13.01.2015 Views

Case Studies on Potential Adverse Effects of Pile ... - Gnpgeo.com.my

Case Studies on Potential Adverse Effects of Pile ... - Gnpgeo.com.my

Case Studies on Potential Adverse Effects of Pile ... - Gnpgeo.com.my

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3/29/2010<br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> <str<strong>on</strong>g>Studies</str<strong>on</strong>g> <strong>on</strong> <strong>Potential</strong> <strong>Adverse</strong> <strong>Effects</strong> <strong>of</strong><br />

<strong>Pile</strong> Installati<strong>on</strong>, <strong>Pile</strong> Test Interpretati<strong>on</strong> &<br />

Extreme Loading C<strong>on</strong>diti<strong>on</strong><br />

by Ir. Liew Shaw Sh<strong>on</strong>g<br />

2-Day Workshop <strong>on</strong> Advanced Topics in <strong>Pile</strong> Foundati<strong>on</strong> Design, 8~9 April 2010<br />

Jointly organised by IEM GETD & Nati<strong>on</strong>al University <strong>of</strong> Singapore<br />

Introducti<strong>on</strong><br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> <str<strong>on</strong>g>Studies</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Pile</strong> Heave and Displacement <strong>of</strong> Driven <strong>Pile</strong> Installati<strong>on</strong><br />

Failure <strong>of</strong> <strong>Pile</strong>d Supported Wall under Extreme Lateral Loading<br />

<strong>Pile</strong> Test Interpretati<strong>on</strong><br />

Global Strain Measurement for Compressive & Tensile Loading<br />

C<strong>on</strong>clusi<strong>on</strong>s & Re<strong>com</strong>mendati<strong>on</strong><br />

1


3/29/2010<br />

Overview<br />

Comm<strong>on</strong> problems <strong>of</strong><br />

installing displacement<br />

piles in s<strong>of</strong>t ground<br />

Design robustness <strong>of</strong> piled<br />

supported wall<br />

Comm<strong>on</strong> overlooked<br />

issues <strong>of</strong> pile testing<br />

instrumentati<strong>on</strong><br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> 1: <strong>Pile</strong> Heave & Lateral Soil Displacement<br />

Rapid pile installati<strong>on</strong> in in<strong>com</strong>pressible s<strong>of</strong>t soil induces<br />

Vertical heave in shallow depth (relatively less c<strong>on</strong>finement from<br />

weight <strong>of</strong> overburden soils)<br />

Lateral displacement in deeper depth (with soil c<strong>on</strong>finement)<br />

C<strong>on</strong>sequences :<br />

Up-heaving soil movement causes tensile stress <strong>on</strong> pile & toe lift up<br />

during driving & downdrag after pore presure dissipati<strong>on</strong><br />

Lateral soil displacement causes flexural stress <strong>on</strong> pile & pile<br />

deviati<strong>on</strong><br />

Excessive <strong>com</strong>bined tensile and flexural stresses lead to pile joint<br />

dislodgement<br />

Excessive foundati<strong>on</strong> settlement in post c<strong>on</strong>structi<strong>on</strong> (pile toe<br />

uplifting & downdrag settlement)<br />

2


3/29/2010<br />

<strong>Pile</strong> Joint Dislodgement<br />

<strong>Pile</strong> joints could be dislodged due to excessive flexural<br />

and tensile stresses induced by ground heave and radial<br />

soil displacement<br />

Detectable using High Strain Dynamic <strong>Pile</strong> Test (HSDPT)<br />

Mechanism <strong>of</strong> <strong>Pile</strong> Heave & Soil Displacement<br />

3


3/29/2010<br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> Study - HSDPT<br />

M<strong>on</strong>itoring <strong>of</strong> pile top settlement during the HSDPT restrike<br />

tests is summarised as below:<br />

Cumulative <strong>Pile</strong> Top<br />

Settlement (mm)<br />

Up<strong>on</strong> resting 7-t<strong>on</strong> hammer<br />

<strong>on</strong> pile top<br />

<strong>Pile</strong> C <strong>Pile</strong> A <strong>Pile</strong> B <strong>Pile</strong> D <strong>Pile</strong> E<br />

80 98 125 103 92<br />

At the end <strong>of</strong> Restriking Test 275 399 497 186 182<br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> Study - HSDPT<br />

