapted from reference [57].<br />

84


Figure A.3: Simul<strong>at</strong>ed decay scheme [3 of 5] <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr. The<br />

decay scheme was constructed from experimental d<strong>at</strong>a [43, 57]; incomplete in<strong>for</strong>m<strong>at</strong>ion<br />

was replaced with conserv<strong>at</strong>ive estim<strong>at</strong>es. The level diagrams shown here were<br />

used <strong>for</strong> simul<strong>at</strong>ion purposes, <strong>the</strong>y do not represent <strong>the</strong> current knowledge of <strong>the</strong> excited<br />

st<strong>at</strong>es in 223 Fr. For unlabelled multipolarities, <strong>the</strong> lowest order L was assumed.<br />

Figures adapted from reference [57].<br />

85


Figure A.4: Simul<strong>at</strong>ed decay scheme [4 of 5] <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr. The<br />

decay scheme was constructed from experimental d<strong>at</strong>a [43, 57]; incomplete in<strong>for</strong>m<strong>at</strong>ion<br />

was replaced with conserv<strong>at</strong>ive estim<strong>at</strong>es. The level diagrams shown here were<br />

used <strong>for</strong> simul<strong>at</strong>ion purposes, <strong>the</strong>y do not represent <strong>the</strong> current knowledge of <strong>the</strong> excited<br />

st<strong>at</strong>es in 223 Fr. For unlabelled multipolarities, <strong>the</strong> lowest order L was assumed.<br />

Figures adapted from reference [57].<br />

86


Figure A.5: Simul<strong>at</strong>ed decay scheme [5 of 5] <strong>for</strong> <strong>the</strong> β − decay of 223 Rn to 223 Fr. The<br />

decay scheme was constructed from experimental d<strong>at</strong>a [43, 57]; incomplete in<strong>for</strong>m<strong>at</strong>ion<br />

was replaced with conserv<strong>at</strong>ive estim<strong>at</strong>es. The level diagrams shown here were<br />

used <strong>for</strong> simul<strong>at</strong>ion purposes, <strong>the</strong>y do not represent <strong>the</strong> current knowledge of <strong>the</strong> excited<br />

st<strong>at</strong>es in 223 Fr. For unlabelled multipolarities, <strong>the</strong> lowest order L was assumed.<br />

Figures adapted from reference [57].<br />

87


Appendix B<br />

MATLABCode: γ-rayangulardistributions<br />

<strong>for</strong> any transition and degree of orient<strong>at</strong>ion.<br />

