16.01.2015 Views

Composite columns - Eurocodes

Composite columns - Eurocodes

Composite columns - Eurocodes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

<strong>Eurocodes</strong><br />

Background and Applications<br />

Dissemination of information for training<br />

18-20 February 2008, Brussels<br />

Eurocode 4<br />

<strong>Composite</strong> Columns<br />

Univ. - Prof. Dr.-Ing. Gerhard Hanswille<br />

Institute for Steel and <strong>Composite</strong> Structures<br />

University of Wuppertal<br />

Germany<br />

1


Contents<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Part 1: Introduction<br />

Part 2: General method of design<br />

Part 3: Plastic resistance of cross-sections and interaction curve<br />

Part 4: Simplified design method<br />

Part 5: Special aspects of <strong>columns</strong> with inner core profiles<br />

Part 6: Load introduction and longitudinal shear<br />

2


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Part 1: Introduction<br />

3


<strong>Composite</strong> <strong>columns</strong><br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

concrete encased<br />

sections<br />

concrete<br />

filled hollow<br />

sections<br />

partially concrete<br />

encased sections<br />

4


Concrete encased sections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

advantages:<br />

• high bearing resistance<br />

• high fire resistance<br />

• economical solution with regard to<br />

material costs<br />

disadvantages:<br />

• high costs for formwork<br />

• difficult solutions for connections<br />

with beams<br />

• difficulties in case of later<br />

strengthening of the column<br />

• in special case edge protection is<br />

necessary<br />

5


Partially concrete encased sections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

advantages:<br />

• high bearing resistance, especially in case<br />

of welded steel sections<br />

• no formwork<br />

• simple solution for joints and load<br />

introduction<br />

• easy solution for later strengthening and<br />

additional later joints<br />

• no edge protection<br />

disadvantages:<br />

• lower fire resistance in comparison with<br />

concrete encased sections.<br />

6


Concrete filled hollow sections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

advantages:<br />

• high resistance and slender <strong>columns</strong><br />

• advantages in case of biaxial bending<br />

• no edge protection<br />

disadvantages :<br />

• high material costs for profiles<br />

• difficult casting<br />

• additional reinforcement is needed for fire<br />

resistance<br />

7


Concrete filled hollow sections with<br />

additional inner profiles<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

advantages:<br />

• extreme high bearing resistance in<br />

combination with slender <strong>columns</strong><br />

• constant cross section for all stories is<br />

possible in high rise buildings<br />

• high fire resistance and no additional<br />

reinforcement<br />

• no edge protection<br />

disadvantages:<br />

• high material costs<br />

• difficult casting<br />

8


G. Hanswille<br />

<strong>Composite</strong> <strong>columns</strong> with hollow sections Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

and additional inner core-profiles<br />

University of Wuppertal-Germany<br />

Commerzbank<br />

Frankfurt<br />

9


Design of composite <strong>columns</strong><br />

according to EN 1994-1-1<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Verifications for composite <strong>columns</strong><br />

Resistance of the member for<br />

structural stability<br />

General method<br />

Simplified method<br />

Resistance to local Buckling<br />

Introduction of loads<br />

Longitudinal shear outside the areas of load<br />

introduction<br />

10


Methods of verification in accordance<br />

with EN 1994-1-1<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Methods of verification<br />

general method:<br />

• any type of cross-section and any<br />

combination of materials<br />

simplified method:<br />

• double-symmetric cross-section<br />

• uniform cross-section over the member length<br />

• limited steel contribution factor δ<br />

• related Slenderness smaller than 2,0<br />

• limited reinforcement ratio<br />

• limitation of b/t-values<br />

11


Resistance to lokal buckling<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