<strong>Pile</strong> B<br />

Initial Blow<br />

One <strong>Pile</strong> Length (12m)<br />

was DETECTED with<br />

Major Disc<strong>on</strong>tinuity at<br />

‘toe’ (reflecti<strong>on</strong>)<br />

4


3/29/2010<br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> Study - HSDPT<br />

<strong>Pile</strong> B<br />

Blow No. 4<br />

First Joint Disc<strong>on</strong>tinuity<br />

closed up after few blows;<br />

Two <strong>Pile</strong> Lengths was<br />

revealed with another<br />

Major Disc<strong>on</strong>tinuity at<br />

new ‘toe’ (reflecti<strong>on</strong>)<br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> Study - HSDPT<br />

<strong>Pile</strong> B<br />

Blow No. 17<br />

Sec<strong>on</strong>d Major Joint<br />

Disc<strong>on</strong>tinuity also<br />

disappeared;<br />

Total <strong>of</strong> Three <strong>Pile</strong><br />

Lengths was observed<br />

5


3/29/2010<br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> Study - HSDPT<br />

<strong>Pile</strong> B<br />

End <strong>of</strong> Blow<br />

Minor velocity reflecti<strong>on</strong>s<br />

were observable at first<br />

and sec<strong>on</strong>d pile joints<br />

<strong>Pile</strong> Heave M<strong>on</strong>itoring Program<br />

Y<br />

X<br />

Z<br />

6


3/29/2010<br />

<strong>Pile</strong> Heave M<strong>on</strong>itoring Result<br />

30<br />

25<br />

Measured <strong>Pile</strong> Heave (mm)<br />

20<br />

15<br />

10<br />

5<br />

<strong>Pile</strong> No.1<br />

<strong>Pile</strong> No.3<br />

<strong>Pile</strong> No.4<br />

<strong>Pile</strong> No.5<br />

<strong>Pile</strong> No.6<br />

<strong>Pile</strong> No.7<br />

<strong>Pile</strong> No.8<br />

<strong>Pile</strong> No.9<br />

<strong>Pile</strong> No.10<br />

<strong>Pile</strong> No.11<br />

<strong>Pile</strong> No.12<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

<strong>Pile</strong> Installati<strong>on</strong> in Sequence<br />

Summary <strong>of</strong> <str<strong>on</strong>g>Case</str<strong>on</strong>g> 1<br />

Ground heave & radial soil displacement due to rapid<br />

installati<strong>on</strong> <strong>of</strong> displacement pile in s<strong>of</strong>t in<strong>com</strong>pressible s<strong>of</strong>t clay<br />

can pose serious integrity problem <strong>on</strong> pile foundati<strong>on</strong>.<br />

Soluti<strong>on</strong>s :<br />

Use larger pile spacing & reduce rate <strong>of</strong> clustered pile installati<strong>on</strong> for<br />

adequate time for dissipati<strong>on</strong> <strong>of</strong> excess pore pressure<br />

Simultaneous pile installati<strong>on</strong> at mirror pile locati<strong>on</strong> from centre<br />

outwards to minimise net lateral displacement, but this improves<br />

nothing <strong>on</strong> ground heave<br />

Str<strong>on</strong>ger pile structural strength & joint to withstand tensile &<br />

flexural stresses<br />

Staggered pile installati<strong>on</strong> sequence or install piles at alternate<br />

locati<strong>on</strong>s<br />

Restrike all piles with HSDPT to detect pile integrity if ground or soil<br />

heave is observed.<br />

7


3/29/2010<br />

<str<strong>on</strong>g>Case</str<strong>on</strong>g> 2: <str<strong>on</strong>g>Case</str<strong>on</strong>g> study <strong>on</strong> <strong>Pile</strong>d Supported Wall<br />

Failure<br />

8m RS Wall + 2m L-Shaped RC Wall<br />

Foundati<strong>on</strong> : Vertical piles + Raked <strong>Pile</strong>s (3 rows each)<br />

400mm thick RC Slab<br />

3~3.5m RC M<strong>on</strong>so<strong>on</strong> Drain in fr<strong>on</strong>t <strong>of</strong> Wall<br />

Failure occurred <strong>on</strong> 4 Jan 2007<br />

When RS Wall reached s<strong>of</strong>fit <strong>of</strong> L-Shaped RC Wall<br />