1 % Alpha.m<br />

2 function out = Alpha(k,ji,pops)<br />

3 rho = Rho(k,ji,pops);<br />

4 b = B(k,ji);<br />

5 % zero checking //////////<br />

6 if (rho == 0 || b == 0)<br />

7 out = 0;<br />

8 return;<br />

9 end<br />

10 % //////////<br />

11 out = (rho)/(b);<br />

1 % Amax.m<br />

2 function out = Amax(k,ji,L1,L2,jf,∆)<br />

3 if ∆ == 0<br />

4 out = (1/(1+∆ˆ2))*(f(k,jf,L1,L1,ji));<br />

5 else<br />

88


6 out = (1/(1+∆ˆ2))*(f(k,jf,L1,L1,ji)+2* ∆ *f(k,jf,L1,L2,ji)+...<br />

7 ((∆)ˆ2)*f(k,jf,L2,L2,ji));<br />

8 end<br />

1 % B.m<br />

2 function out = B(k,j)<br />

3 J = abs(j);<br />

4 if (mod(2*j,2) == 0 || j == 1) % integral spin<br />

5 out = ((2*J+1)ˆ(1/2))*((−1)ˆ(J))*ClebschGordan(J,0,J,0,k,0);<br />

6 else % half−integral spin<br />

7 out = ((2*J+1)ˆ(1/2))*((−1)ˆ(J−1/2))*...<br />

8 ClebschGordan(J,1/2,J,−1/2,k,0);<br />

9 end<br />

1 % ClebschGordan.m<br />

2 % returns <strong>the</strong> Clebsch−Gordan coefficient <br />

3 function cg = ClebschGordan(j1,m1,j2,m2,j,m)<br />

4 % Check Conditions //////////<br />

5 if ( 2*j1 ≠ floor(2*j1) || 2*j2 ≠ floor(2*j2) || 2*j ≠ floor(2*j) ...<br />

6 || 2*m1 ≠ floor(2*m1) || 2*m2 ≠ floor(2*m2)...<br />

7 || 2*m ≠ floor(2*m) )<br />

8 error('All arguments must be integers or half−integers.');<br />

9 return;<br />

10 end<br />

11 if m1 + m2 ≠ m<br />

12 %warning('m1 + m2 must equal m.');<br />

13 cg = 0;<br />

89


14 return;<br />

15 end<br />

16 if ( j1 − m1 ≠ floor ( j1 − m1 ) )<br />

17 %warning('2*j1 and 2*m1 must have <strong>the</strong> same parity');<br />

18 cg = 0;<br />

19 return;<br />

20 end<br />

21 if ( j2 − m2 ≠ floor ( j2 − m2 ) )<br />

22 %warning('2*j2 and 2*m2 must have <strong>the</strong> same parity');<br />

23 cg = 0;<br />

24 return;<br />

25 end<br />

26 if ( j − m ≠ floor ( j − m ) )<br />

27 %warning('2*j and 2*m must have <strong>the</strong> same parity');<br />

28 cg = 0;<br />

29 return;<br />

30 end<br />

31 if j > j1 + j2 || j < abs(j1 − j2)<br />

32 %warning('j is out of bounds.');<br />

33 cg = 0;<br />

34 return;<br />

35 end<br />

36 if abs(m1) > j1<br />

37 %warning('m1 is out of bounds.');<br />

38 cg = 0;<br />

39 return;<br />

40 end<br />

41 if abs(m2) > j2<br />

42 %warning('m2 is out of bounds.');<br />

43 cg = 0;<br />

90


44 return;<br />

45 end<br />

46 if abs(m) > j<br />

47 %warning('m is out of bounds.');<br />

48 cg = 0;<br />

49 return;<br />

50 end<br />

51 % //////////<br />

52 term1 = (((2*j+1)/factorial(j1+j2+j+1))*factorial(j2+j−j1)*...<br />

53 factorial(j+j1−j2)*factorial(j1+j2−j)*factorial(j1+m1)*...<br />

54 factorial(j1−m1)*factorial(j2+m2)*factorial(j2−m2)*...<br />

55 factorial(j+m)*factorial(j−m))ˆ(0.5);<br />

56 sum = 0;<br />

57 <strong>for</strong> k=0:1:99<br />

58 if ( (j1+j2−j−k < 0) || (j−j1−m2+k < 0) || (j−j2+m1+k < 0)...<br />

59 || (j1−m1−k < 0) || (j2+m2−k < 0) )<br />

60 else<br />

61 term = factorial(j1+j2−j−k)*factorial(j−j1−m2+k)*...<br />

62 factorial(j−j2+m1+k)*factorial(j1−m1−k)*...<br />

63 factorial(j2+m2−k)*factorial(k);<br />

64 if (mod(k,2) == 1)<br />

65 term = −1*term;<br />

66 end<br />

67 sum = sum + 1/term;<br />

68 end<br />

69 end<br />

70 cg =term1*sum;<br />

71 % Reference: An Effective Algorithm <strong>for</strong> Calcul<strong>at</strong>ion of <strong>the</strong> C.G.<br />