concrete encased cross-sections<br />

b<br />

b c<br />

c y<br />

c y<br />

c<br />

⎧40<br />

mm<br />

z<br />

Verification is not necessary where c z ≥ ⎨<br />

⎩ b / 6<br />

h h c<br />

y<br />

c<br />

concrete filled hollow section<br />

z<br />

z<br />

t<br />

⎛ d⎞<br />

2<br />

t<br />

max ⎜ ⎟ = 90 ε<br />

d ⎛ d⎞<br />

max ⎜ ⎟ = 52 ε<br />

⎝ t ⎠<br />

⎝ t ⎠<br />

partially encased I sections<br />

fyk,o<br />

ε =<br />

⎛ d⎞<br />

max ⎜ ⎟ = 44 ε<br />

fyk<br />

⎝ t ⎠<br />

f yk,o = 235 N/mm 2<br />

b<br />

d<br />

t<br />

12


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Part 2:<br />

General design method<br />

13


General method<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Design for structural stability shall take account of<br />

geometrical<br />

imperfection<br />

L<br />

w o =<br />

1000<br />

residual<br />

stresses due<br />

to rolling or<br />

welding<br />

w o<br />

σ E<br />

+ -<br />

-<br />

L<br />

+<br />

• second-order effects including residual stresses,<br />

• geometrical imperfections,<br />

• local instability,<br />

• cracking of concrete,<br />

• creep and shrinkage of concrete<br />

• yielding of structural steel and of reinforcement.<br />

The design shall ensure that instability does not occur for the<br />

most unfavourable combination of actions at the ultimate limit<br />

state and that the resistance of individual cross-sections<br />

subjected to bending, longitudinal force and shear is not<br />

exceeded. Second-order effects shall be considered in any<br />

direction in which failure might occur, if they affect the structural<br />

stability significantly. Internal forces shall be determined by<br />

elasto-plastic analysis. Plane sections may be assumed to<br />

remain plane. Full composite action up to failure may be<br />

assumed between the steel and concrete components of the<br />

member. The tensile strength of concrete shall be neglected.<br />

The influence of tension stiffening of concrete between cracks<br />

on the flexural stiffness may be taken into account.<br />

14


General method of design<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

F<br />

e<br />

f cm<br />

σ c<br />

σ s<br />

w<br />

0,4 f c<br />

E cm<br />

f ε c1<br />

ε<br />

ct<br />

c1u<br />

concrete<br />

cracked concrete<br />

plastic zones in structural steel<br />

f y<br />

f tm<br />

-<br />

f sm<br />

reinforcement<br />

stresses in structural steel section<br />

+<br />

-<br />

E s<br />

f s<br />

ε c<br />

ε s<br />

ε a<br />

f c<br />

σ a<br />

E v<br />

f u<br />

-<br />

- - - -<br />

stresses in concrete and reinforcement<br />

+<br />

-<br />

f y<br />

-<br />

E a<br />

structural<br />

steel<br />

ε v<br />

15


Typical load-deformation behaviour of<br />

composite <strong>columns</strong> in tests<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

F [kN]<br />

1600<br />

1200<br />

800<br />

A<br />

e=100mm<br />

e=160mm<br />

B<br />

w<br />

e<br />

F<br />

F<br />

A<br />

B<br />

concrete encased section and<br />

bending about the strong axis:<br />

Failure due to exceeding the<br />

ultimate strain in concrete, buckling<br />

of longitudinal reinforcement and<br />

spalling of concrete.<br />

concrete encased section and<br />

bending about the weak axis :<br />

Failure due to exceeding the<br />

ultimate strain in concrete.<br />

400<br />

C e=130mm<br />

C<br />

0 20 40 60 80 100<br />

Deflection w [mm]<br />

concrete filled hollow section:<br />

cross-section with high ductility<br />

and rotation capacity. Fracture<br />

of the steel profile in the tension<br />

zone at high deformations and<br />

local buckling in the<br />

compression zone of the<br />

structural steel section.<br />

16


General Method – Safety concept based<br />

on DIN 18800-5 (2004) and German<br />

national Annex for EN 1994-1-1<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N Ed<br />