REINFORCED SOIL<br />

WALL<br />

WELL<br />

COMPACTED<br />

GRANULAR FILL<br />

TO WALL<br />

SPECIALIST<br />

SPECIFICATION<br />

6 5 4 3 2 1<br />

8


3/29/2010<br />

Site C<strong>on</strong>diti<strong>on</strong>s<br />

Soil C<strong>on</strong>diti<strong>on</strong>s<br />

Top 4~5m Fill : medium stiff clayey Silt and clayey Sand (N =<br />

6 to 10)<br />

4~8m very s<strong>of</strong>t to s<strong>of</strong>t Clay (S u = 40kPa)<br />

8~18m Stiff Sandy Silt (N= 10~30)<br />

Fill Platform: Cohesive lateritic soils<br />

Wall Backfill: Granular Materials<br />

Groundwater Level<br />

RL14m to RL18m<br />

Rainfall Records<br />

Intense antecedent rainfall from 10 Dec 06 to 29 Dec 06<br />

before failure<br />

Triggering midnight rainfall (20mm/hr) <strong>on</strong> 3 Jan 07<br />

Rainfall - ARI<br />

9


3/29/2010<br />

Rainfall Record<br />

Site Observati<strong>on</strong><br />

Panels<br />

Wet panels & traces watermark shown water seeping out<br />

at the panel joints<br />

The highest level <strong>of</strong> observed water seeping was<br />

immediately below 2m high L-shaped RC wall<br />

∴ Evidence <strong>of</strong> high water table behind the wall panel<br />

<strong>Pile</strong> Foundati<strong>on</strong><br />

Flexural damage <strong>of</strong> pile body at 1.75m to 2m below slab<br />

s<strong>of</strong>fit level<br />

Significant rotati<strong>on</strong> <strong>of</strong> upper part <strong>of</strong> pile above the plastic<br />

hinge<br />

∴ Likely due to excessive lateral load <strong>on</strong> piles<br />

10


3/29/2010<br />

1.5m<br />

1.5m<br />

Water<br />

seepage<br />

sign<br />

1.5m<br />

RL 20.2m<br />

1.5m<br />

Ch 0m<br />

Water<br />

seepage<br />

sign<br />

M<strong>on</strong>so<strong>on</strong> Drain<br />

11


3/29/2010<br />

RL 27.0m<br />

2m top RC panel<br />

1.5m<br />

Water<br />

seepage<br />

sign<br />

Precast<br />

RC panel<br />

M<strong>on</strong>so<strong>on</strong> Drain<br />

Damaged Foundati<strong>on</strong> <strong>Pile</strong>s<br />

Raked pile<br />

RL 18.6m<br />

Raked pile<br />

1.8m<br />

Damaged<br />

c<strong>on</strong>diti<strong>on</strong><br />

12


3/29/2010<br />

Investigati<strong>on</strong> Approach<br />

Examine induced Axial & Lateral Forces and Moments<br />

<strong>on</strong> <strong>Pile</strong>s at Design C<strong>on</strong>diti<strong>on</strong> & Failure<br />

Use <strong>of</strong> Lateral earth pressure theory<br />

Piglet to <strong>com</strong>pute pile group load distributi<strong>on</strong><br />

