13.01.2015 Views

The Discovery of GSK2251052: A First-in-Class Boron ... - Anacor

The Discovery of GSK2251052: A First-in-Class Boron ... - Anacor

The Discovery of GSK2251052: A First-in-Class Boron ... - Anacor

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Discovery</strong> <strong>of</strong> <strong>GSK2251052</strong>: A <strong>First</strong>-<strong>in</strong>-<strong>Class</strong><br />

<strong>Boron</strong>-Conta<strong>in</strong><strong>in</strong>g Antibacterial Agent Target<strong>in</strong>g<br />

Leucyl tRNA Synthetase<br />

V<strong>in</strong>cent Hernandez<br />

Director, Medic<strong>in</strong>al Chemistry<br />

<strong>Anacor</strong> Pharmaceuticals, Inc. Palo Alto, CA<br />

vhernandez@anacor.com


2<br />

Talk Summary<br />

<strong>GSK2251052</strong><br />

Drug resistant bacteria are a global threat to health care<br />

– Resistance is a natural response to the selective pressure caused by antibiotic use<br />

– New drugs, and particularly new drug classes, are desperately needed to combat<br />

exist<strong>in</strong>g cl<strong>in</strong>ical resistance<br />

Target-based HTS was not successfully applied to antibacterial research<br />

– Most antibiotics are based on natural products<br />

– Antibacterial ‘drug space’ is different from other therapeutic areas<br />

– New approaches (or chemistries) are needed<br />

<strong>Boron</strong> is underexploited <strong>in</strong> medic<strong>in</strong>al chemistry and has tremendous potential <strong>in</strong><br />

drug discovery<br />

<strong>GSK2251052</strong> <strong>in</strong>hibits bacterial Leucyl tRNA synthetase and represents a new<br />

class <strong>of</strong> Gram-negative antibacterial agents<br />

This novel mechanism <strong>of</strong> action means <strong>GSK2251052</strong> is not affected by exist<strong>in</strong>g<br />

modes <strong>of</strong> target-specific cl<strong>in</strong>ical resistance<br />

<strong>GSK2251052</strong> is the first novel mechanism <strong>of</strong> action agent to reach Phase II<br />

cl<strong>in</strong>ical development for the treatment <strong>of</strong> Gram-negative bacterial <strong>in</strong>fections <strong>in</strong><br />

30 years


Bacterial Infections <strong>in</strong> Pre-antibiotic Times<br />

3


4<br />

Antibiotic Resistance is a Global Threat to<br />

Healthcare Today


5<br />

Antibiotic Resistance is Increas<strong>in</strong>g But New<br />

Drug Approvals are Cont<strong>in</strong>u<strong>in</strong>g to Decl<strong>in</strong>e<br />

BIG PHARMA<br />

BIG PHARMA<br />

Modified from Cooper and Shlaes Nature 2011, 472, 32<br />

We desperately need novel MOA drugs to combat bacterial resistance<br />

Much <strong>of</strong> Big Pharma has left antibacterial drug discovery to pursue<br />

more lucrative <strong>in</strong>dications


Lack <strong>of</strong> Novel Antibiotics that Target New<br />

Mechanisms <strong>in</strong> Gram-negative Bacteria<br />

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010<br />

Penicill<strong>in</strong><br />

(β-Lactams)<br />

PBP<br />

Protosil<br />

(Sulfonamides)<br />

DHPS<br />

Streptomyc<strong>in</strong><br />

(Am<strong>in</strong>oglycosices)<br />

30S Ribosome<br />

Chloramphenicol<br />

50S Ribosome PTC<br />

Fosfomyc<strong>in</strong><br />

MurA<br />

Trimethoprim<br />

DHPS<br />

Nalidixic acid<br />

(Qu<strong>in</strong>olones)<br />

Topoisomerase<br />

Mupiroc<strong>in</strong><br />

IleRS<br />

L<strong>in</strong>comyc<strong>in</strong><br />

(L<strong>in</strong>cosamides)<br />

50S Ribosome PTC<br />

Daptomyc<strong>in</strong><br />

Cell Membrane<br />

L<strong>in</strong>ezolid<br />

(Oxazolid<strong>in</strong>ones)<br />

50S Ribosome PTC<br />

Polymix<strong>in</strong> B<br />

LPS<br />

Chlortetracycl<strong>in</strong>e<br />

(Tetracycl<strong>in</strong>es)<br />

30S Ribosome<br />

Pleuromutil<strong>in</strong><br />

50S Ribosome PTC<br />

Novobioc<strong>in</strong><br />

Gyrase<br />

Erythromyc<strong>in</strong><br />

(Macrolides)<br />

50S Ribosome PTC<br />

Vancomyc<strong>in</strong><br />

D-Ala-D-Ala<br />

!<br />

Modified from Lynn Silver (2011) Cl<strong>in</strong>ical Microbiology Reviews 24: 71–109<br />