N<br />

σ c<br />

f cm<br />

f ct<br />

ε c1<br />

ε c1u<br />

0,4 f c<br />

E cm<br />

concrete<br />

ε c<br />

λ u<br />

E d<br />

σ s<br />

f tm<br />

f sm<br />

reinforcement<br />

E s<br />

λ u<br />

: amplification factor for ultimate<br />

system capacity<br />

Verification λ u<br />

≥ γ R<br />

E<br />

f σ a<br />

u E<br />

f v<br />

y<br />

E a<br />

ε<br />

ε a<br />

v<br />

R pl,m γ R = R pl,d<br />

+<br />

E d<br />

R pl,d<br />

R pl,m<br />

E d<br />

w o =L/1000 w o<br />

ε s<br />

geometrical<br />

Imperfection<br />

e<br />

structural<br />

steel<br />

Residual<br />

stresses<br />

-<br />

-<br />

+<br />

M Ed<br />

M<br />

w u<br />

w<br />

+ -<br />

17


<strong>Composite</strong> <strong>columns</strong> for the<br />

central station in Berlin<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

χ<br />

buckling curve a<br />

t=25mm<br />

S235<br />

t=50mm<br />

S355<br />

800<br />

550<br />

700<br />

1200<br />

1,0<br />

buckling curve b<br />

buckling curve c<br />

0,5<br />

buckling curve d<br />

-<br />

Residual stresses<br />

0,5 1,0 1,5 2,0<br />

λ<br />

18


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Part IV-3:<br />

Plastic resistance of cross-sections and<br />

interaction curve<br />

19


Resistance of cross-sections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

f yd ν f cd<br />

f sd<br />

N N<br />

pla,Rd<br />

plc,Rd N pls,Rd<br />

y<br />

z<br />

Design value of the plastic<br />

resistance to compressive forces:<br />

N<br />

N<br />

pl,Rd<br />

pl,Rd =<br />

= N<br />

A<br />

pla,Rd<br />

a<br />

f<br />

yd<br />

+ N<br />

+<br />

ν A<br />

plc,Rd<br />

c<br />

f<br />

cd<br />

+ N<br />

+ A<br />

pls,Rd<br />

s<br />

f<br />

sd<br />

Characteristic value of the plastic<br />

resistance to compressive forces:<br />

N<br />

pl,Rk<br />

=<br />

A<br />

a<br />

f<br />

yk<br />

+<br />

A<br />

s<br />

f<br />

sk<br />

+ νA<br />

c<br />

f<br />

ck<br />

Design strength:<br />

f<br />

yd<br />

=<br />

f<br />

yk<br />

γ<br />

a<br />

f<br />

sd<br />

f<br />

=<br />

γ<br />

sk<br />

s<br />

f<br />

cd<br />

=<br />

f<br />

γ<br />

ck<br />

c<br />

Increase of concrete<br />

strength due to better<br />

curing conditions in case<br />

of concrete filled hollow<br />

sections:<br />

ν =1,0<br />

ν = 0,85<br />

20


Confinement effects in case of concrete<br />

filled tubes<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

t<br />

σ aϕ<br />

d<br />

σ c,r<br />

σ aϕ<br />

σ<br />

σ<br />

η a<br />

f yd<br />

structural steel<br />

2<br />

a,<br />

Rd<br />

a,Rd<br />

+ σ<br />

=<br />

2<br />

a,<br />

ϕ<br />

η<br />

a<br />

f<br />

− σ<br />

yd<br />

σ c,r<br />

d-2t<br />

a,Rd<br />

σ<br />

2<br />

a,<br />

ϕ<br />

= f<br />

2<br />

yd<br />

f<br />

2.0<br />

ck,c<br />

f<br />

1.5<br />

1.25<br />

1.0<br />

0.5<br />

0<br />

0<br />

ck<br />

α 1<br />

=1,00<br />

α 2<br />

= 5,0<br />

concrete<br />

α 1<br />

=1,125<br />

α 2<br />

= 2,5<br />

σ c,r<br />

f ck, c =α1<br />

fck<br />

+ α2<br />

σc,<br />

r<br />

f ck,c<br />

0.05 0.10 0.15 0.20 0.25 0.30 0.35<br />

σ<br />

f<br />

c,r<br />

ck<br />

For concrete stresses σ c >o,8 f ck the Poisson‘s ratio of concrete is higher than the<br />

