13.01.2015 Views

Aaron Den Boer - 701 Seminar - November 20 2012 - Course Notes

Aaron Den Boer - 701 Seminar - November 20 2012 - Course Notes

Aaron Den Boer - 701 Seminar - November 20 2012 - Course Notes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Characterization and<br />

Dissolution of Ferroniobium<br />

<strong>Aaron</strong> <strong>Den</strong> <strong>Boer</strong><br />

Supervisor: Dmitri Malakhov<br />

McMaster University<br />

<strong>November</strong> <strong>20</strong>, <strong>20</strong>12


Outline<br />

‣ Introduction<br />

‣ Problem Definition<br />

‣ Completed Work – Characterization of FeNb<br />

‣ Current Work – Modelling Solid Nb Dissolution in Liquid Fe<br />

‣ Future Work – Validation of Binary Model<br />

2


Introduction<br />

• Microalloying produces steels (called High Strength Low Alloy<br />

steels) with superior toughness, corrosion resistance, and increased<br />

strength, as compared to some other steels<br />

• Microalloying with elements such as Nb, Ti, and V improve these<br />

properties through grain refinement, and solid solution and<br />

precipitation hardening<br />

3


Introduction<br />

• Evolution of microalloyed HSLA steels has led to the development<br />

of ferroalloy additions in steelmaking<br />

• Microalloying is performed by adding ferroalloys to the liquid steel<br />

during ladle metallurgy FeNb, FeTi, FeV<br />

• One aim of ladle metallurgy is alloying to adjust for target chemical<br />

analysis; the ladle temperature is around 1600°C<br />

• Once these ferroalloys have assimilated into the melt, casting will<br />

result in the formation of fine precipitates at late stages of<br />

solidification<br />

http://www.danieli.com<br />

Porter, Repas, 1982<br />

4


Introduction<br />

• How do these fine precipitates form during solidification<br />

i. “Homogenous” liquid melt<br />

ii.<br />

Phases with high melting<br />

temperatures (i.e. Nb-C,<br />

Ti-N, Ti-C-S) precipitate out<br />

Fe – 0.05 Nb – 0.1 C<br />

(Nb,Ti) (C,N)<br />

Jun, Kang, Park, <strong>20</strong>03<br />

5


Ferroniobium Manufacturing<br />

• A mixture containing alumina, sodium aluminate, iron and niobium<br />

is heated up to 2<strong>20</strong>0°C and held for several minutes<br />

• The melt is completely liquid and cast into a mold or poured on a<br />

flat surface where it solidifies.<br />

• Since freezing of several tonnes of FeNb is characterized by a low<br />

cooling rate, solidification is assumed to proceed according to the<br />

Gulliver-Scheil formalism<br />

• Thermo-Calc can be used to simulate the solidification behaviour<br />

and predict the phase portrait of the Fe-Nb system<br />

Sousa, <strong>20</strong>02<br />

6


Fe–Nb Phase Diagrams<br />

TCFE2<br />

TCFE6<br />

Eutectic<br />

Distectic<br />

C14<br />

µ<br />

C14<br />

µ<br />

http://cst-www.nrl.navy.mil/lattice/index.html<br />

Laves C14 → (Fe,Nb) 2 (Fe,Nb) 1<br />

µ → (Fe,Nb) 7 (Nb) 2 (Fe,Nb) 4<br />

7


Fe–Nb Phase Diagram TCFE2<br />

2<br />

T STEEL<br />

1<br />

BCC<br />

2<br />

µ<br />

1<br />

Voss, Palm, Stein, Raabe, <strong>20</strong>11<br />

8


Problem Definition<br />

• Coarse Nb(C,N) and (Nb,Ti)(C,N) particles were observed on the<br />