72 % Coefficients Liang Zuo, et. al.<br />

73 % J. Appl. Cryst. (1993). 26, 302−304<br />

91


1 % F.m<br />

2 function out = F(k,jf,L1,L2,ji)<br />

3 % zero checking //////////<br />

4 CG = ClebschGordan(L1,1,L2,−1,k,0);<br />

5 if CG == 0<br />

6 out = 0;<br />

7 return;<br />

8 end<br />

9 W = RacahW(ji,ji,L1,L2,k,jf);<br />

10 if W == 0<br />

11 out = 0;<br />

12 return;<br />

13 end<br />

14 % //////////<br />

15 out = ((−1)ˆ(jf−ji−1))*(((2*L1+1)*(2*L2+1)*(2*ji+1))ˆ(1/2))*CG*W;<br />

1 % f.m<br />

2 function out = f(k,jf,L1,L2,ji)<br />

3 % zero checking //////////<br />

4 b = B(k,ji);<br />

5 if b == 0<br />

6 out = 0;<br />

7 return;<br />

8 end<br />

9 % //////////<br />

10 out = b*F(k,jf,L1,L2,ji);<br />

92


1 % LegendreP.m<br />

2 function P = LegendreP(n,x)<br />

3 if n == 0<br />

4 P = 1;<br />

5 elseif n == 2<br />

6 P = (1/2)*(3*(x)ˆ2−1);<br />

7 elseif n == 4<br />

8 P = (1/8)*(35*(x)ˆ4−30*(x)ˆ2+3);<br />

9 elseif n == 6<br />

10 P = (1/16)*(231*(x)ˆ6−315*(x)ˆ4+105*(x)ˆ2−5);<br />

11 elseif n == 8<br />

12 P = (1/128)*(6435*(x)ˆ8−12012*(x)ˆ6+6930*(x)ˆ4−1260*(x)ˆ2+35);<br />

13 elseif n == 10<br />

14 P = (1/256)*(46189*(x)ˆ10−109395*(x)ˆ8+90090*...<br />

15 (x)ˆ6−30030*(x)ˆ4−3465*(x)ˆ2−63);<br />

16 else<br />

17 error('Legendre polynomial not found.');<br />

18 return;<br />

19 end<br />

1 function out = Plot3DSurface(d<strong>at</strong>a)<br />

2 resTheta = 5;<br />

3 resPhi = 5;<br />

4 out = zeros(181,1);<br />

5 outRes = zeros((180)/resTheta,1);<br />

6 resSurface = zeros((180/resTheta),(360/resPhi));<br />

7 sum = 0;<br />

8 <strong>for</strong> i=0:1:180<br />

93


9 <strong>for</strong> j=0:1:360<br />

10 sum = sum + d<strong>at</strong>a(i+1,j+1);<br />

11 end<br />

12 end<br />

13 <strong>for</strong> i=0:1:180<br />

14 <strong>for</strong> j=0:1:360<br />

15 out(i+1) = out(i+1) + d<strong>at</strong>a(i+1,j+1)/sum;<br />

16 end<br />

17 end<br />

18 indexTheta = 1;<br />

19 <strong>for</strong> i=0:1:180<br />

20 if(i == indexTheta*resTheta && i ≠180)<br />

21 outRes(indexTheta) = outRes(indexTheta) + out(i+1);<br />

22 indexTheta = indexTheta + 1;<br />

23 end<br />

24 outRes(indexTheta) = outRes(indexTheta) + out(i+1);<br />

25 end<br />

26 <strong>for</strong> i=0:1:(180/resTheta)−1<br />

27 <strong>for</strong> j=0:1:(360/resPhi)−1<br />

28 surfarea = 1;<br />

29 resSurface(i+1,j+1) = outRes(i+1)/surfarea;<br />

30 end<br />

31 end<br />

32 r = resSurface;<br />

33 xx = zeros(size(resSurface));<br />

34 yy = zeros(size(resSurface));<br />

35 zz = zeros(size(resSurface));<br />

36 <strong>for</strong> i=0:1:((180/resTheta)−1)<br />

37 <strong>for</strong> j=0:1:(360/resPhi)<br />

38 if(j == (360/resPhi)) % make it <strong>the</strong> same as <strong>the</strong>ta = 0;<br />