Poisson‘s ratio of structural steel. The confinement of the circular tube causes radial<br />

compressive stresses σ c,r . This leads to an increased strength and higher ultimate<br />

strains of the concrete. In addition the radial stresses cause friction in the interface<br />

between the steel tube and the concrete and therefore to an increase of the<br />

longitudinal shear resistance.<br />

21


Confinement effect acc. to Eurocode 4-1-1<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Design value of the plastic resistance to compressive forces<br />

taking into account the confinement effect:<br />

⎛ t fyk<br />

⎞<br />

Npl,Rd<br />

= ηa<br />

fyd<br />

Aa<br />

+ Ac<br />

fcd<br />

⎜1<br />

+ ηc<br />

⎟<br />

⎝ d fck<br />

⎠<br />

y<br />

t<br />

d<br />

Basic values η for stocky <strong>columns</strong><br />

centrically loaded:<br />

ηao = 0,25<br />

ηco<br />

=<br />

4,9<br />

M Ed<br />

z<br />

N Ed<br />

e =<br />

MEd<br />

NEd<br />

influence of<br />

slenderness for<br />

λ ≤ 0,5<br />

η<br />

η<br />

a, λ<br />

c, λ<br />

=η<br />

=<br />

η<br />

ao<br />

co<br />

+ 0,5 λ<br />

K<br />

− 18,5 λ<br />

≤ 1,0<br />

K<br />

( 1−0,92<br />

λ ) ≥0<br />

K<br />

influence of load<br />

eccentricity :<br />

η<br />

a<br />

=η<br />

a, λ<br />

e/d>0,1 : η a =1,0 and η c =0<br />

+<br />

e<br />

10 (1 − η ao ) η c =η c,<br />

d<br />

λ<br />

⎛ e<br />

⎜1<br />

− 10<br />

⎝ d<br />

⎟ ⎠<br />

⎞<br />

f c<br />

f y<br />

22


Plastic resistance to combined bending and<br />

compression<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

y<br />

N pl,Rd<br />

N Ed<br />

N<br />

M pl,N,Rd = μ M pl,Rd<br />

z<br />

interaction curve<br />

z pl<br />

f yd<br />

-<br />

+<br />

(1-ρ) f yd<br />

M pl,Rd<br />

0,85 f cd<br />

f sd<br />

M pl,N Rd<br />

N Ed<br />

-<br />

M<br />

The resistance of a cross-section to combined<br />

compression and bending and the corresponding<br />

interaction curve may be calculated assuming<br />

rectangular stress blocks.<br />

The tensile strength of the concrete should be<br />

neglected.<br />

The influence of transverse shear forces on the<br />

resistance to bending and normal force should be<br />

considered when determining the interaction curve, if<br />

the shear force V a,Ed<br />

on the steel section exceeds 50%<br />

of the design shear resistance V pl,a,Rd<br />

of the steel<br />

section. The influence of the transverse shear on the<br />

resistance in combined bending and compression<br />

should be taken into account by a reduced design<br />

steel strength (1 - ρ) f yd<br />

in the shear area A v<br />

.<br />

V Ed<br />

Va,Ed<br />

≤0,5<br />

Vpla,Rd<br />

⇒ ρ= 0<br />

2<br />

⎡2 Va,Ed<br />

⎤<br />

Va,Ed<br />

> 0,5 Vpla,Rd<br />

⇒ ρ = ⎢ −1⎥<br />

Vpla,Rd<br />

⎢⎣<br />

⎥⎦<br />

23


Influence of vertical shear<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