Check FOS against<br />

<strong>Pile</strong> axial capacity<br />

<strong>Pile</strong> lateral capacity<br />

<strong>Pile</strong> structural adequacy (Moment & Shear)<br />

30m<br />

RL29.0m<br />

RL27.0m<br />

RL28.5m<br />

Original Ground Pr<strong>of</strong>ile<br />

25m<br />

Reduced Level<br />

20m<br />

RL17.1m<br />

RL20.18m<br />

RL18.6m<br />

RL20.5m<br />

RL19.0m<br />

15m<br />

0<br />

10m 20m 30m 40m<br />

13


3/29/2010<br />

30m<br />

RL29.0m<br />

Finished Ground Pr<strong>of</strong>ile<br />

RL27.0m<br />

RL28.5m<br />

25m<br />

Original Ground Pr<strong>of</strong>ile<br />

Temporary Ground Pr<strong>of</strong>ile<br />

During Piling & Wall C<strong>on</strong>structi<strong>on</strong><br />

Reduced Level<br />

20m<br />

RL17.1m<br />

RL20.18m<br />

RL18.6m<br />

RL20.5m<br />

RL19.0m<br />

15m<br />

0<br />

10m 20m 30m 40m<br />

30m<br />

RL29.0m<br />

1m Earth drain<br />

RL27.0m<br />

1m<br />

RL28.5m<br />

25m<br />

Original Ground Pr<strong>of</strong>ile<br />

Temporary Ground Pr<strong>of</strong>ile<br />

During Piling & Wall C<strong>on</strong>structi<strong>on</strong><br />

Reduced Level<br />

20m<br />

RL17.1m<br />

RL20.18m<br />

RL18.6m<br />

RL20.5m<br />

RL19.0m<br />

15m<br />

0<br />

10m 20m 30m 40m<br />

14


3/29/2010<br />

30m<br />

RL29.0m<br />

1m<br />

Earth drain<br />

RL27.0m<br />

1m<br />

RL28.5m<br />

25m<br />

Original Ground Pr<strong>of</strong>ile<br />

Temporary Ground Pr<strong>of</strong>ile<br />

During Piling & Wall C<strong>on</strong>structi<strong>on</strong><br />

Reduced Level<br />

20m<br />

RL17.1m<br />

RL20.18m<br />

RL18.6m<br />

RL20.5m<br />

RL19.0m<br />

15m<br />

0<br />

10m 20m 30m 40m<br />

30m<br />

RL28.5m<br />

Reduced Level<br />

25m<br />

20m<br />

RL19.0m<br />

Original Ground Pr<strong>of</strong>ile<br />

Temporary Ground Pr<strong>of</strong>ile<br />

During Piling & Wall C<strong>on</strong>structi<strong>on</strong><br />

15m<br />

0<br />

10m 20m 30m 40m<br />

15


3/29/2010<br />

View from<br />

Retained<br />

Platform<br />

Design Scenario A (GWT at M<strong>on</strong>so<strong>on</strong> Drain)<br />

30m<br />

RL29.0m<br />

Finished Ground Pr<strong>of</strong>ile<br />

Surcharge = 20kPa<br />

RL27.0m<br />

RL28.5m<br />

25m<br />

Original Ground Pr<strong>of</strong>ile<br />

Temporary Ground Pr<strong>of</strong>ile<br />

During Piling & Wall C<strong>on</strong>structi<strong>on</strong><br />

Reduced Level<br />

20m<br />

RL17.1m<br />

RL20.18m<br />

RL18.6m<br />

RL20.5m<br />

RL19.0m<br />

15m<br />

0<br />

10m 20m 30m 40m<br />

16


3/29/2010<br />

Design Scenario A Results<br />

GWT at Top <strong>of</strong> M<strong>on</strong>so<strong>on</strong> Drain (RL20.18m)<br />

Design Scenario B (1/3 GWT)<br />

30m<br />

RL29.0m<br />

Finished Ground Pr<strong>of</strong>ile<br />

Surcharge = 20kPa<br />

RL27.0m<br />

RL28.5m<br />

25m<br />

Original Ground Pr<strong>of</strong>ile<br />

Temporary Ground Pr<strong>of</strong>ile<br />

During Piling & Wall C<strong>on</strong>structi<strong>on</strong><br />

Reduced Level<br />

20m<br />

RL17.1m<br />

RL20.18m<br />

RL18.6m<br />

RL20.5m<br />

RL19.0m<br />

1/3H<br />

RL22.0m<br />

15m<br />

0<br />

10m 20m 30m 40m<br />

17


3/29/2010<br />

Design Scenario B Results<br />

GWT at 1/3 <strong>of</strong> Retained Height (RL22.0m)<br />

18


3/29/2010<br />

Failure Scenario (GWT at Top<br />

Panel)<br />

30m<br />

RL29.0m<br />

Finished Ground Pr<strong>of</strong>ile<br />

RL27.0m<br />

RL28.5m<br />

25m<br />

Original Ground Pr<strong>of</strong>ile<br />

Temporary Ground Pr<strong>of</strong>ile<br />

During Piling & Wall C<strong>on</strong>structi<strong>on</strong><br />

Reduced Level<br />

20m<br />

RL17.1m<br />

RL20.18m<br />

RL18.6m<br />

RL20.5m<br />

RL19.0m<br />

15m<br />

0<br />

10m 20m 30m 40m<br />

Failure Scenario Results<br />

GWT at Top RS Wall Panel (RL27.0m)<br />

19


3/29/2010<br />

Failure Scenario :<br />

Investigati<strong>on</strong> Findings<br />

At Failure<br />

Prol<strong>on</strong>ged intense antecedent rainfall + Triggering rainfall <strong>on</strong> 3<br />