6


Genomic Revolution did not Improve Antibacterial Lead<br />

Identification: Results <strong>of</strong> GSK’s Target-based HTS<br />

70 HTS were conducted on the most<br />

promis<strong>in</strong>g essential gene targets<br />

GSK library conta<strong>in</strong>ed ~500K<br />

compounds<br />

Only 16 HTS campaigns yielded any hits<br />

Only 5 leads were developed<br />

– Peptide deformylase (PDF)<br />

– Enoyl-acyl carrier prote<strong>in</strong> reductase (FabI)<br />

– 3-ketoacyl-acyl carrier prote<strong>in</strong> III (FabH)<br />

– Methionyl tRNA synthetase (MetRS)<br />

– Phenylalanyl tRNA synthetase (PheRS)<br />

Better leads already existed for PDF<br />

FabI and MetRS were not broad<br />

spectrum and subsequently partnered<br />

with biotech<br />

FabH did not advance beyond lead<br />

Only PheRS was pursued<br />

7<br />

Nat Rev Drug Discov. 2007;6,29-40


Antibacterials Occupy a Different ‘Drug<br />

Space’<br />

•CNS drugs closely follow Lip<strong>in</strong>ski’s rules<br />

•Antibacterials are on average more hydrophilic and larger<br />

8<br />

Nat Rev Drug Discov. 2007;6,29-40


<strong>Boron</strong> Chemistry: A New Approach to Drug <strong>Discovery</strong>


10<br />

<strong>Boron</strong> is Commonly Found <strong>in</strong> Our<br />

Environment<br />

In nature, boron is present as boric acid<br />

Boric acid is the ma<strong>in</strong> <strong>in</strong>gredient <strong>of</strong> Goop<br />

–Children’s brightly colored toy, that they<br />

squeeze through their f<strong>in</strong>gers<br />

Boric acid is used as a preservative <strong>in</strong> eye<br />

wash and vag<strong>in</strong>al creams<br />

Boric acid has an LD 50 similar to regular<br />

table salt (~3000 mg/kg)<br />

<strong>Boron</strong> is an essential plant nutrient<br />

We consume up to 4 mg <strong>of</strong> boron a day,<br />

primarily from fruits, vegetables and nuts<br />

At <strong>Anacor</strong>, we found background levels <strong>of</strong><br />

200 ng/mL <strong>of</strong> boron <strong>in</strong> mouse plasma


11<br />

General Facts on <strong>Boron</strong><br />

<strong>Boron</strong> is commonly found as boric acid <strong>in</strong> our liv<strong>in</strong>g environment<br />

<strong>Boron</strong> is similar to carbon <strong>in</strong> that it can form stable covalent bonds,<br />

<strong>in</strong>clud<strong>in</strong>g carbon-boron bonds<br />

<strong>Boron</strong> has a unique geometry and reactivity with an empty P-orbital


12<br />

<strong>Boron</strong> has a Unique Bond<strong>in</strong>g Orbital<br />

Configuration: An Empty P-Orbital<br />

Trigonal Planar<br />

Tetrahedral<br />

<strong>Boron</strong> has an empty p-orbital & can form a dative bond<br />

under specific conditions<br />

<strong>The</strong> dative bond forms a tetrahedral structure<br />

Exploitation <strong>of</strong> p-orbital expands drug design possibilities


History and Overview <strong>of</strong> <strong>Boron</strong>ic Acid Drug<br />

<strong>Discovery</strong> Efforts<br />

Design <strong>of</strong> boronic acid enzyme <strong>in</strong>hibitors <strong>in</strong>itiated <strong>in</strong> 1980s<br />

Multiple disease targets have been pursued<br />

H 2 N<br />

NH<br />

N<br />

H<br />

O<br />

OH<br />

B<br />

OH<br />

NH<br />

O<br />

N<br />

Thromb<strong>in</strong><br />

Dup 714<br />

NHAc<br />

β-Lactamase Inhibitor<br />

Arg<strong>in</strong>ase Inhibitor<br />

HCV Pr Inhibitor<br />

DPP4 Inhibitor – PHX-1149<br />

Only Velcade has reached FDA approval<br />

Velcade<br />

Baker et al. (2009) Future Medic<strong>in</strong>al Chemistry, 1(7), 1275-1288<br />

13


14<br />

<strong>Class</strong>ical <strong>Boron</strong>ic Acids Have Significant<br />

Limitations<br />

O<br />

H<br />

N<br />

OH<br />

B OH<br />

Most boronic acid enzyme<br />

<strong>in</strong>hibitors conta<strong>in</strong> an aliphatic<br />

carbon-boron bond<br />

Consequences <strong>of</strong> an aliphatic carbon-boron bond<br />

–Chemical reactivity is moderate and can lead to over reactivity<br />

with non-target prote<strong>in</strong>s – poor selectivity & specificity<br />

–Stability problems <strong>of</strong>ten arise via oxidation or proto-debor<strong>in</strong>ation<br />

–Oxidative metabolism can lead to elim<strong>in</strong>ation <strong>of</strong> boron and loss<br />

<strong>of</strong> biological activity<br />

–pKa range <strong>of</strong> 8-9 favors trigonal form <strong>in</strong> aqueous environment<br />

–Can pose synthetic challenges


15<br />

<strong>Anacor</strong>’s Approach to Drug-like Chemical Matter<br />

Create new organo-boron compounds that reta<strong>in</strong><br />

the P-orbital reactivity but with greatly enhanced<br />

chemical and metabolic stability


16<br />

Benzoxaboroles Show Better Drug-like<br />

Properties Compared to <strong>Boron</strong>ic Acids<br />

pK a range <strong>of</strong> 9-10, <strong>in</strong>dicat<strong>in</strong>g<br />

weaker Lewis acid and poorer<br />

water solubility<br />

Freely rotated C-B bond is easily<br />

accessible to nucleophiles, prone<br />

to non-specific b<strong>in</strong>d<strong>in</strong>g or selfaggregation<br />

