14.01.2015 Views

A new land use impact assessment method for LCA ... - LCAfood.dk

A new land use impact assessment method for LCA ... - LCAfood.dk

A new land use impact assessment method for LCA ... - LCAfood.dk

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>new</strong> <strong>land</strong> <strong>use</strong> <strong>impact</strong><br />

<strong>assessment</strong> <strong>method</strong> <strong>for</strong> <strong>LCA</strong>:<br />

theoretical fundaments and field<br />

validation<br />

J. Peters, S.M. Ward & N.M. Holden<br />

Department of Agricultural and Food Engineering,<br />

University College Dublin, Ire<strong>land</strong><br />

B. Muys & J. García Quijano<br />

Laboratory of Forest, Nature and Landscape Research,<br />

Catholic University Leuven, Belgium


1. Introduction<br />

• Many human activities have spatial needs, especially<br />

agriculture and <strong>for</strong>estry<br />

• Land <strong>use</strong> <strong>impact</strong> category important in <strong>LCA</strong>’s of these<br />

activities<br />

• Several <strong>method</strong>s proposed, no consensus (COST E9)<br />

⇒ Need <strong>for</strong> <strong>new</strong> <strong>method</strong> <strong>for</strong> <strong>land</strong> <strong>use</strong> <strong>impact</strong><br />

<strong>assessment</strong>, based on strenghts of proposals


2.1. New <strong>method</strong>: basic<br />

concept and reference system<br />

• Basic concept: Ecosystem exergy<br />

Goal function of all ecosystems is to maximize<br />

their exergy i.e. to maximize their buffering<br />

capacity <strong>for</strong> external energy flows (Bendoricchio<br />

and Joergensen 1997)<br />

• Reference system: <strong>for</strong> any site the potential<br />

natural vegetation (climax) is the system with<br />

highest energetic control, highest natural exergy<br />

level <strong>for</strong> that site


2.2. New <strong>method</strong>: <strong>method</strong>ology<br />

<strong>impact</strong> <strong>assessment</strong><br />

(i)<br />

(ii)<br />

(iii)<br />

(iv)<br />

Stratification<br />

Indicator <strong>assessment</strong><br />

Aggragation<br />

Expressing results per FU <strong>for</strong> <strong>land</strong> <strong>use</strong> and<br />

<strong>land</strong> <strong>use</strong> change


(i) Stratification<br />

Area assessed is divided in homogenous sites<br />

according:<br />

1/ reference system<br />

2/ actual <strong>land</strong> <strong>use</strong><br />

LU a<br />

LU b LU c<br />

Ref 1<br />

Ref 2


(ii) Indicator <strong>assessment</strong><br />

• 17 quantitative indicators divided over 4<br />

themes: soil, water, vegetation cover and<br />

biodiversity<br />

• Indicator scores (∆Q) indicate difference in<br />

quality between actual <strong>land</strong> <strong>use</strong> and reference<br />

