15.01.2015 Views

recrystallization in metals - Course Notes - McMaster University

recrystallization in metals - Course Notes - McMaster University

recrystallization in metals - Course Notes - McMaster University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

RECRYSTALLIZATION IN METALS<br />

FLORENT LEFEVRE-SCHLICK and DAVID EMBURY<br />

Department of Materials Science and Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>McMaster</strong> <strong>University</strong>, Hamilton, ON, Canada<br />

1


OUTLINE<br />

Recrystallization<br />

What is it<br />

How is it usually treated<br />

Importance of local misorientation/stra<strong>in</strong> gradients on “nucleation”<br />

First stages of <strong>recrystallization</strong>; how can we <strong>in</strong>vestigate the “nucleation”<br />

Rapid heat treatments<br />

What are they<br />

What can we expect from them<br />

Recrystallization <strong>in</strong> <strong>metals</strong><br />

Model<strong>in</strong>g<br />

Conclusions-Future work<br />

2


Recrystallization<br />

What is it<br />

Fe<br />

E =E stored<br />

=~100J/mol<br />

Deformation<br />

Heat<br />

Recrystallization<br />

(development of new stra<strong>in</strong> free gra<strong>in</strong>s)<br />

Recovery<br />

(rearrangement of dislocations <strong>in</strong> sub gra<strong>in</strong>s)<br />

3


Recrystallization<br />

HOW DOES RECRYSTALLIZATION START<br />

“nucleation”<br />

Coalescence and growth of subgra<strong>in</strong>s<br />

∆Θ 3<br />

∆Θ 4<br />

∆Θ 3<br />

∆Θ 4<br />

∆Θ 1<br />

∆Θ 1<br />

∆Θ 2<br />

Stra<strong>in</strong> Induced<br />

Boundary Migration<br />

Migration of a boundary<br />

Θ 1<br />

Θ 2<br />

Θ 1<br />

E 1 > E 2<br />

Θ 2<br />

Θ 2<br />

In simple systems: small number of “nuclei” lead to recrystallized gra<strong>in</strong>s<br />

4


Recrystallization<br />

Improv<strong>in</strong>g the mechanical properties of materials<br />

σY (MPa)<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Cu<br />

Fe<br />

Al<br />

Gra<strong>in</strong> ref<strong>in</strong>ement strengthen<strong>in</strong>g<br />

0<br />

0 2 4 6 8 10<br />

d -1/2 (µm -1/2 )<br />

How does <strong>recrystallization</strong> proceed<br />

How to control <strong>recrystallization</strong><br />

How to achieve an important gra<strong>in</strong> ref<strong>in</strong>ement<br />

Can we control more than just the scale<br />

5


Recrystallization<br />

Johnson, Mehl, Avrami, Kolmogorov approach<br />

recrystallized fraction X<br />

X<br />

1<br />

0<br />

n<br />

= 1 − exp( −Bt<br />

)<br />

time<br />

Random distribution of nucleation sites<br />

Constant rate of nucleation and growth n=4<br />

Site saturation n=3<br />

6


Recrystallization<br />

Johnson, Mehl, Avrami, Kolmogorov approach<br />

Is n mislead<strong>in</strong>g<br />

Site saturation 3d/2d/1d<br />

3/2/1<br />

Constant nucleation rate 3d/2d/1d<br />

4/3/2<br />

F<strong>in</strong>ed gra<strong>in</strong>ed Alum<strong>in</strong>ium, low stra<strong>in</strong><br />

4<br />

Alum<strong>in</strong>ium+ small amount of copper, 40% cold<br />

rolled<br />

Fe-Mn-C<br />

1.7<br />


Recrystallization<br />

“NUCLEATION” OF RECRYSTALLIZATION<br />

Large orientation gradient<br />

(transition bands)<br />

Stra<strong>in</strong> heterogeneities<br />

(shear bands)<br />

Fe-Si system<br />

Cu<br />

Hu et al. (1966) Adcock et al. (1922)<br />

8


Recrystallization<br />

“NUCLEATION” OF RECRYSTALLIZATION<br />

Particle Stimulated Nucleation<br />

Oxide <strong>in</strong>clusions <strong>in</strong> Fe Al-Si system Cluster of SiO 2<br />

<strong>in</strong> Ni<br />

Leslie et al. (1963) Humphreys et al. (1977)<br />

Recrystallization orig<strong>in</strong>ates at pre-exist<strong>in</strong>g subgra<strong>in</strong>s with<strong>in</strong> the deformation zone<br />