94


39 xx(i+1,j+1) = r(i+1,1)*sin((i*resTheta*pi/180.0)+...<br />

40 ((resTheta/2)*pi/180.0))*cos((0*pi/180.0));<br />

41 yy(i+1,j+1) = r(i+1,1)*sin((i*resTheta*pi/180.0)+...<br />

42 ((resTheta/2)*pi/180.0))*sin((0*pi/180.0));<br />

43 zz(i+1,j+1) = r(i+1,1)*cos((i*resTheta*pi/180.0)+...<br />

44 ((resTheta/2)*pi/180.0));<br />

45 else<br />

46 xx(i+1,j+1) = r(i+1,j+1)*sin((i*resTheta*pi/180.0)+...<br />

47 ((resTheta/2)*pi/180.0))*cos((j*resPhi*pi/180.0));<br />

48 yy(i+1,j+1) = r(i+1,j+1)*sin((i*resTheta*pi/180.0)+...<br />

49 ((resTheta/2)*pi/180.0))*sin((j*resPhi*pi/180.0));<br />

50 zz(i+1,j+1) = r(i+1,j+1)*cos((i*resTheta*pi/180.0)+...<br />

51 ((resTheta/2)*pi/180.0));<br />

52 end<br />

53 end<br />

54 end<br />

55 clf<br />

56 h1 = surf(xx,yy,zz);<br />

57 set(h1,'facealpha',0.85);<br />

58 colormap cool<br />

59 light<br />

60 lighting phong<br />

61 axis tight equal off<br />

62 % xlabel('Normalized Units')<br />

63 % ylabel('Normalized Units')<br />

64 % zlabel('Normalized Units')<br />

65 view(40,30)<br />

66 camzoom(1.5)<br />

67 fh = figure(1); % returns <strong>the</strong> handle to <strong>the</strong> figure object<br />

68 set(fh, 'color', 'white'); % sets <strong>the</strong> color to white<br />

95


1 % RacahW.m<br />

2 function out = RacahW(a,b,c,d,e,f)<br />

3 out = ((−1)ˆ(a+b+d+c))*Wigner6j(a,b,e,d,c,f);<br />

1 % Rho.m<br />

2 function out = Rho(k,ji,pops)<br />

3 sum = 0;<br />

4 J = abs(ji);<br />

5 <strong>for</strong> mi=−J:1:J<br />

6 mdex = mi+J;<br />

7 M = mi;<br />

8 pop = pops(mdex+1);<br />

9 sum = sum + ((−1)ˆ(J−M))*ClebschGordan(J,M,J,−1*M,k,0)*pop;<br />

10 end<br />

11 out =((2*J+1)ˆ(1/2))*sum;<br />

1 % Wigner3j.m<br />

2 function out = Wigner3j(j1,j2,j3,m1,m2,m3)<br />

3 % error checking //////////<br />

4 if ( 2*j1 ≠ floor(2*j1) || 2*j2 ≠ floor(2*j2) || 2*j3 ≠ ...<br />

floor(2*j3)...<br />

5 || 2*m1 ≠ floor(2*m1) || 2*m2 ≠ floor(2*m2)...<br />

6 || 2*m3 ≠ floor(2*m3) )<br />

7 error('All arguments must be integers or half−integers.');<br />

8 return;<br />

9 end<br />

10 if m1 + m2 + m3 ≠ 0<br />

96


11 %warning('m1 + m2 + m3 must equal zero.');<br />

12 out = 0;<br />

13 return;<br />

14 end<br />

15 if ( j1 + j2 + j3 ≠ floor(j1 + j2 + j3) )<br />

16 %warning('2*j1 and 2*m1 must have <strong>the</strong> same parity');<br />

17 out = 0;<br />

18 return;<br />

19 end<br />

20 if j3 > j1 + j2 || j3 < abs(j1 − j2)<br />

21 %warning('j3 is out of bounds.');<br />

22 out = 0;<br />

23 return;<br />

24 end<br />

25 if abs(m1) > j1<br />

26 %warning('m1 is out of bounds.');<br />

27 out = 0;<br />

28 return;<br />

29 end<br />

30 if abs(m2) > j2<br />

31 %warning('m2 is out of bounds.');<br />

32 out = 0;<br />

33 return;<br />

34 end<br />

35 if abs(m3) > j3<br />

36 %warning('m3 is out of bounds.');<br />

37 out = 0;<br />

38 return;<br />

39 end<br />

40 % //////////<br />

97


41 out = ((−1)ˆ(j1−j2−m3))/((2*j3+1)ˆ(1/2))*...<br />

42 ClebschGordan(j1,m1,j2,m2,j3,−m3);<br />

1 % Wigner6j.m<br />

2 function sum = Wigner6j(J1,J2,J3,J4,J5,J6)<br />

3 % error checking //////////<br />

4 if J3 > J1 + J2 || J3 < abs(J1 − J2)<br />

5 warning('first J3 triange condition not s<strong>at</strong>isfied. J3 > J1 + ...<br />