state


Code Indicator Calculation Reference state<br />

S1 Soil ⎛ areaaff<br />

*( permref<br />

− perm ) ⎞<br />

perm ref<br />

act<br />

compaction ⎜<br />

⎟*100<br />

*<br />

⎝ areatot<br />

permref<br />

⎠<br />

S2<br />

S3<br />

Soil structure<br />

disturbance by<br />

ploughing,<br />

etc.<br />

Soil erosion<br />

⎛ areaaff<br />

* depth times ⎞<br />

S2 ⎜<br />

* ⎟<br />

*100<br />

⎝ areatot<br />

rot ⎠<br />

⎛100*<br />

USLE ⎞<br />

⎜<br />

⎟*100<br />

⎝ Soil depth ⎠<br />

No soil work<br />

soil erosion ref<br />

S4<br />

S5<br />

Cation<br />

Exchange<br />

Capacity<br />

(CEC)<br />

Base<br />

Saturation<br />

(BS)<br />

⎛<br />

⎜<br />

CEC<br />

1 −<br />

⎝ CEC<br />

⎛<br />

⎜<br />

BS<br />

1 −<br />

⎝ BS<br />

act<br />

ref<br />

act<br />

ref<br />

⎞<br />

⎟*100<br />

⎠<br />

⎞<br />

⎟*100<br />

⎠<br />

CEC ref<br />

BS ref


Code Indicator Calculation Reference state<br />

W1 Evapotranspiration<br />

(ET) ⎛ ⎞<br />

ET<br />

⎜<br />

ET<br />

ref<br />

1 −<br />

act<br />

⎟*<br />

100<br />

⎜<br />

⎝<br />

ET<br />

ref<br />

⎟<br />

⎠<br />

W2<br />

SR<br />

P − ET<br />

Surface<br />

runoff (SR) * 100<br />

SR ref


Code Indicator Calculation Reference state<br />

V1 Total<br />

⎛ ⎞<br />

TAB<br />

aboveground ⎜<br />

TAB<br />

ref<br />

1 −<br />

act<br />

⎟ *100<br />

living biomass<br />

⎝ TAB<br />

ref ⎠<br />

(TAB)<br />

V2<br />

V3<br />

Leaf area<br />

index (LAI) ⎞<br />

⎜<br />

LAI<br />

act<br />

1 ⎟ * 100<br />

⎛<br />

−<br />

⎜<br />

⎝ LAI<br />

ref<br />

Vegetation<br />

height (H) ⎞<br />

⎜<br />

H<br />

act<br />

1 ⎟ * 100<br />

⎛<br />

−<br />

⎜<br />

⎝ H<br />

ref<br />

⎟<br />

⎠<br />

⎟<br />

⎠<br />

LAI ref<br />

H ref<br />

V4<br />

Free Net<br />

Primary<br />

Production<br />

(fNPP)<br />

⎡<br />

⎢1<br />

−<br />

⎢⎣<br />

⎛<br />

⎜<br />

⎝<br />

NPP<br />

act<br />

NPP<br />

− AH<br />

ref<br />

⎞⎤<br />

⎟<br />

⎥<br />

⎠⎥⎦<br />

*100<br />

NPP ref<br />

V5<br />

Crop biomass<br />

⎛<br />

⎜<br />

⎝<br />

crop<br />

total<br />

biomass<br />

biomass<br />

⎞<br />

⎟ *100<br />

⎠<br />

No crop species<br />

or harvest


Code Indicator Calculation Reference state<br />

B1 Artificial<br />

No irrigation or<br />

⎡⎛ area<br />

⎤<br />

change of<br />

irr+<br />

area<br />

drain<br />

⎞<br />

⎢<br />

⎥ *100<br />

water balance<br />

⎜<br />

⎟<br />

drainage<br />

⎣⎝<br />

total area<br />

⎠⎦<br />

B2<br />

Liming,<br />

fertilisation,<br />

empoverishment<br />

⎡⎛<br />

area<br />

⎢⎜<br />

⎢⎣<br />

⎝ area<br />

aff<br />

tot<br />

times<br />

*<br />

rot<br />

B2<br />

⎞⎤<br />

⎟<br />

⎥ *100<br />

⎠⎥⎦<br />

No area affected<br />

B3<br />

Biocides<br />

⎡⎛<br />

⎢<br />

⎜<br />

⎢⎣<br />

⎝<br />

area<br />

area<br />

aff<br />

tot<br />

times<br />

*<br />

rot<br />

B3<br />

⎞⎤<br />

⎟⎥<br />

*100<br />

⎠⎥⎦<br />

No area affected<br />

B4<br />

Canopy cover<br />

of exotic plant ⎛ Ex ⎞<br />

species (Ex)<br />

⎜ ⎟ * 100<br />

⎜<br />

⎝<br />

total<br />

cover<br />

⎟<br />

⎠<br />

100% native<br />

species<br />

B5<br />

Number of<br />

plant species<br />

(Sp)<br />

⎛<br />

⎜1<br />

−<br />

⎝<br />

Sp<br />

Sp<br />

act<br />

ref<br />

⎞<br />

⎟*100<br />

⎠<br />

Sp ref


Human <strong>impact</strong> ∼ ecosystem exergy level<br />

Impact score<br />

100<br />

∆Q<br />

actual <strong>land</strong> <strong>use</strong><br />

reference system<br />

0<br />

-25<br />

Time


(iii) Aggregation<br />

• 17 indicators are aggregated in 4 themes: soil<br />

(S), water (W), vegetation (V) and biodiversity<br />

(B)<br />

• Within 1 theme: each indicator same weight<br />

n<br />

∑<br />

∆ Q<br />

∆Q<br />

Si<br />

Wj<br />

i = 1 j = 1<br />

∆ Q<br />

S<br />

=<br />

where N = 5<br />