Aliphatic boron activity (potency,<br />

selectivity) can be difficult to<br />

modulate<br />

Stability & metabolism issues<br />

Well known <strong>in</strong> the literature<br />

pK a range <strong>of</strong> 7-8, <strong>in</strong>dicat<strong>in</strong>g<br />

stronger Lewis acid and better<br />

water solubility<br />

Constra<strong>in</strong>ed C-B bond <strong>in</strong> a fused<br />

r<strong>in</strong>g is more specific & reactive to<br />

targeted nucleophiles, and less<br />

prone to non-specific b<strong>in</strong>d<strong>in</strong>g<br />

Potency/selectivity can be easily<br />

f<strong>in</strong>e-tuned by electronic and<br />

steric effects <strong>of</strong> substitutents<br />

Chemically & metabolically stable<br />

Underexploited <strong>in</strong> MedChem


17<br />

Re-discovery <strong>of</strong> the Benzoxaboroles<br />

Early chemical exploration at <strong>Anacor</strong> <strong>of</strong> a series <strong>of</strong> bor<strong>in</strong>ic<br />

esters led to the isolation <strong>of</strong> a cyclic boronic ester<br />

R<br />

Br<br />

O<br />

O<br />

O B O<br />

nBuLi<br />

R<br />

B<br />

OH<br />

O<br />

O<br />

R 2<br />

R 2 R2<br />

HCl<br />

MeOH<br />

R<br />

B<br />

O<br />

O<br />

B<br />

O<br />

O<br />

O<br />

O<br />

nBuLi<br />

O<br />

O<br />

B<br />

OH<br />

O<br />

O<br />

O<br />

HCl<br />

MeOH<br />

O<br />

B<br />

O<br />

OH<br />

B<br />

O<br />

O<br />

Desired Compound<br />

Isolated Compound


AN2690 (Tavaborole) has Broad-spectrum<br />

Antifungal Activity<br />

Yeast MIC<br />

AN2690<br />

(µg/mL)<br />

S. cerevisiae ATCC 201388 0.12<br />

C. albicans ATCC 90028 0.5<br />

C. albicans (fluconazole resistant) 0.5<br />

C. glabrata ATCC 90030 0.12<br />

C. krusei ATCC 44507 1<br />

C. parapsilosis ATCC 22019 ≤ 0.5<br />

C. tropicalis ATCC 13803 ≤ 0.5<br />

C. ne<strong>of</strong>ormans F285 0.25<br />

M. fufur ATCC 44344 1<br />

M. pachydermatis ATCC 96746 1<br />

M. sympodialis ATCC 44031 1<br />

Mold MIC<br />

AN2690<br />

(µg/mL)<br />

A. fumigatus ATCC 13073 0.25<br />

R. microsporus ATCC 66276 2<br />

A. alternata ATCC 6663 0.5<br />

P. chrysogenum ATCC 10108 2<br />

C. cladosporioides ATCC 16022 0.5<br />

Fusarium solani ATCC 36031 2<br />

Dermatophyte MIC<br />

AN2690<br />

(µg/mL)<br />

T. rubrum (MIC 90 ) 8<br />

T. mentagrophytes (MIC 90 ) 8<br />

T. tonsurans ATCC 28942 2<br />

E. floccosum ATCC 52066 ≤ 0.5<br />

M. audou<strong>in</strong>ii ATCC 42558 2<br />

M. canis ATCC 10214 2<br />

M. gypseum ATCC 24103 2<br />

Currently <strong>in</strong> phase III trials for the topical treatment <strong>of</strong> onychomycosis<br />

Baker et al.(2006) J. Med. Chem. 49: 4447-4450<br />

18<br />

18


19<br />

AN2690 (Tavaborole) was Shown to be Efficacious<br />

and Well Tolerated <strong>in</strong> Phase 2 Cl<strong>in</strong>ical Trials<br />

Efficacy<br />

<strong>Boron</strong>-based compound<br />

– Targets LeuRS to kill fungus<br />

– Physical properties <strong>of</strong><br />

molecule enables nail<br />

penetration<br />

Basel<strong>in</strong>e<br />

Demonstrated efficacy <strong>in</strong> three<br />

Phase 2 trials<br />

Safety<br />

Day 180<br />

Topical drug<br />

Little or no detectable systemic<br />

exposure<br />

All precl<strong>in</strong>ical toxicology<br />

completed


20<br />

Antifungal Tavaborole Validated Leucyl tRNA<br />

Synthetase as a Novel Drug Target<br />

F<br />

OH<br />

B<br />

O<br />

AN2690<br />

Tavaborole<br />

Genetic study <strong>in</strong><br />

Saccharomyces cerevisiae<br />

identified the cytoplasmic<br />

LeuRS gene (CDC60)<br />

LeuRS has two active sites<br />

• Edit<strong>in</strong>g site<br />

• Synthetic site<br />

All mutations mapped to<br />

the edit<strong>in</strong>g doma<strong>in</strong><br />

Rock et al. Science 2007, 316, 1759-1761


21<br />

Leucyl-tRNA synthetase (LeuRS)<br />

Edit<strong>in</strong>g<br />

doma<strong>in</strong><br />

tRNA Leu<br />

C-term<strong>in</strong>al<br />

doma<strong>in</strong><br />

Anticodonb<strong>in</strong>d<strong>in</strong>g<br />

doma<strong>in</strong><br />

LeuRS-tRNA Leu crystal<br />

structure at 2.3 Å<br />

Catalytic<br />

doma<strong>in</strong><br />

Leucylspecific<br />

doma<strong>in</strong><br />

<strong>The</strong> am<strong>in</strong>oacyl-tRNA synthetase LeuRS is<br />

essential for prote<strong>in</strong> synthesis<br />

- Attaches leuc<strong>in</strong>e to the 3’ term<strong>in</strong>al nucleotide<br />