J2<br />

|| J3 < abs(J1 − J2)');<br />

6 sum = 0;<br />

7 return;<br />

8 end<br />

9 if J3 > J4 + J5 || J3 < abs(J4 − J5)<br />

10 warning('second J3 triange condition not s<strong>at</strong>isfied. J3 > J4 + ...<br />

J5<br />

|| J3 < abs(J4 − J5)');<br />

11 sum = 0;<br />

12 return;<br />

13 end<br />

14 if J6 > J2 + J4 || J6 < abs(J2 − J4)<br />

15 warning('first J6 triange condition not s<strong>at</strong>isfied. J6 > J2 + ...<br />

J4<br />

|| J6 < abs(J2 − J4)');<br />

16 sum = 0;<br />

17 return;<br />

18 end<br />

19 if J6 > J1 + J5 || J6 < abs(J1 − J5)<br />

20 warning('second J6 triange condition not s<strong>at</strong>isfied. J6 > J1 + ...<br />

J5<br />

|| J6 < abs(J1 − J5)');<br />

21 sum = 0;<br />

22 return;<br />

98


23 end<br />

24 % //////////<br />

25 j1 = J1;<br />

26 j2 = J2;<br />

27 j12 = J3;<br />

28 j3 = J4;<br />

29 j = J5;<br />

30 j23 = J6;<br />

31 sum = 0;<br />

32 <strong>for</strong> m1=−j1:1:j1<br />

33 <strong>for</strong> m2=−j2:1:j2<br />

34 <strong>for</strong> m3=−j3:1:j3<br />

35 <strong>for</strong> m12=−j12:1:j12<br />

36 <strong>for</strong> m23=−j23:1:j23<br />

37 <strong>for</strong> m=−j:1:j<br />

38 sum = sum + ((−1)ˆ(j3+j+j23−m3−m−m23))*...<br />

39 Wigner3j(j1,j2,j12,m1,m2,m12)*...<br />

40 Wigner3j(j1,j,j23,m1,−m,m23)*...<br />

41 Wigner3j(j3,j2,j23,m3,m2,−m23)*...<br />

42 Wigner3j(j3,j,j12,−m3,m,m12);<br />

43 end<br />

44 end<br />

45 end<br />

46 end<br />

47 end<br />

48 end<br />

1 % W Plot2DGammaAngularDistributions.m<br />

2 function [xy] = W Plot2DGammaAngularDistributions(ji,jf,L1,L2,∆,...<br />

99


3 minTheta,stepTheta,maxTheta,pops)<br />

4 Ji = abs(ji);<br />

5 Jf = abs(jf);<br />

6 Alpha2 = Alpha(2,Ji,pops);<br />

7 Alpha4 = Alpha(4,Ji,pops);<br />

8 A2max = Amax(2,Ji,L1,L2,Jf,∆);<br />

9 A4max = Amax(4,Ji,L1,L2,Jf,∆);<br />

10 A2 = Alpha2*A2max;<br />

11 A4 = Alpha4*A4max;<br />

12 sum = 0;<br />

13 <strong>the</strong>ta =minTheta:stepTheta:maxTheta;<br />

14 xy=zeros(length(<strong>the</strong>ta),2);<br />

15 <strong>for</strong> i=1:1:length(<strong>the</strong>ta)<br />

16 xy(i,1) = <strong>the</strong>ta(i);<br />

17 xy(i,2) = 1 + A2*LegendreP(2,cos(<strong>the</strong>ta(i))) +...<br />

18 A4*LegendreP(4,cos(<strong>the</strong>ta(i)));<br />

19 sum = sum + sin(<strong>the</strong>ta(i)).*xy(i,2)*stepTheta;<br />

20 end<br />

21 disp( sprintf( 'Amax%d = %d', 2,A2max ) );<br />

22 disp( sprintf( 'Amax%d = %d', 4,A4max ) );<br />

23 disp( sprintf( 'MyAlpha%d = %d', 2,Alpha2 ) );<br />

24 disp( sprintf( 'MyAlpha%d = %d', 4,Alpha4 ) );<br />

25 disp( sprintf( 'Integral = %d', sum ) );<br />

