13.01.2015 Views

20-th Irish Mathematical Olympiad 2007

20-th Irish Mathematical Olympiad 2007

20-th Irish Mathematical Olympiad 2007

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>20</strong>-<strong>th</strong> <strong>Irish</strong> Ma<strong>th</strong>ematical <strong>Olympiad</strong> <strong>20</strong>07<br />

May 12, <strong>20</strong>07<br />

Time: 3 hours each part.<br />

Part 1<br />

1. Find all prime numbers p and q such <strong>th</strong>at p divides q + 6 and q divides<br />

p + 7.<br />

2. Prove <strong>th</strong>at a triangle ABC is right-angled if and only if<br />

sin 2 A + sin 2 B + sin 2 C = 2.<br />

3. The point P is a fixed point on a circle and Q is a fixed point on a line.<br />

The point R is a variable point on <strong>th</strong>e circle such <strong>th</strong>at P, Q, and R are<br />

not collinear. The circle <strong>th</strong>rough P, Q, and R meets <strong>th</strong>e line again at V .<br />

Show <strong>th</strong>at <strong>th</strong>e line V R passes <strong>th</strong>rough a fixed point.<br />

4. Air Michael and Air Patrick operate direct flights connecting Belfast,<br />

Cork, Dublin, Galway, Limerick, and Waterord. For each pair of cities<br />

exactly one of <strong>th</strong>e airlines operates <strong>th</strong>e route (in bo<strong>th</strong> directions) connecting<br />

<strong>th</strong>e cities. Prove <strong>th</strong>at <strong>th</strong>ere are four cities for which one of <strong>th</strong>e airlines<br />

operates a round trip. (Note <strong>th</strong>at a round trip of four cities P, Q, R, and<br />

S, is a journey <strong>th</strong>at follows <strong>th</strong>e pa<strong>th</strong> P → Q → R → S → P.)<br />

5. Let r and n be nonnegative integers such <strong>th</strong>at r ≤ n.<br />

(a) Prove <strong>th</strong>at<br />

is an integer.<br />

(b) Prove <strong>th</strong>at<br />

for all n ≥ 9.<br />

[n/2]<br />

∑<br />

r=0<br />

(<br />

n + 1 − 2r n<br />

n + 1 − r r)<br />

(<br />

n + 1 − 2r n<br />

< 2<br />

n + 1 − r r)<br />

n−2<br />

Part 2<br />

6. Let r, s, and t be <strong>th</strong>e roots of <strong>th</strong>e cubic polynomial<br />

p(x) = x 3 − <strong>20</strong>07x + <strong>20</strong>02.<br />

Determine <strong>th</strong>e value of<br />

r − 1<br />

r + 1 + s − 1<br />

s + 1 + t − 1<br />

t + 1 .<br />

1


7. Suppose <strong>th</strong>at a, b, and c are positive real numbers. Prove <strong>th</strong>at<br />

√<br />

a + b + c a2 + b<br />

≤<br />

2 + c 2 ab<br />

c<br />

≤<br />

+ bc a + ca b<br />

.<br />

3 3 3<br />

For each of <strong>th</strong>e inequalities, find <strong>th</strong>e conditions on a, b, and c such <strong>th</strong>at<br />

equality holds.<br />

8. Let ABC be a triangle <strong>th</strong>e leng<strong>th</strong>s of whose sides BC, CA, AB, respectively,<br />

are denoted by a, b, and c. Let <strong>th</strong>e internal bisectors of <strong>th</strong>e angles<br />

∠BAC, ∠ABC, ∠BCA, respectively, meet <strong>th</strong>e sides BC, CA, and AB at<br />

D, E, and F. Denote <strong>th</strong>e leng<strong>th</strong>s of <strong>th</strong>e line segments AD, BE, CF by<br />

d, e, and f, respectively. Prove <strong>th</strong>at<br />

def =<br />

4abc(a + b + c)∆<br />

(a + b)(b + c)(c + a) ,<br />

where ∆ stands for <strong>th</strong>e area of <strong>th</strong>e triangle ABC.<br />

9. Find <strong>th</strong>e number of zeros in which <strong>th</strong>e decimal expansion of <strong>20</strong>07! ends.<br />

Also find its last non-zero digit.<br />

10. Suppose <strong>th</strong>at a and b are real numbers such <strong>th</strong>at <strong>th</strong>e quadratic polynomial<br />

f(x) = x 2 + ax + b has no nonnegative real roots. Prove <strong>th</strong>at <strong>th</strong>ere exist<br />

two polynomials g, h whose coefficients are nonnegative real numbers such<br />

<strong>th</strong>at<br />

f(x) = g(x)<br />

h(x)<br />

for all real numbers x.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!