V a,Ed<br />

V c,Ed<br />

z pl<br />

-<br />

f sd<br />

f yd<br />

-<br />

0,85f cd<br />

V Ed<br />

M Rd<br />

The shear force V a,Ed<br />

should not exceed<br />

the resistance to shear of the steel section.<br />

The resistance to shear V c,Ed<br />

of the<br />

reinforced concrete part should be verified<br />

in accordance with EN 1992-1-1, 6.2.<br />

-<br />

z pl<br />

f yd<br />

+<br />

-<br />

f yd<br />

+<br />

M a<br />

N a<br />

f sd<br />

M Rd<br />

= M a<br />

+ M c+s N Ed =N a +N c+s<br />

f sd -<br />

f sd<br />

N Ed<br />

M c,+s<br />

N c+s<br />

Unless a more accurate analysis is<br />

used, V Ed<br />

may be distributed into<br />

V a,Ed<br />

acting on the structural steel<br />

and V c,Ed<br />

acting on the reinforced<br />

concrete section by :<br />

V<br />

V<br />

a,Ed<br />

c,Ed<br />

=<br />

V<br />

= V<br />

Ed<br />

Ed<br />

M<br />

M<br />

− V<br />

a<br />

Rd<br />

a,Ed<br />

≈<br />

M<br />

M<br />

pla,Rd<br />

pl,Rd<br />

Verification for vertical<br />

shear:<br />

V<br />

a,Ed<br />

≤<br />

V<br />

pla,Rd<br />

V<br />

c,Ed<br />

≤<br />

V<br />

c, Rd<br />

M pl,a,Rd<br />

M pl,Rd<br />

is the plastic resistance<br />

moment of the steel section.<br />

is the plastic resistance moment<br />

of the composite section.<br />

24


Determination of the resistance to normal<br />

forces and bending (example)<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

t f<br />

A s<br />

y<br />

h w<br />

b<br />

f yd N af<br />

N aw,c<br />

z pl<br />

0,85f cd<br />

- z<br />

t aw,c<br />

-<br />

w<br />

N s<br />

N M pl,N,Rd<br />

c<br />

z<br />

z s<br />

c<br />

V Ed<br />

z aw,t<br />

N<br />

z Ed<br />

N s<br />

(1-ρ)f f sd<br />

yd aw,t<br />

+<br />

N<br />

N s<br />

af<br />

Position of the plastic neutral axis:<br />

N + N −N<br />

= N<br />

c<br />

w<br />

aw,c<br />

pl<br />

aw,t<br />

cd<br />

w<br />

Ed<br />

pl<br />

yd<br />

w<br />

∑ N i = NEd<br />

( b − t )z 0,85 f + t z (1 − ρ)f<br />

− t (h − z ) (1 − ρ)f<br />

= N<br />

Plastic resistance to bending M pl,N,Rd in case of the<br />

simultaneously acting compression force N Ed and the<br />

vertical shear V Ed :<br />

M pl,N,Rd = Nc zc + Naw,c zaw,c + Naw,t zaw,t + Naf (hw + tf ) + 2Ns zs<br />

w<br />

pl<br />

yd<br />

Ed<br />

z<br />

pl<br />

NEd<br />

+ hw<br />

t<br />

=<br />

(b − t )0,85 f<br />

N<br />

N<br />

N<br />

N<br />

N<br />

aw,c<br />

aw,t<br />

af<br />

c<br />

s<br />

= b t<br />

= 2A<br />

f<br />

s<br />

w<br />

= z<br />

pl<br />

= (h<br />

w<br />

f<br />

= (b − t<br />

f<br />

t<br />

yd<br />

w<br />

sd<br />

w<br />

− z<br />

)z<br />

pl<br />

pl<br />

)<br />

cd<br />

t<br />

w<br />

w<br />

(1 − ρ)f<br />

+<br />

(1 − ρ)<br />

0,85<br />

f<br />

2t<br />

yd<br />

f<br />

cd<br />

w<br />

(1 − ρ)<br />

yd<br />

(1 − ρ)f<br />

f<br />

yd<br />

yd<br />

25


G. Hanswille<br />

Simplified determination of the interaction curve<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N pl,Rd<br />