26 colors={'−+k';'−−or';':*b';'−.xk';'−sr';'−−db';':ˆk';'−.vr';'−>b'};<br />

27 plot(xy(:,1),xy(:,2),char(colors(1)))<br />

28 hold on<br />

29 set(gca,'XTick',0:pi/4:pi)<br />

30 set(gca,'XTickLabel',{'0','pi/4','pi/2','3*pi/2','pi'})<br />

31 xlabel('\<strong>the</strong>ta')<br />

32 ylabel('W')<br />

100


33 if L1 == L2 && ∆ == 0<br />

34 title( sprintf( 'Angular Profile Partially Aligned Nuclei For ...<br />

L%i Transition with Ji = %d and Jf = %d', L1,ji,jf ) );<br />

35 else<br />

36 title( sprintf( 'Angular Profile For Partially Aligned Nuclei ...<br />

For L%i, L%i (∆ = %d) Transition with Ji = %d and Jf = ...<br />

%d', L1,L2,∆,ji,jf) );<br />

37 end<br />

38 % Reference: Tables of Coefficients <strong>for</strong> Angular Distribution of<br />

39 % Gamma Rays From Aligned Nuclei, T. Yamazaki<br />

40 % Nuclear D<strong>at</strong>a A (1967), 3, 1−23<br />

1 % W Plot3DGammaAngularDistributions.m<br />

2 function [xy] = W Plot3DGammaAngularDistributions(ji,jf,L1,L2,∆,pops)<br />

3 minTheta=0;<br />

4 stepTheta=pi/180;<br />

5 maxTheta=pi;<br />

6 <strong>the</strong>ta =minTheta:stepTheta:maxTheta;<br />

7 d<strong>at</strong>a = W Plot2DGammaAngularDistributions(ji,jf,L1,L2,∆,minTheta,...<br />

8 stepTheta,maxTheta,pops);<br />

9 d<strong>at</strong>a3D=zeros(length(<strong>the</strong>ta),361);<br />

10 <strong>for</strong> i=1:1:length(<strong>the</strong>ta)<br />

11 <strong>for</strong> j=1:1:361<br />

12 d<strong>at</strong>a3D(i,j) = d<strong>at</strong>a(i,2);<br />

13 end<br />

14 end<br />

15 Plot3DSurface(d<strong>at</strong>a3D);<br />

16 % Reference: Tables of Coefficients <strong>for</strong> Angular Distribution of<br />

17 % Gamma Rays From Aligned Nuclei, T. Yamazaki<br />

101


18 % Nuclear D<strong>at</strong>a A (1967), 3, 1−23<br />

102


Bibliography<br />

[1] J. M. Pendlebury and E. A. Hinds. Nucl. Instrum. Meth. Phys. Res. A, 440:471–<br />

478, 2000.<br />

[2] N. Auerbach, V. V. Flambaum, and V. Spevak. Phys. Rev. Lett., 76:4316–4319,<br />

1996.<br />

[3] V. Spevak, N. Auerbach, and V. V. Flambaum. Phys. Rev. C, 56:1357–1369,<br />

1996.<br />

[4] V. V. Flambaum, D. W. Murray, and S. R. Orton. Phys. Rev. C, 56:2820–2829,<br />

1997.<br />

[5] V. V. Flambaum and V. G. Zelevinsky. Phys. Rev C, 68:035502, 2003.<br />

[6] N. Auerbach, V. F. Dmitriev, V. V. Flambaum, A. Lisetskiy, R. A. Sen’kov, and<br />

V. G. Zelevinsky. Phys. Rev. C, 74:025502, 2006.<br />

[7] N. Auerbach. J. Phys. G: Nucl. Part. Phys., 35:014040, 2008.<br />

[8] Michael E. Peskin and Dan V. Schroeder. An Introduction to Quantum Field<br />