<strong>of</strong> tRNA Leu (A76)<br />

Two active sites separated by 38 Å<br />

- Synthetic active site synthesizes<br />

am<strong>in</strong>oacylated tRNA Leu<br />

- Edit<strong>in</strong>g (pro<strong>of</strong>-read<strong>in</strong>g) active site<br />

- A76 moves between the two active sites<br />

Edit<strong>in</strong>g site ensures fidelity <strong>of</strong> prote<strong>in</strong><br />

synthesis<br />

- Synthetic site can attach isoleuc<strong>in</strong>e, val<strong>in</strong>e,<br />

methion<strong>in</strong>e, norval<strong>in</strong>e and other am<strong>in</strong>o acids<br />

to tRNA Leu<br />

- Edit<strong>in</strong>g site hydrolyzes all am<strong>in</strong>oacyl-tRNA Leu<br />

other than leuc<strong>in</strong>e<br />

- Mischarged tRNA Leu are extremely deleterious<br />

to the cell


22<br />

Bacterial and Eukaryotic LeuRS are Different<br />

Archeal/<br />

Eukaryotic<br />

edit<strong>in</strong>g<br />

catalytic<br />

HIGH<br />

15 % id.<br />

KMSKS<br />

ABD<br />

C-ter1<br />

A<br />

C<br />

C<br />

A<br />

edit<strong>in</strong>g<br />

LS<br />

A<br />

C<br />

C<br />

A<br />

Bacterial<br />

HIGH<br />

catalytic<br />

KMSKS<br />

ABD<br />

C-ter2<br />

28 % identity<br />

Mitochondrial LeuRS is edit<strong>in</strong>g defective<br />

- (Lue & Kelly Biochem (2005) 44: 3010)


X-ray Structure Revealed A tRNA Leu Adduct <strong>in</strong><br />

the Edit<strong>in</strong>g Site <strong>of</strong> Leucyl tRNA Synthetase<br />

AN2690-A76 Adduct<br />

In Edit<strong>in</strong>g Site<br />

Leuc<strong>in</strong>e<br />

<strong>in</strong><br />

Synthesis Site<br />

tRNA<br />

O<br />

O<br />

P<br />

O -<br />

O<br />

O<br />

N<br />

N<br />

NH 2<br />

N<br />

N<br />

O<br />

O<br />

B<br />

O<br />

F<br />

LeuRS<br />

Rock et al. (2007) Science 316:1759-1761<br />

23<br />

tRNA Leu


24<br />

AN2690 Forms a Bi-dentate Adduct to the<br />

Term<strong>in</strong>al Ribose <strong>of</strong> tRNA leu<br />

Rock et al. Science 2007, 316, 1759-1761


AN2690 Traps tRNA Leu <strong>in</strong> Edit<strong>in</strong>g Site and<br />

Inhibits Am<strong>in</strong>oacylation<br />

Prevents am<strong>in</strong>oacylation <strong>of</strong><br />

tRNA Leu , which ultimately leads<br />

to a block <strong>in</strong> prote<strong>in</strong> synthesis<br />

<strong>Boron</strong> is absolutely essential<br />

Carbon and other analogues<br />

are <strong>in</strong>active<br />

AN2690-tRNA Leu<br />

Rock et al. Science 2007, 316, 1759-1761.<br />

25 25


Benzoxaborole R<strong>in</strong>g is Essential for<br />

Inhibition <strong>of</strong> Fungal LeuRS<br />

Structure IC50 (μM) Structure IC50 (μM)<br />

2.1 >100<br />

96 >100<br />

>100 >100<br />

>100<br />

<strong>Boron</strong> and the oxaborole r<strong>in</strong>g<br />

are required for <strong>in</strong>hibition <strong>of</strong><br />

am<strong>in</strong>oacylation.<br />

Rock et al. Science 2007, 316, 1759-1761.<br />

26


27<br />

AN2690 had Poor In vitro Activity Aga<strong>in</strong>st<br />

Gram-negative Bacteria<br />

IC 50<br />

*(µM)<br />

MIC (µg/mL)<br />

Compound<br />

E. coli<br />

P. aerug<strong>in</strong>osa<br />

S. cerevisiae<br />

Ac<strong>in</strong>etobacter<br />

sp. ATCC15473<br />

E. coli K12<br />

K. pneumoniae<br />

ATCC 700603<br />

P. aerug<strong>in</strong>osa<br />

ATCC 27853<br />

AN2690<br />

F<br />

OH<br />

B<br />

O<br />

9.9 7.9 0.06 32 8 32 >64<br />

AN2690 showed poor biochemical potency and weak bacterial MIC<br />

pr<strong>of</strong>iles<br />

- E. coli LeuRS <strong>of</strong>f-rate was very fast<br />

X-ray structure <strong>of</strong> AN2690/LeuRS suggests that more <strong>in</strong>teractions<br />

could be obta<strong>in</strong>ed by <strong>in</strong>corporat<strong>in</strong>g appropriate substituents<br />

* IC 50 determ<strong>in</strong>ed after 20 m<strong>in</strong>utes pre-<strong>in</strong>cubation with enzyme and tRNA