Nucleation is affected by particle size and particle distribution<br />

9


Recrystallization<br />

INVESTIGATING THE “NUCLEATION” EVENT<br />

Inject<strong>in</strong>g nucleation sites to <strong>in</strong>crease N:<br />

• Local misorientation (tw<strong>in</strong>s)<br />

• Local stra<strong>in</strong> gradient (high deformation)<br />

Imped<strong>in</strong>g growth of recrystallized gra<strong>in</strong>s<br />

• Rapid heat treatments<br />

o<br />

10


Rapid heat treatments<br />

What are rapid heat treatments<br />

•“Slow” heat treatment<br />

(salt bath)<br />

•“Rapid” heat treatment<br />

(spot weld<strong>in</strong>g mach<strong>in</strong>e)<br />

•“Ultra-fast” heat treatment<br />

(pulsed laser)<br />

T<br />

T<br />

T<br />

seconds<br />

mseconds<br />

time<br />

time<br />

nano/pico/femtoseconds<br />

time<br />

11


Salt bath<br />

“Slow” heat treatment: Salt bath<br />

Tim e/Tem perature profile dur<strong>in</strong>g salt bath<br />

heat treatm ent<br />

700<br />

Duration of the heat<br />

treatment: 5 seconds.<br />

Temperature range: 500 o C<br />

to 650 o C.<br />

Heat<strong>in</strong>g rate ~300C/sec<br />

Cool<strong>in</strong>g rate ~1000C/sec<br />

Tem perature (C)<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 5 10 15<br />

Time (sec)<br />

12


Salt bath<br />

“NUCLEATION” IN IRON<br />

Fe deformed by impact at 77K<br />

Production of deformation tw<strong>in</strong>s to promote a variety of potential<br />

nucleation sites for <strong>recrystallization</strong>, either at tw<strong>in</strong>/gra<strong>in</strong><br />

boundary or tw<strong>in</strong>/tw<strong>in</strong> <strong>in</strong>tersections<br />

(1-11)<br />

2-22<br />

(-2-11)<br />

-2-11<br />

-200<br />

21-1<br />

01-1 -21-1<br />

50 µm 4 µm B=[011]<br />

Tw<strong>in</strong>n<strong>in</strong>g plane {112}<br />

Shear direction 111<br />

gra<strong>in</strong><br />

tw<strong>in</strong><br />

13


Salt bath<br />

“NUCLEATION” IN IRON<br />

5 seconds at 500 o C<br />

Kikuchi patterns of the parent gra<strong>in</strong>, a tw<strong>in</strong> and a cell<br />

of dislocations. Shift of about 0.5 deg <strong>in</strong> the ZA<br />

between the gra<strong>in</strong> (green circle) and the cell (red<br />

circle).<br />

0-11<br />

ZA=[133]<br />

-110<br />

-310<br />

-301<br />

0-31<br />

22-2 21-1<br />

21-1<br />

200<br />

ZA=[011]<br />

12-1 -301<br />

ZA=[113]<br />

-110<br />

-110<br />

BF images of a nuclei<br />

along a deformed tw<strong>in</strong>.<br />

21-1<br />

0-31<br />

21-1<br />

0-31<br />

12-1<br />

-301<br />

12-1<br />

-301<br />

ZA=[113]<br />

14<br />

ZA=[113]


Salt bath<br />

“NUCLEATION” IN COPPER<br />

5 seconds at 250 o C<br />

Cu 60% cold rolled<br />

Cu ~ 2% recrystallized<br />

50 µm<br />

25 µm<br />

1 µm 4 µm<br />

No noticeable effect of anneal<strong>in</strong>g tw<strong>in</strong>s on nucleation<br />

15


Salt bath<br />

“NUCLEATION” IN STAINLESS STEEL<br />

45% cold rolled @ 77K<br />

Sta<strong>in</strong>less steel 316L<br />

100µm<br />

Cooperation with X. Wang<br />

16


Salt bath<br />

“NUCLEATION” IN STAINLESS STEEL<br />

Sta<strong>in</strong>less steel 316L<br />

2 m<strong>in</strong> @ 950C<br />

25µm<br />

Average gra<strong>in</strong> size: 7µm<br />

17


Salt bath<br />

“NUCLEATION” IN STAINLESS STEEL<br />

2 m<strong>in</strong> @ 900C<br />

Sta<strong>in</strong>less steel 316L<br />

25µm<br />

Average gra<strong>in</strong> size: 5µm<br />

18


Salt bath<br />

“NUCLEATION” IN STAINLESS STEEL<br />

Sta<strong>in</strong>less steel 316L<br />

2 m<strong>in</strong> @ 850C<br />

25µm<br />

Average gra<strong>in</strong> size: 3µm<br />

19


Salt bath<br />

“NUCLEATION” IN STAINLESS STEEL<br />

Sta<strong>in</strong>less steel 316L<br />

1 m<strong>in</strong> @ 800C<br />

10µm<br />

Role of anneal<strong>in</strong>g, deformation tw<strong>in</strong>s and phases on nucleation and growth<br />