Theory. Westview Press, 1995.<br />

[9] T. D. Lee and C. N. Yang. Phys. Rev., 104:254–258, 1956.<br />

103


[10] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson.<br />

Phys. Rev., 105:1413–1415, 1957.<br />

[11] J. H. Christenson, J. C. Cronin, V. L. Fitch, and R. Turlay. Phys. Rev. Lett.,<br />

13:138–140, 1964.<br />

[12] K. Abe et al. Phys. Rev. Lett., 87:091802, 2001.<br />

[13] B. Aubert et al. Phys. Rev. Lett., 87:091801, 2001.<br />

[14] P. K. Kabir. Phys. Lett. B, 459:335–340, 1999.<br />

[15] H. J. Gerber. Eur. Phys. J. C, 35:195–196, 2004.<br />

[16] A. D. Sakharov. JETP Lett., 5:24–27, 1967.<br />

[17] C. A. Baker and et al. Phys. Rev. Lett., 97:131801, 2006.<br />

[18] B. C. Regan, Eugene D. Commins, Christian J. Schmidt, and David DeMille.<br />

Phys. Rev. Lett., 88:071805, 2002.<br />

[19] W. C. Griffith, M. D. Swallows, T. H. Loftus, M. V. Romalis, B. R. Heckel, and<br />

E. N. Fortson. Phys. Rev. Lett., 102:101601, 2009.<br />

[20] Irshad Ahmad and Peter A. Butler. Annu. Rev. Part. Sci., 43:71–116, 1993.<br />

[21] L. I. Schiff. Phys. Rev., 132:2194–2200, 1963.<br />

[22] M.A. Bouchi<strong>at</strong> and C. Bouchi<strong>at</strong>. Rep. Prog. Phys., 60:1351–1396, 1997.<br />

[23] J.S.M. Ginges and V.V. Flambaum. Physics Reports, 397:63–154, 2004.<br />

[24] M. Trinczek, F. Ames, R.Baartman, P.G. Bricault, M. Dombsky, K. Jayamanna,<br />

J.Lassen, R.E.Laxdal, M.Marchetto, L.Merminga, A.C.Morton, V.A.Verzilov,<br />

and F. Yan. In Twenty Third Particle Acceler<strong>at</strong>or Conference, 2009.<br />

104


[25] P. G. Bricault, M. Dombsky, Jens Lassen, and Friedhelm Ames. In Cyclotrons<br />

and Their Applic<strong>at</strong>ions, Eighteenth Intern<strong>at</strong>ional Conference, 2007.<br />

[26] S. R. Nuss-Warren, E. R. Tardiff, T. Warner, G. Ball, J. A. Behr, T. E. Chupp,<br />

K. P. Coulter, G. Hackman, M. E. Hayden, M. R. Pearson, A. A. Phillips, M. B.<br />

Smith, and C. E. Svensson. Nucl. Instrum. Meth. Phys. Res. A, 533:275–281,<br />

2004.<br />

[27] Eric R. Tardiff. Towards a Measurement of <strong>the</strong> <strong>Electric</strong> <strong>Dipole</strong> <strong>Moment</strong> of 223 Rn.<br />

PhD <strong>the</strong>sis, The University of Michigan, Ann Arbor, Michigan, USA, 2009.<br />

[28] William Happer. Rev. Mod. Phys., 44:169–249, 1972.<br />

[29] W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and<br />

X. Zeng. Phys. Rev. A, 29:3092–3110, 1984.<br />

[30] Thad G. Walker and William Happer. Rev. Mod. Phys., 69:629–642, 1997.<br />

[31] M. Kitano, F. P. Calaprice, M. L. Pitt, J. Clayhold, W. Happer, M. Kadar-<br />

Kallen, M. Musolf, G. Ulm, K. Wendt, T. Chupp, J. Bonn, R. Neugart, E. Otten,<br />

and H. T. Duong. Phys. Rev. Lett., 60:2133–2136, 1988.<br />

[32] Tim Chupp. <strong>Electric</strong> dipole moment measurements with rare isotopes: The<br />

radon-edm experiment. Technical report, TRIUMF, 2006.<br />

[33] C. E. Svensson and et al. J. Phys. G., 31:S1663, 2005.<br />

[34] C.E. Svensson et al. Nucl. Instrum. Meth., 540:348–360, 2005.<br />

[35] Michael Schumaker. Measurements and simul<strong>at</strong>ion-based optimiz<strong>at</strong>ion of tigress<br />

hpge detector array per<strong>for</strong>mance. Master’s <strong>the</strong>sis, The University of Guelph,<br />