X-ray Structure <strong>of</strong> AN2690 <strong>in</strong> Bacterial LeuRS<br />

Revealed a Key B<strong>in</strong>d<strong>in</strong>g Site was not Utilized<br />

Tyr-327<br />

Leu-329<br />

Tyr-327<br />

Leu-329<br />

Asp-347<br />

Ile-337<br />

Asp-347<br />

Ile-337<br />

Val-340<br />

Thr-252<br />

Met-338<br />

Tyr-332<br />

Thr-248<br />

Val-340<br />

Thr-252<br />

Met-338<br />

Thr-248<br />

Norval<strong>in</strong>e post-transfer substrate analogue<br />

AN2690-AMP<br />

L<strong>in</strong>cecum et al. Molecular Cell 2003, 11, 951-963 Rock et al. Science 2007, 316, 1759-1761<br />

28


29<br />

3-Am<strong>in</strong>omethyl Substitution was Added<br />

to Ga<strong>in</strong> <strong>The</strong>se Key H-bonds<br />

Nva2aa<br />

AN2690<br />

Nva2aa<br />

AN3334


Addition <strong>of</strong> 3-Am<strong>in</strong>omethyl to Benzoxaborole<br />

Made Three Hydrogen Bonds with LeuRS<br />

Leu-327<br />

Asp-345<br />

Asp-342<br />

Glu-329<br />

Val-338<br />

Tyr-330<br />

E. coli LeuRS IC 50<br />

Thr-252<br />

Met-336<br />

Thr-248<br />

27.5 μM<br />

Thr-247<br />

Ser-227<br />

1.0 μM(AN3334)<br />

Alley et al. ICAAC 2009 F1-1223a<br />

30


31<br />

Improv<strong>in</strong>g Spectrum <strong>of</strong> Activity for AN3334<br />

Was Focus <strong>of</strong> Lead Optimization<br />

Stra<strong>in</strong><br />

No. <strong>of</strong><br />

stra<strong>in</strong>s<br />

AN3334<br />

Tigeccyl<strong>in</strong>e<br />

Imipenem<br />

P. aerug<strong>in</strong>osa (WT) 50 1 16 1 8 2 4 16 32 >64 >64<br />

P. aerug<strong>in</strong>osa (MbL-) 25 1 >16 32 >32 >16 >16 >32 >128 >64 >64<br />

P. aerug<strong>in</strong>osa (MbL+) 26 1 >16 >64 >32 >16 >16 >32 >128 >64 >64<br />

A. baumannii (WT) 25 >128 1 0.25 8 4 2 16 8 32 32<br />

Ac<strong>in</strong>etobacter spp. (MDR) 26 >128 8 64 >32 >16 >16 >32 >128 >64 >64<br />

S. maltophilia (WT) 50 1 1 >64 >32 4 >16 >32 >128 >64 >64<br />

B. cepacia 50 4 4 16 32 8 >16 16 32 >64 >64<br />

E. coli (WT) 27 1 0.25 0.12 ≤1 >16 2 ≤1 8 32 >64<br />

E. coli (ESBL) 25 2 0.25 0.25 >32 >16 >16 >32 128 64 >64<br />

Klebsiella spp. (WT) 25 1 0.5 0.25 ≤1 ≤0.5 1 ≤1 16 8 >64<br />

Klebsiella spp. (ESBL) 15 1 2 1 >32 16 >16 >32 >128 64 >64<br />

Klebsiella spp. (KPC) 10 2 1 >64 >32 >16 16 >32 >128 >64 >64<br />

Enterobacter spp. (WT) 25 1 0.5 1 ≤1 ≤0.5 ≤0.5 2 8 >64 >64<br />

Enterobacter spp. (AmpC) 26 1 4 0.5 8 >16 >16 >32 >128 >64 >64<br />

Citrobacter spp. (WT) 36 1 0.5 1 ≤1 1 >16 2 16 >64 >64<br />

Citrobacter spp. (AmpC) 16 0.5 0.5 1 2 16 2 >32 128 >64 >64<br />

P. mirabilis (WT) 42 128 4 2 ≤1 2 2 ≤1 0.5 8 >64<br />

P. mirabilis (ESBL) 11 >128 4 2 >32 >16 >16 >32 4 64 >64<br />

P. vulgaris (WT) 20 >128 2 2 ≤1 ≤0.5 1 ≤1 0.5 16 >64<br />

M. morganii (WT) 17 2 2 4 ≤1 4 2 4 2 >64 >64<br />

Indole positive Proteae 14 16 2 2 ≤1 16 4 ≤1 4 >64 >64<br />

S. marcenscens (WT) 38 0.5 1 1 ≤1 1 1 2 32 >64 >64<br />

S. marcenscens (AmpC) 16 0.5 2 1 4 4 >16 >32 64 >64 >64<br />

Key: Red = resistant, Yellow = <strong>in</strong>termediate and Green = susceptible based on CLSI <strong>in</strong>terpretive criteria (M100‐S21, 2011), except for<br />

AN3334 (susceptible def<strong>in</strong>ed as MICs ≤4 mcg/mL), tigecycl<strong>in</strong>e (FDA <strong>in</strong>terpretive criteria used to def<strong>in</strong>e susceptibility) and polymix<strong>in</strong>B<br />

(susceptible ≤ 2mcg/mL , <strong>in</strong>termediate 4 mcg/mL, resistant ≥8 mcg/mL)<br />