∆QW<br />

=<br />

where M = 2<br />

N<br />

M<br />

m<br />

∑<br />

x<br />

∑<br />

p = 1<br />

∆Q<br />

Vp<br />

∆Q<br />

V<br />

=<br />

where X = 5<br />

∆Q<br />

B<br />

=<br />

where Y = 5<br />

X<br />

Y<br />

y<br />

∑<br />

q = 1<br />

∆Q<br />

Bq


(iv) Expressing results per FU <strong>for</strong><br />

<strong>land</strong> <strong>use</strong><br />

<strong>use</strong> of <strong>land</strong> during certain time<br />

S<br />

S<br />

= ∆Q<br />

* ( area × time ) * FU<br />

S<br />

FU<br />

−1<br />

S<br />

W<br />

= ∆Q<br />

* ( area × time ) * FU<br />

W<br />

FU<br />

−1<br />

S<br />

V<br />

= ∆Q<br />

* ( area × time ) * FU<br />

V<br />

FU<br />

−1<br />

S<br />

B<br />

= ∆Q<br />

* ( area × time ) * FU<br />

B<br />

FU<br />

−1


(iv) Expressing results per FU <strong>for</strong><br />

<strong>land</strong> <strong>use</strong> change<br />

abrupt change in ecosystem quality by <strong>land</strong> <strong>use</strong><br />

change<br />

S<br />

i<br />

[ ] ( )<br />

−1<br />

∆Q<br />

− ∆Q<br />

* area × time<br />

= FU<br />

2 1<br />

FU<br />

*<br />

<strong>for</strong> i = soil, water, vegetation and biodiversity


3. New <strong>method</strong>: field validation<br />

3.1. Test scenario definition<br />

• Multifunctional <strong>for</strong>est in Belgium (TEMP multi <strong>for</strong>)<br />

• Short rotation coppice in Belgium (TEMP en <strong>for</strong>)<br />

• Eucalypt plantation in Spain (MED eucalypt)<br />

• Tropical rain<strong>for</strong>est conservation (TROP <strong>land</strong> <strong>use</strong>)<br />

• Mediterranean pine plantation (MED <strong>land</strong> <strong>use</strong>)<br />

• Subtropical agro<strong>for</strong>estry plantation (SUBTROP<br />

<strong>land</strong> <strong>use</strong>)


3.2. Results


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

biodiversity<br />

vegetation<br />

water<br />

soil<br />

MED fynbos<br />

SUBTROP kloof <strong>for</strong>est<br />

SUBTROP infrastructure<br />

SUBTROP secondary <strong>for</strong>est<br />

SUBTROP wet<strong>land</strong><br />

SUBTROP avocado<br />

SUBTROP eucalypt<br />

MED fire belt<br />

MED infrastructure<br />

MED indigenous <strong>for</strong>est<br />

MED pine<br />

TROP agricultural <strong>land</strong> <strong>use</strong><br />

TROP shifting cultivation<br />

TROP selective logging<br />

TROP primary <strong>for</strong>est<br />

MED eucalypt<br />

TEMP en <strong>for</strong><br />

TEMP multi <strong>for</strong><br />

Thematic score (∆Qi ) [/]


4. Discussion and conclusion<br />

• Assessment fully quantitative<br />

• Assessment in different climatic and<br />

geographical regions operational<br />

• Workable definition of reference system<br />

• Comparing <strong>land</strong> <strong>use</strong> from different sites &<br />

climates possible<br />

• Results can be expressed per FU<br />

• Linearity requirement satisfied: doubling FU<br />

leads to double <strong>impact</strong> score


5. Recommendations<br />

• Further <strong>method</strong> testing is needed, with special<br />

attention <strong>for</strong> indicator selection.<br />

• Minimum indicator score threshold of –25<br />

should be revised to solve sensitivity problems.<br />

• Vegetation with highest exergy level i.e.<br />

potential natural vegetation is a workable<br />

reference vegatation but problems rise when<br />

no natural patches are left. Literature data can<br />

be <strong>use</strong>d with lower reliability.


• Indicators S2 (soil erosion) and W2 (surface<br />

runoff) should be redesigned, so that the<br />

reference vegetation has the 0 score.<br />

• Themes are not comparable within the same<br />

<strong>land</strong> <strong>use</strong> <strong>assessment</strong>.


Thanks!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!