Jan 2007 caused rising <strong>of</strong> water table above top RS wall panels<br />

Excessive imposed lateral stress exceeds the pile lateral capacity<br />

resulting formati<strong>on</strong> <strong>of</strong> plastic hinge <strong>of</strong> piles leading to collapse <strong>of</strong><br />

central porti<strong>on</strong> <strong>of</strong> wall & pulling the adjoining RS wall<br />

At Service C<strong>on</strong>diti<strong>on</strong><br />

The foundati<strong>on</strong> pile design <strong>com</strong>plies to design requirements<br />

(Adequate safety factors)<br />

20


3/29/2010<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

• Main causati<strong>on</strong> :<br />

• Excessive lateral wall force due to high water table rise from<br />

prol<strong>on</strong>ged intense rainfall<br />

• Foundati<strong>on</strong> design under service c<strong>on</strong>diti<strong>on</strong> is acceptable<br />

• Attenti<strong>on</strong> shall be given to brittle behaviour <strong>of</strong> c<strong>on</strong>crete<br />

piles taking lateral load with rapid increase <strong>of</strong> earth<br />

pressure when rise <strong>of</strong> groundwater table within the wall.<br />

29 December 2006 - Johor was the worst hit. Heavy rain – the highest recorded in 100<br />

years – caused floods in Johor Baru and several major towns this m<strong>on</strong>th.<br />

21


3/29/2010<br />

Retenti<strong>on</strong> p<strong>on</strong>d full <strong>of</strong> water<br />

Summary <strong>of</strong> <str<strong>on</strong>g>Case</str<strong>on</strong>g> 2<br />

Need careful evaluati<strong>on</strong> <strong>of</strong> design robustness <strong>of</strong> vertical<br />

and sub-vertical piles in taking lateral foundati<strong>on</strong> loading<br />

Soluti<strong>on</strong>s :<br />

Use more raked piles utilising more robust axial pile strength<br />

to resolve lateral imposed loading<br />

Extra drainage capacity for temporary drains for large flat<br />

retained platform<br />

Timely backfilling <strong>of</strong> suitable fill over granular fill <strong>of</strong> RS wall<br />

22


3/29/2010<br />

<strong>Pile</strong> Test Interpretati<strong>on</strong><br />

(using Global Strain Measurement)<br />

Facts <strong>on</strong> Axially Tested <strong>Pile</strong> :<br />

Free standing porti<strong>on</strong> – No fricti<strong>on</strong> interference<br />

Embedded porti<strong>on</strong> – C<strong>on</strong>stant or linearly varying shaft fricti<strong>on</strong> with depth<br />

Tensile cracking in tensile loading affecting axial stiffness <strong>of</strong> <strong>com</strong>posite pile<br />

secti<strong>on</strong><br />

<br />

Factors affecting accuracy <strong>of</strong> pile instrumentati<strong>on</strong><br />

Linearity <strong>of</strong> load-strain calibrati<strong>on</strong><br />

<strong>Pile</strong> shaft resistance pr<strong>of</strong>ile assumed<br />

Instrument locati<strong>on</strong>s for pile axial load measurement<br />

Numbers <strong>of</strong> pile segment movement measurement<br />

Gauge length <strong>of</strong> strain measurement (global / local strain measurement)<br />

C<strong>on</strong>sequences :<br />

Interpreted pile axial load at locati<strong>on</strong> assigned within the gauge length can<br />

be unjustified (unless no interference <strong>of</strong> shaft fricti<strong>on</strong>)<br />

<strong>Pile</strong> Instrumentati<strong>on</strong> & Interpretati<strong>on</strong><br />