20


Salt bath<br />

“NUCLEATION” IN STAINLESS STEEL<br />

Sta<strong>in</strong>less steel 316L<br />

1 m<strong>in</strong> @ 800C<br />

BF image<br />

DF image<br />

(austenite + martensite)<br />

DF image (austenite)<br />

DF image (Tw<strong>in</strong>)<br />

F<strong>in</strong>e and complex deformed microstructure<br />

Over a range of possible grow<strong>in</strong>g gra<strong>in</strong>s, only a few seem to grow<br />

21


Salt bath<br />

RECRYSTALLIZATION AS A WAY TO CONTROL THE NATURE<br />

OF GRAIN BOUNDARIES<br />

Sta<strong>in</strong>less steel 316L, 2 m<strong>in</strong> @ 850C<br />

30%<br />

25µm<br />

0%<br />

10 o 20 o 30 o 40 o 50 o 60 o<br />

~30% of Σ 3<br />

boundaries<br />

(rotation 60 o , axis )<br />

22


Spot weld<strong>in</strong>g mach<strong>in</strong>e<br />

“RAPID” HEAT TREATMENT: SPOT WELDING MACHINE<br />

Electrode of Cu<br />

250 µm<br />

3mm<br />

Fe annealed (thickness = 500 µm)<br />

Fe 60% cold rolled (thickness = 200 µm)<br />

Pulse discharge width: 1 msec<br />

Energy output: 100 J to 1 J<br />

Estimated heat<strong>in</strong>g rate ~10 5 K/sec<br />

23


Spot weld<strong>in</strong>g mach<strong>in</strong>e<br />

PHASE TRANSITION IN IRON<br />

Melted zone<br />

40 J Heated zone 20 J<br />

50 µm 50 µm<br />

Ref<strong>in</strong>ement of the microstructure via phase transitions<br />

Distribution <strong>in</strong> gra<strong>in</strong> size from 40 µm down to less than 1 µm<br />

24


Spot weld<strong>in</strong>g mach<strong>in</strong>e<br />

RECRYSTALLIZATION AND PHASE TRANSITION IN IRON<br />

Fe 60% cold rolled<br />

40 J<br />

100 µm<br />

50 µm<br />

Ref<strong>in</strong>ement of the microstructure via phase transitions and <strong>recrystallization</strong><br />

Distribution <strong>in</strong> gra<strong>in</strong> size from 100 µm down to less than 1 µm<br />

25


Spot weld<strong>in</strong>g mach<strong>in</strong>e<br />

RECRYSTALLIZATION AND PHASE TRANSITION IN IRON<br />

Fe 60% cold rolled<br />

20 J<br />

50 µm<br />

Localized event along specific gra<strong>in</strong> boundaries<br />

26


Pulse lasers<br />

“ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION<br />

(nano/pico/femtosecond)<br />

Laser pulse:<br />

Energy (nJ to µJ)<br />

Time (fsec to nsec)<br />

Beam size (µm to mm)<br />

~100 nm<br />

to mm<br />

Small volume on the surface<br />

Rapid heat<strong>in</strong>g and cool<strong>in</strong>g<br />

(10 4 to 10 12 K/sec)<br />

Increase <strong>in</strong> pressure (up to TPa)<br />

Shock wave.<br />

Cooperation with Preston/Haugen group<br />

27


Pulse lasers<br />

“ULTRA FAST” HEAT TREATMENT: PULSE LASER IRRADIATION<br />

(nano/pico/femtosecond)<br />

λ = 800 nm<br />

The beam has a Gaussian profile<br />

with a radius ω 0<br />

E 0<br />

: full energy pulse (~10 µJ)<br />

τ p<br />

: duration of the pulse (~ 10 nsec/ 100psec/ 150 fsec)<br />

φ: fluence or energy per unit area (J/cm 2 )<br />

φ th<br />

: threshold fluence (J/cm 2 )<br />

fluence required to transform the surface<br />

28


Pulse lasers<br />

WHY PULSED LASERS<br />

29


Pulse lasers<br />

SINGLE PULSE ABLATION OF FE<br />

E = 9.2 µJ<br />

E = 3.2 µJ<br />

10 µm<br />

10 µm<br />

E = 1.0 µJ<br />

E = 0.2 µJ<br />

5 µm<br />

5 µm<br />

What is the temperature profile<br />

How to characterise the irradiated volume<br />

30


Pulse lasers<br />

TEMPERATURE MEASUREMENT DEVICE<br />

2 mm<br />

2 mm 100 µm<br />

2 µm<br />

Plat<strong>in</strong>um<br />

25 nm<br />

SiO 2<br />

isolant layer<br />

resistor<br />

connector<br />

Si substrate<br />

Measur<strong>in</strong>g the changes <strong>in</strong> resistivity of Pt<br />