Cefepime<br />

Lev<strong>of</strong>loxac<strong>in</strong><br />

Gentamic<strong>in</strong><br />

Ceftazidime<br />

Piperacill<strong>in</strong>/<br />

tazobactam<br />

Amoxycill<strong>in</strong>/<br />

clavulanate<br />

Ampicill<strong>in</strong>


32<br />

7-Hydroxyl Substitution Identified Another<br />

Interaction with Phosphate <strong>of</strong> tRNA<br />

Asp-342<br />

Asp-342<br />

P75<br />

Leu-327<br />

Glu-329<br />

E. coli LeuRS IC 50<br />

Thr-252<br />

Met-336<br />

Thr-248<br />

Tyr-330<br />

Ser-227<br />

27.5 μM<br />

Thr-247<br />

1.4 μM (AN3016)


33<br />

Key Interactions Identified <strong>in</strong> X-ray Structures<br />

were Comb<strong>in</strong>ed <strong>in</strong> AN3365/<strong>GSK2251052</strong><br />

OH<br />

OH<br />

OH<br />

B<br />

O<br />

AN3334<br />

NH 2<br />

+<br />

O<br />

AN3016<br />

OH<br />

B<br />

O<br />

O<br />

OH<br />

B<br />

O<br />

NH 2<br />

<strong>GSK2251052</strong><br />

A 76<br />

Arg 344<br />

A 76<br />

A 76<br />

Thr 248<br />

Asp 342<br />

Thr 248<br />

Arg 344<br />

Thr 248<br />

Asp 342<br />

Asp 345<br />

Thr 247<br />

AN3334<br />

Asp 345<br />

Thr 247<br />

AN3016<br />

Asp 345<br />

Asp 342<br />

Thr 247<br />

<strong>GSK2251052</strong><br />

Hernandez et al. ICAAC 2010 F1-1637


34<br />

<strong>GSK2251052</strong> has Broader Spectrum than AN3334 with<br />

Activity Aga<strong>in</strong>st Proteae and Ac<strong>in</strong>etobacter <strong>in</strong> Primary Panel<br />

E.coli<br />

K.pneumoniae<br />

Compound LeuRS IC50 ATCC29522 CTM-2,OXA-2 K12 WT K12 tolC ATCC42816 KPC2 ATCC27853 PA01 WT PA01 pumpless ATCC15473 BAA1710 IMP BAA-663<br />

Cipr<strong>of</strong>loxac<strong>in</strong> N/A 6.4<br />

Meropenem N/A 64<br />

Tigecycl<strong>in</strong>e N/A 64 0.5 0.5 0.25 1 >64 8 >64<br />

AN3334 1.0 uM 1 1 2 2 1 0.5 2 2 1 >64 >64 2 >64<br />

AN3016 1.36 uM 4 16 8 2 16 16 >64 >64 8 4 8 NT 32<br />

GSK'052 0.31 uM 1 1 2 2 1 1 2 1 0.5 1 2 1 1<br />

4 >100 uM 64 >64 >64 >64 64 64 >64 >64 64 >64 >64 NT >64<br />

P.aerug<strong>in</strong>osa<br />

A.baumannii<br />

E.cloacae<br />

P.mirabilis<br />

FDA approved breakpo<strong>in</strong>ts for tigecycl<strong>in</strong>e and CLSI susceptibility criteria were used (green=S, yellow=I,<br />

red=R). Polymyx<strong>in</strong> B breakpo<strong>in</strong>ts for P. aerug<strong>in</strong>osa were used for Enterobacteriaceae. For the <strong>Anacor</strong><br />

compounds they were color coded as green ≤ 4 ug/mL, yellow = 8-16 µg/mL, Red ≥32 µg/mL.


35<br />

<strong>GSK2251052</strong> In Vitro Activity: Enterobacteriaceae,<br />

Includ<strong>in</strong>g Multidrug-Resistant Stra<strong>in</strong>s<br />

Key: Red = resistant, Yellow = <strong>in</strong>termediate and Green = susceptible based on CLSI <strong>in</strong>terpretive criteria (M100‐S21,<br />

2011), except for <strong>GSK2251052</strong> (susceptible def<strong>in</strong>ed as MICs ≤4 mcg/mL), tigecycl<strong>in</strong>e (FDA <strong>in</strong>terpretive criteria used<br />

to def<strong>in</strong>e susceptibility) and polymix<strong>in</strong>B (susceptible ≤ 2mcg/mL , <strong>in</strong>termediate 4 mcg/mL, resistant ≥8 mcg/mL)


36<br />

<strong>GSK2251052</strong>: Pre-Cl<strong>in</strong>ical In vitro<br />

Frequency <strong>of</strong> Resistance<br />

Compound<br />

Frequency <strong>of</strong> Resistance<br />

E. coli K. pneumoniae P. aerug<strong>in</strong>osa<br />

4xMIC 10xMIC 4xMIC 10xMIC 4xMIC 10xMIC<br />

<strong>GSK2251052</strong> 8x10 ‐8 6x10 ‐8 5x10 ‐8 4x10 ‐8 1x10 ‐7 5x10 ‐8<br />

2x10 ‐7 7x10 ‐8 8x10 ‐7 6x10 ‐8 2x10 ‐7 9.6x10 ‐8<br />

1x10 ‐7 8x10 ‐8 4x10 ‐8 2x10 ‐8<br />

Ceftazidime


37<br />

<strong>GSK2251052</strong>: Pre-Cl<strong>in</strong>ical Mechanism<br />

<strong>of</strong> Resistance<br />

Laboratory generated mutants resistant to <strong>GSK2251052</strong> conta<strong>in</strong> mutations<br />