Approaches<br />

Identify pile-soil<br />

fricti<strong>on</strong> pr<strong>of</strong>ile<br />

(C<strong>on</strong>stant/ or<br />

Varying fricti<strong>on</strong><br />

with depth)<br />

Best fit measured<br />

articulated movements<br />

<strong>of</strong> instrumented pile<br />

segments & pile top<br />

load with load-strain<br />

calibrati<strong>on</strong><br />

Derive pile axial<br />

load & mobilised<br />

pile-soil fricti<strong>on</strong> by<br />

differentiati<strong>on</strong>s with<br />

respect to pile-soil<br />

fricti<strong>on</strong> pr<strong>of</strong>ile<br />

Load-movement<br />

relati<strong>on</strong>ship <strong>of</strong> each<br />

pile segment for<br />

load transfer<br />

mechanism<br />

Measure<br />

movements <strong>of</strong><br />

instrumented<br />

pile segments<br />

& pile top load<br />

with loadstrain<br />

calibrati<strong>on</strong><br />

Derive pile axial<br />

load at mid-point<br />

from global strain<br />

measurement &<br />

average mobilised<br />

pile-soil fricti<strong>on</strong><br />

over gauge length<br />

Load-movement<br />

relati<strong>on</strong>ship <strong>of</strong><br />

each pile segment<br />

for load transfer<br />

mechanism<br />

Identify pile-soil<br />

fricti<strong>on</strong> pr<strong>of</strong>ile<br />

Measure localised pile<br />

strain and movement <strong>of</strong><br />

instrumented pile<br />

segments independent<br />

extensometers & pile<br />

top load with load-strain<br />

calibrati<strong>on</strong><br />

Derive localised pile<br />

axial load,<br />

interpolated pile<br />

movement pr<strong>of</strong>ile &<br />

mobilised pile-soil<br />

fricti<strong>on</strong><br />

Load-movement<br />

relati<strong>on</strong>ship <strong>of</strong> each<br />

pile segment for<br />

load transfer<br />

mechanism<br />

New Method Glostrext Method Traditi<strong>on</strong>al Method<br />

23


3/29/2010<br />

Load Transfer <strong>of</strong> Test <strong>Pile</strong><br />

f s<br />

C<strong>on</strong>stant<br />

f s<br />

= Zero δ<br />

δ top<br />

P(z)<br />

top<br />

ε(z), δ(z)<br />

δ i<br />

Z<br />

P i<br />

P(z)<br />

f s<br />

= C<strong>on</strong>stant<br />

P i<br />

Linear<br />

δ(z)<br />

F s,i<br />

δ i+1<br />

δ i<br />

P i+1<br />

P i<br />

P(z)<br />

f s<br />

= f s,0<br />

+ mZ<br />

F s,i<br />

P i+1<br />

P i<br />

Quadratic<br />

δ(z)<br />

F s,i<br />

1<br />

m<br />

δ i+1<br />

P i+1<br />

F s,i<br />

P i+1<br />

3 rd Degree<br />

Polynomial<br />

δ toe<br />

Z<br />

Z<br />

Z<br />

Tensile <strong>Pile</strong> Test<br />

24


3/29/2010<br />

Summary <strong>of</strong> <strong>Pile</strong> Instrumentati<strong>on</strong><br />

Proper planning <strong>of</strong> instrumented segment <strong>of</strong> test piles with due<br />

c<strong>on</strong>siderati<strong>on</strong> <strong>of</strong> soil stratificati<strong>on</strong>, pile resistance pr<strong>of</strong>ile (c<strong>on</strong>stant or<br />

varying pr<strong>of</strong>ile with depth)<br />

Tensile cracking <strong>of</strong> c<strong>on</strong>crete under tensile test load leading to<br />

irreversible stiffness alterati<strong>on</strong> shall be carefully assessed for proper<br />

load transfer<br />

Soluti<strong>on</strong>s :<br />

Identify expected pr<strong>of</strong>ile <strong>of</strong> pile-soil fricti<strong>on</strong> based <strong>on</strong> stratificati<strong>on</strong>, soil<br />

c<strong>on</strong>sistency,<br />

Gauge length shall be reas<strong>on</strong>ably small where practical for proper axial load<br />

interpretati<strong>on</strong>, instrumented segment assigned for pile load and movement<br />

Minimum <strong>on</strong>e axial load measurement per material stratum preferably at<br />

the either sides <strong>of</strong> the stratum interface<br />

For material strata with varying pile-soil fricti<strong>on</strong> with depth, more<br />

instrumented segments are needed for refined interpretati<strong>on</strong> <strong>of</strong> axial load &<br />

movement (for best fitting the pile movement pr<strong>of</strong>ile)<br />

At least <strong>on</strong>e axial load measurement near to pile base for load transfer <strong>of</strong><br />

mobilised base resistance<br />

Thank You<br />

25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!