Summer work of B. Iqbar<br />

estimat<strong>in</strong>g the temperature<br />

31


Pulse lasers<br />

INSTRUMENTED INDENTATION<br />

Fe annealed, 1 gra<strong>in</strong><br />

Corrected harmonic contact stiffness: 1.10 6 N/m<br />

Load On Sample (mN)<br />

30<br />

L U<br />

Hardness (GPa)<br />

16<br />

Reduced Modulus (GPa)<br />

400<br />

14<br />

12<br />

300<br />

20<br />

10<br />

10<br />

8<br />

6<br />

1<br />

2<br />

3<br />

4<br />

5<br />

[6]<br />

200<br />

1<br />

2<br />

M I<br />

3 H<br />

4N<br />

5<br />

[6]<br />

4<br />

2<br />

HD E<br />

0 M H I<br />

0<br />

N<br />

200 400 600 800 1000 1200<br />

Displacement Into Surface (nm)<br />

Fe annealed, 3 different gra<strong>in</strong>s<br />

M<br />

N HI<br />

0 200 400 600 800 1000<br />

Displacement Into Surface (nm)<br />

100<br />

0<br />

200 400 600 800 1000 1200<br />

Displacement Into Surface (nm)<br />

Load On Sample (mN)<br />

Hardness (GPa)<br />

Reduced Modulus (GPa)<br />

40<br />

16<br />

400<br />

14<br />

30<br />

L<br />

U<br />

12<br />

300<br />

20<br />

10<br />

8<br />

6<br />

[2]<br />

3<br />

4<br />

200<br />

I<br />

M H<br />

N[2]<br />

3<br />

4<br />

10<br />

4<br />

100<br />

0<br />

EHD<br />

MN<br />

HI<br />

200 400 600 800 1000 1200<br />

Displacement Into Surface (nm)<br />

2<br />

0<br />

M N H I<br />

200 400 600 800 1000 1200<br />

Displacement Into Surface (nm)<br />

0<br />

32<br />

200 400 600 800 1000 1200<br />

Displacement Into Surface (nm)


Pulse lasers<br />

INSTRUMENTED INDENTATION<br />

12 11 10<br />

1 2 3<br />

Load On Sample (mN)<br />

7<br />

Hardness (GPa)<br />

20<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0 S<br />

-1<br />

LU<br />

MN<br />

H I<br />

EHD<br />

100 200 300 400<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

[9]<br />

10<br />

11<br />

12<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

M N H I<br />

100 200 300 400<br />

Displacement Into Surface (nm)<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

[9]<br />

10<br />

11<br />

12<br />

Displacement Into Surface (nm)<br />

Soften<strong>in</strong>g of the deformed material<br />

Is there local melt<strong>in</strong>g/solidification or local heat<strong>in</strong>g<br />

33


Model<strong>in</strong>g<br />

ZUROB’S MODEL FOR RECRYSTALLIZATION<br />

Gra<strong>in</strong> II<br />

Gra<strong>in</strong> I<br />

SG<br />

Gra<strong>in</strong> II<br />

Gra<strong>in</strong> I<br />

nucleus<br />

G(<br />

t)<br />

><br />

2γ<br />

r(<br />

t)<br />

Needs <strong>in</strong>put on local misorientations<br />

34


CONCLUSIONS – FUTURE WORK<br />

Investigation of the first stage of <strong>recrystallization</strong> by:<br />

o Design<strong>in</strong>g microstructures to promote N<br />

o<br />

o Us<strong>in</strong>g rapid heat treatments to allow nucleation but not G<br />

Characterize the heat treatment <strong>in</strong> terms of time/temperature<br />

profile<br />

Characterize the “nucleation” event <strong>in</strong> terms of local<br />

misorientation, local stra<strong>in</strong> gradient (EBSD)<br />

Introduce the data on misorientation <strong>in</strong>to Zurob’s model<br />

o<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!