<strong>in</strong> the LeuRS edit<strong>in</strong>g doma<strong>in</strong><br />

– S<strong>in</strong>gle-step mutations <strong>in</strong> leuS<br />

<strong>GSK2251052</strong> MICs <strong>of</strong> resistant mutants range from 32->256 mcg/mL<br />

Organism<br />

<strong>GSK2251052</strong> MIC (mcg/ml)<br />

WT<br />

Mutants<br />

E. coli 1 64‐>256<br />

K. pneumoniae 1 256‐>256<br />

P. aerug<strong>in</strong>osa 4 32‐>256<br />

– <strong>GSK2251052</strong> resistant mutants do not confer cross-resistance to other<br />

antibiotics and appear to be edit<strong>in</strong>g deficient


Synthesis <strong>of</strong> <strong>GSK2251052</strong>


39<br />

Initial Medchem Synthesis Relied on Chiral<br />

Prep-HPLC Separation <strong>of</strong> Enantiomers


40<br />

Improved Medchem Process was used to<br />

Produce Phase I Cl<strong>in</strong>ical Trial Material<br />

OH<br />

OH<br />

BnO<br />

Br<br />

O<br />

OH<br />

OBn<br />

Tf 2 O, Pyrid<strong>in</strong>e<br />

O<br />

OTf<br />

OBn<br />

CHO<br />

t-BuONa, DMSO<br />

rt, O/N<br />

quantitative<br />

CHO<br />

DCM, rt, 3 h<br />

64-88%<br />

CHO<br />

O O<br />

BB<br />

O O<br />

PdCl 2 (dppf), KOAc<br />

THF or dioxane<br />

50-75%<br />

BnO<br />

O<br />

OH<br />

B<br />

O<br />

NaOH(aq.), CH 3 NO 2<br />

THF, 0 o Ctort,O/N<br />

55-60%<br />

BnO<br />

O<br />

O<br />

B O<br />

CHO<br />

NO 2<br />

50% yield<br />

1)Pd(OH) 2 ,NH 3 <strong>in</strong> MeOH<br />

2) HCl <strong>in</strong> MeOH<br />

HO<br />

O<br />

AN3213<br />

(racemic)<br />

OH<br />

B<br />

O<br />

NH 2 .HCl<br />

HO<br />

1) NH 3 <strong>in</strong> MeOH<br />

2) R-(-)-mandelic acid<br />

3) aq. HCl<br />

47% yield<br />

O<br />

<strong>GSK2251052</strong><br />

OH<br />

B<br />

O<br />

NH 2 .HCl


41<br />

Process Research at GSK Identified a<br />

Stereospecific Route to <strong>GSK2251052</strong><br />

Conde, JJ. WO 2011127143


Systemic Treatment with <strong>GSK2251052</strong> Shows Good<br />

Distribution with no Accumulation <strong>in</strong> Tissues<br />

Figure 1. Whole-body autoradiograph for male Long Evans Rat at 1, and 72 h after a<br />

s<strong>in</strong>gle <strong>in</strong>travenous adm<strong>in</strong>istration <strong>of</strong> 14C-<strong>GSK2251052</strong> (Group 5, 50 mg/kg)<br />

Liu et al. N. American Regional ISSX 2011 P-84<br />

42


43<br />

<strong>GSK2251052</strong> Phase 1 Results Showed L<strong>in</strong>ear PK<br />

with Blood Levels Reach<strong>in</strong>g <strong>in</strong> Excess <strong>of</strong> MIC90 Levels<br />

IV Dose<br />

Mean AUC*<br />

(h.µg/ml)<br />

Mean Cmax*<br />

(µg/ml)<br />

MAD 1 500 mg BID x 8 days 56 9.4<br />

MAD 2 750 mg BID x 14 days 76 11.5<br />

MAD 3 1200 mg BID x 14 days 117 19.1<br />

MAD 4 2000 mg BID x 14 days 193 31<br />

*Mean PK parameter for last day <strong>of</strong> dos<strong>in</strong>g


Recreat<strong>in</strong>g Human PK Pr<strong>of</strong>iles <strong>in</strong> Rat Infection<br />

Models<br />

Rats receive cont<strong>in</strong>uous IV <strong>in</strong>fusion via jugular cannula<br />

– Infusion delivered by peristaltic pump<br />

– Flow rates <strong>of</strong> <strong>in</strong>fusion controlled by computer<br />

– Rates change every 15 m<strong>in</strong>utes to recreate<br />

human concentration pr<strong>of</strong>ile <strong>in</strong> rat blood<br />

‘052 tested <strong>in</strong> lung and thigh <strong>in</strong>fection models<br />

• Blood samples collected to confirm PK pr<strong>of</strong>iles<br />

• Animals receive 4 days <strong>of</strong> therapy<br />

All studies were conducted after review by the Institutional Animal Care and Use Committee at GSK<br />

and <strong>in</strong> accordance with the GSK Policy on the Care, Welfare and Treatment <strong>of</strong> Laboratory Animals<br />

44


45<br />

Efficacy <strong>of</strong> Recreated Human IV Exposure Pr<strong>of</strong>iles<br />