fracture surface of bend test specimens<br />

• These coarse particles are detrimental to the mechanical properties<br />

of HSLA steels<br />

• Particle size: >10µm<br />

Abraham, Klein, Bodnar, Dremailova, <strong>20</strong>06<br />

9


Problem Definition<br />

• Abraham et al proposed that the coarse particles were inherited<br />

from multiphase ferroalloys<br />

i. Phases with high melting temperatures are released into melt<br />

via disintegration of ferroalloy<br />

ii. Finite time → non-homogeneous melt<br />

µ Phase<br />

BCC Phase<br />

Abraham, Klein, Bodnar, Dremailova, <strong>20</strong>06<br />

10


Characterization of FeNb + 0.12 wt% C<br />

ICP Analysis<br />

&<br />

Carbon/Sulphur Analysis<br />

Element<br />

wt%<br />

Nb 68.14<br />

Fe 29.38<br />

C 0.12<br />

(Ti, Cu, Al, Mn, P, Si) 2.37<br />

Total 100.00<br />

11


Nb–C Phase Diagram<br />

FCC<br />

HCP<br />

M 2 C carbides, HCP structure<br />

(Nb, Fe,…) 2 (C,N,Va) 1<br />

MC carbides, FCC structure<br />

(Nb, Fe,…) 1 (C, N, Va) 1<br />

12


Characterization of FeNb + 0.12 wt% C<br />

5<br />

1<br />

2<br />

4<br />

3<br />

Location<br />

Elements (at%)<br />

Predicted<br />

Fe Nb Ti Al Si Mn Phase<br />

1 7.60 91.92 0.48 0.00 0.00 0.00 BCC<br />

2 40.93 52.91 0.40 0.89 4.45 0.42 µ<br />

3 35.34 62.16 0.89 0.48 0.83 0.31 η<br />

4 1.92 96.94 1.14 0.00 0.00 0.00 HCP<br />

5 11.09 13.94 0.94 72.94 0.92 0.18 Al<strong>20</strong>3<br />

FeNb + 0.12 wt% C<br />

Phase Image Analysis TCFE2 EBSD<br />

HCP (Red) 2.10 1.83 3.21<br />

BCC (Yellow) 14.70 24.10 9.19<br />

µ 80.80 73.85 87.6<br />

Total 97.60 99.78 100<br />

13


1600°C Isothermals for Fe–Nb–C<br />

TCFE2<br />

TCFE6<br />

Nb C + L<br />

2<br />

Nb C + L<br />

2<br />

NbC + L<br />

NbC + L<br />

14


Characterization of FeNb + 0.7 wt% C<br />

4<br />

3<br />

2<br />

1<br />

6<br />

5<br />

FeNb + 0.7 wt% C<br />

Phase Image Analysis TCFE2<br />

HCP 12.10 11.86<br />

BCC 1.60 13.83<br />

µ 78.50 73.13<br />

LAVES 6.73 0.00<br />

Total 98.93 98.82<br />

Location<br />

Elements (at%)<br />

Predicted<br />

Fe Nb Ti Al Si Mn Phase<br />

1 0.89 98.47 0.64 0.00 0.00 0.00 HCP<br />

2 43.00 51.71 0.41 0.88 3.59 0.41 µ<br />

3 52.18 39.63 0.30 0.99 6.43 0.47 Laves<br />

4 7.29 92.<strong>20</strong> 0.51 0.00 0.00 0.00 BCC<br />

5 8.30 86.74 4.40 0.55 0.00 0.00 BCC<br />

6 0.89 98.47 0.64 0.00 0.00 0.00 HCP<br />

15


Modelling a Binary System<br />

• Isothermal mass transfer phenomena governs kinetics of<br />

dissolution – Mass Balance<br />

• Determination of the time to complete dissolution (TCD) of pure<br />

niobium spheres in pure liquid iron<br />

16


Introduction to Model<br />

• To solve total flux equation, one must know the precise<br />

relationships between the total flux, N, and the fluid field quantities<br />

(v, ρ)<br />

N<br />

A J<br />

A vC <br />

A<br />

total flux<br />

diffusive flux<br />

bulk flux<br />

• This mass transfer coefficient, k, is used to incorporate the bulk<br />

flow and diffusive flow into one parameter<br />

• Both stagnant and convective fluid conditions are bundled up into<br />

dimensionless numbers, specifically the Sherwood number (Sh)<br />