Guelph, Ontario, Canada, 2005.<br />

105


[36] M. A. Schumaker and et al. Nucl. Instrum. Meth. A, 570:437–445, 2007.<br />

[37] S. Agostinelli et al. Nucl. Instr. and Meth. A, 506:250–303, 2003.<br />

[38] <strong>Geant4</strong> collabor<strong>at</strong>ion, January 2011.<br />

http://geant4.web.cern.ch/geant4/collabor<strong>at</strong>ion/index.shtml.<br />

[39] pyrex glass specific<strong>at</strong>ions, January 2011.<br />

http://c<strong>at</strong>alog2.corning.com/Lifesciences/media/pdf/Description of 7740 Glasses.pdf.<br />

[40] mu-metal specific<strong>at</strong>ions, January 2011.<br />

http://www.mumetal.com/mumetal specific<strong>at</strong>ions.html.<br />

[41] cerium-doped lanthanum bromide specific<strong>at</strong>ions, January 2011.<br />

http://www.oilandgas.saint-gobain.com/uploadedFiles<br />

/SGoilandgas/Documents/Detectors/Detectors-BrilLanCe-380.pdf.<br />

[42] Saint-Gobain Crystals. BrilLanCe tm scintill<strong>at</strong>ors per<strong>for</strong>mance summary. Technical<br />

report, Saint-Gobain Crystals, Scintill<strong>at</strong>ion Products, January 2009.<br />

[43] W. Kurcewicz and et al. Nucl. Phys. A, 539:451–477, 1992.<br />

[44] T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, and<br />

C.W. Nestor Jr. Nucl. Instr. and Meth. A, 589:202–229, 2008.<br />

[45] Philip Bevington and D. Keith Robinson. D<strong>at</strong>a Reduction and Error Analysis<br />

<strong>for</strong> <strong>the</strong> Physical Sciences. McGraw-Hill, 2002.<br />

[46] Kai Siegbahn. Alpha-, beta- and gamma-ray spectroscopy. North-Holland Publishing<br />

Company, 1965.<br />

106


[47] RichardA.Dunlap. An introduction to <strong>the</strong> physics of nuclei and particles. Brooks<br />

Cole, 2003.<br />

[48] JohnM. Bl<strong>at</strong>t and Victor F. Weisskopf. Theoretical Nuclear Physics. John Wiley<br />

and Sons Inc., 1952.<br />

[49] Richard B. Firestone. Table of Isotopes. Wiley-Interscience, 8th edition, 1998.<br />

[50] J. D. Jackson abd S. B. Treiman and Jr. H. W. Wyld. Phys. Rev., 106:517–521,<br />

1957.<br />

[51] H. A. Tolhoek and J. A. M. Cox. Physica, 19:101–119, 1953.<br />

[52] T. Yamazaki. Nuclear D<strong>at</strong>a A, 3(1):1–23, 1967.<br />

[53] E. Der M<strong>at</strong>eosian and A. W. Sunyar. Atomic D<strong>at</strong>a and Nuclear D<strong>at</strong>a Tables,<br />

13:391–406, 1974.<br />

[54] Liang Zuo, Michel Humbert, and Claude Esling. J. Appl. Cryst., 26:302–304,<br />

1993.<br />

[55] D.C. Rad<strong>for</strong>d. Radware software package, January 2011.<br />

http://radware.phy.ornl.gov/.<br />

[56] Geoffrey F. Grinyer. High Precession Measurements of 26 Na B − Decay. PhD<br />

<strong>the</strong>sis, The University of Guelph, Guelph, Ontario, Canada, 2004.<br />

[57] E. Browne. Nuclear D<strong>at</strong>a Sheets, 93:848–865, 2001.<br />

107

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!