Dosed BID <strong>in</strong> Rat Lung and Thigh Infection Models<br />

Daily AUC 60 ug.h/ml<br />

Cmax 10 ug/ml<br />

K. pneumoniae ANA588 (lung)<br />

500mg pr<strong>of</strong>ile for ‘052<br />

Daily AUC 120 ug.h/ml<br />

Cmax 18 ug/ml<br />

MIC=0.5<br />

MIC>64<br />

MIC=0.125<br />

E. coli 343659 (thigh)<br />

500mg pr<strong>of</strong>ile for ‘052<br />

P. aerug<strong>in</strong>osa 1483518 (thigh)<br />

1200mg pr<strong>of</strong>ile for ‘052<br />

MIC>64<br />

MIC>16<br />

MIC>64<br />

MIC=0.5<br />

MIC=0.25<br />

MIC=4


Phase II Cl<strong>in</strong>ical Studies<br />

LRS114689: Comparative, dose-rang<strong>in</strong>g study <strong>of</strong> <strong>GSK2251052</strong> vs.<br />

meropenem <strong>in</strong> <strong>in</strong> the treatment <strong>of</strong> complicated <strong>in</strong>tra-abdom<strong>in</strong>al <strong>in</strong>fection<br />

LRS114688: Comparative, dose-rang<strong>in</strong>g study <strong>of</strong> <strong>GSK2251052</strong> vs.<br />

imipenem-cilastat<strong>in</strong> <strong>in</strong> complicated lower ur<strong>in</strong>ary tract <strong>in</strong>fection and<br />

pyelonephritis<br />

– Both studies are dose rang<strong>in</strong>g , 750mg:1500mg twice a day: Active Comparator<br />

– 210 subjects per study<br />

– Independent Safety Review Committee<br />

– Decide on the most appropriate and safe dose for Phase III<br />

In PH2 cUTI study 4 <strong>of</strong> 14 patients (20 patients enrolled) saw a rapid<br />

emergence <strong>of</strong> mutants with high <strong>GSK2251052</strong> MIC values<br />

– Mutations were <strong>in</strong> leuS<br />

In PH2 cIAI study no resistance mutants were discovered <strong>in</strong> 15 patients<br />

enrolled<br />

Work is ongo<strong>in</strong>g to determ<strong>in</strong>e future development options for<br />

<strong>GSK2251052</strong><br />

46


47<br />

Talk Summary<br />

Multi-drug resistant bacteria is a global health threat<br />

New approaches are needed to f<strong>in</strong>d novel antibacterial agents<br />

<strong>Boron</strong> is underexploited <strong>in</strong> medic<strong>in</strong>al chemistry and has tremendous<br />

potential <strong>in</strong> drug discovery<br />

AN3365/<strong>GSK2251052</strong> <strong>in</strong>hibits bacterial LeuRS and is the first Gramnegative<br />

antibacterial with a truly novel mechanism <strong>of</strong> action to reach<br />

phase II trials <strong>in</strong> over 30 years


Acknowledgements<br />

To Everyone at ANACOR especially<br />

<strong>Discovery</strong> Biology: M.R.K. Alley, J. Fong,<br />

W. Mao, M. Mohan, M. Meewan, F. Rock,<br />

Pharmacology: P. Torres, H. Sexton,<br />

Y. Freund<br />

Computational Chemistry: Y. Zhou, D.<br />

Sullivan<br />

Medic<strong>in</strong>al Chemistry: T. Akama, YK<br />

Zhang, Y. Zhang, J. Plattner<br />

PKDM: XQ. Fan, W. Bu, L. Liu<br />

Program Management: S. Lux, S. Baker,<br />

K. Maples<br />

Toxicology: S. Chanda, C. Chen, I. Heyman<br />

Cl<strong>in</strong>ical: F. Heer<strong>in</strong>ckx, L. Zane<br />

All studies were conducted after review by the Institutional Animal<br />

Care and Use Committee at GSK and <strong>in</strong> accordance with the GSK<br />

Policy on the Care, Welfare and Treatment <strong>of</strong> Laboratory Animals<br />

EMBL: A. Palencia, T. Crep<strong>in</strong>, S. Cusack<br />

HPA: D. Livermore, M. Warner, S. Mushtaq<br />

NAEJA: J. Nieman, M. Anugula, N. Babu, M. Baek<br />

C. Diaper, C. Ha, M. Kelly, M. Keramane, X. Lu, R.<br />

Mohammad, R. Patnam, K. Savariraj, R. Sharma,<br />

R. Subedi, I. Sidhu, R. S<strong>in</strong>gh<br />

Curragh Chemistries Inc: J. Phillips<br />

Chiral Technologies: L. Cole, E. Esksteen<br />

Chirosolve: N. Vaidya<br />

RICERCA: A. O’Leary<br />

JMI: R. Mendes, D. Biedenbach, H. Sader<br />

R. Jones<br />

IHMA: S. Bouchillon, M. Hackel, D. Hoban<br />

S. Hawser<br />

CMAX/University South Australia:<br />

S. Shakib, R. Milne<br />

Penn State: Steve Benkovic<br />

To Everyone at GSK especially<br />

P. DeMarsh, N. Pearson, E. Dumont, P. Elefante, J. Hoover, C. Jakielaszek, C. M<strong>in</strong><strong>in</strong>ger, R. Page, N. Scangarella-<br />

Oman, C. S<strong>in</strong>gley, N. Simon, S. Rittenhouse, J. Tomayko, 48 K. Widdowson, D. Payne, J. Conde, A. Kowalski, M. Zajac 48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!