• In a stagnant fluid, v = 0 and Sh = 2 Sh = 2 + f(v,ρ)<br />

Sh<br />

kd<br />

<br />

D<br />

k<br />

<br />

2R<br />

D<br />

<br />

k <br />

DSh<br />

2R<br />

<br />

*<br />

C C<br />

*<br />

NA<br />

D kC C<br />

R<br />

<br />

<br />

<br />

17


Results: Stagnant Fluid<br />

<br />

R R DC<br />

C<br />

2 L *<br />

0<br />

<br />

<br />

S<br />

i<br />

<br />

<br />

<br />

t<br />

kA <br />

<br />

<br />

<br />

i * *<br />

s<br />

C<br />

C C C<br />

exp<br />

t<br />

VL<br />

18


It’s more complicated…<br />

• If velocity is non-zero, how can one handle the total flux<br />

formulation<br />

N<br />

A J<br />

A vC <br />

A<br />

total flux<br />

diffusive flux<br />

bulk flux<br />

• Fluid conditions are handled through the Sherwood number for<br />

both natural and forced convection<br />

19


Convective Fluid<br />

• There are two types of convection that must be considered:<br />

1. Natural Convection<br />

o<br />

the dissolving solid will develop concentration gradients near the<br />

interface, forming a density gradient in the liquid<br />

1/4<br />

Sh<strong>20</strong>.59 Grm<br />

Sc<br />

R<br />

final<br />

dt<br />

N 3/4<br />

C<br />

C R <br />

Natural<br />

R<br />

0<br />

RdR<br />

1 2 0<br />

t<br />

final<br />

2. Forced Convection<br />

o A velocity field is applied and fixed externally on a system<br />

Sh<strong>20</strong>.6Re<br />

Sc<br />

1/2 1/3<br />

R<br />

final<br />

dt<br />

F 1/2<br />

C<br />

C R <br />

Forced<br />

R<br />

0<br />

RdR<br />

final<br />

1 2 0<br />

t<br />

<strong>20</strong>


Results: Convective Fluid<br />

21


Future Work<br />

• Modelling ternary dissolution of Nb-C phases in pure liquid Fe<br />

– Range of stoichiometry<br />

– Solubility product and flux balance at interface<br />

Experiments:<br />

• Dissolution of Fe-Nb and Fe-Nb-C to validate the binary and ternary<br />

models<br />

22


Conclusions<br />

• Thermodynamic databases should be used with caution in relation<br />

to ferroalloys<br />

• The poisonous effect of carbon in ferroniobium should not be<br />

marginalized with respect to size and fraction of niobium carbides<br />

• The solution of the dissolution equation for the Fe-Nb system with<br />

different fluid conditions resulted in a noticeable effect on the TCD<br />

and followed a consistent, logical pattern<br />

• Consideration of the Fe-Nb-C system for modelling of dissolution<br />

and experiments<br />

23


The End…<br />

• With gratitude to the following people and groups:<br />

– Dr. Dmitri Malakhov<br />

– Dr. Gord Irons<br />

– Jim Garrett<br />

– John Thomson<br />

– Chris Butcher<br />

– Doug Culley<br />

– Ed McCaffery<br />

– Xiaogang Li<br />

– Fellow graduate students<br />

– SRC<br />

– CCEM<br />

24


Meta-stable phase, η<br />

2<br />

1<br />

Location<br />

Elements (at%)<br />

Predicted<br />

Fe Nb Ti Al Si Mn Phase<br />

1 34.48 62.46 0.77 0.56 1.73 0.00 ETA<br />

2 35.19 61.02 0.67 0.59 2.52 0.00 ETA<br />

<strong>20</strong>02 - THE IRON - NIOBIUM PHASE DIAGRAM AND THE VISCOSITY OF LIQUID - Korchemkina, Shunyaev 25


EBSD of FeNb + 0.7 wt% C<br />

26


FeNb solidified at CBMM<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!