N<br />

A<br />

A<br />

0,85f cd<br />

f sd<br />

f yd<br />

- -<br />

-<br />

N pl,Rd<br />

N pm, Rd<br />

N pm,<br />

Rd<br />

2<br />

B<br />

C<br />

Mpl,Rd<br />

D<br />

M max, Rd<br />

As a simplification, the interaction<br />

curve may be replaced by a polygonal<br />

diagram given by the points A to D.<br />

M<br />

B<br />

C<br />

D<br />

0,85f cd f sd<br />

f yd<br />

- - -<br />

h n<br />

+<br />

0,85f cd<br />

f sd<br />

f yd<br />

-<br />

-<br />

2hn<br />

z pl<br />

z pl<br />

z pl<br />

0,85f cd<br />

-<br />

f sd<br />

f yd<br />

-<br />

M = M<br />

+<br />

f yd<br />

+<br />

f yd<br />

+<br />

B,Rd<br />

M = M<br />

C,Rd<br />

N pm,Rd<br />

M = M<br />

f yd<br />

D,Rd<br />

pl,Rd<br />

pl,Rd<br />

max,Rd<br />

0,5 N pm,Rd<br />

26


Resistance at points A and D<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Point A<br />

N pla,Rd<br />

N plc,Rd<br />

N pls,Rd<br />

yd<br />

Point D<br />

h c<br />

b c<br />

f cd<br />

- -<br />

-<br />

f sd<br />

M pls,Rd<br />

f yd<br />

0,5 M plc,Rd<br />

M pla,Rd<br />

-<br />

z si<br />

- f yd<br />

0,85 f cd +<br />

f sd<br />

+<br />

z si<br />

N<br />

M<br />

pl,Rd<br />

A,Rd<br />

= N<br />

= 0<br />

N<br />

M<br />

pla,Rd<br />

D,Rd<br />

D,Rd<br />

+ N<br />

= 0,5<br />

=<br />

t f<br />

M<br />

plc,Rd<br />

N<br />

plc,Rd<br />

max,Rd<br />

+ N<br />

b<br />

pls,Rd<br />

t w<br />

h<br />

M = M + M + 1 2<br />

max, Rd<br />

W pl,a<br />

W pl,s<br />

W pl,c<br />

pla,Rd<br />

pls,Rd<br />

M<br />

plc,Rd<br />

plastic section modulus of the<br />

structural steel section<br />

plastic section modulus of the crosssection<br />

of reinforcement<br />

plastic section modulus of the concrete<br />

section<br />

M<br />

M<br />

pls,Rd<br />

M<br />

pla,Rd<br />

plc,Rd<br />

= W<br />

= W<br />

= W<br />

pl,a<br />

pl,s<br />

pl,c<br />

f<br />

f<br />

yd<br />

sd<br />

=<br />

0,85 f<br />

[ ∑ A si z si ] f ys<br />

cd<br />

⎡b<br />

= ⎢<br />

⎢<br />

⎣<br />

c<br />

h<br />

4<br />

2<br />

⎡(h<br />

− 2tf<br />

)<br />

= ⎢<br />

⎢⎣<br />

4<br />

2<br />

c<br />

t<br />

w<br />

+ b t<br />

− W<br />

f<br />

pl,a<br />

(h − t<br />

− W<br />

f<br />

)<br />

pl,s<br />

⎤<br />

⎥<br />

⎥⎦<br />

f<br />

⎤<br />

⎥ 0,85 f<br />

⎥<br />

⎦<br />

cd<br />

27


Bending resistance at Point B (M pl,Rd )<br />

- 0,85f cd 0,85f cd - 0,85<br />

+ h f<br />

n<br />

cd<br />

f sd<br />

+<br />

+ +<br />

2 f sd -<br />

f yd<br />

+<br />

h n<br />

=<br />

+<br />

+<br />

-<br />

+ h n<br />

+ 2f yd<br />

N D,Rd<br />

M pln,Rd<br />

z pl h n<br />

Point D<br />

+ =<br />

M D,Rd<br />

N D,Rd<br />

-<br />

f yd<br />

+<br />

+<br />

f sd<br />

+<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

At point B is no resistance to<br />

compression forces. Therefore<br />

the resistance to compression<br />

forces at point D results from the<br />

additional cross-section zones in<br />

compression. With N D,Rd the<br />

depth h n and the position of the<br />

plastic neutral axis at point B can<br />

be determined. With the plastic<br />

bending moment M n,Rd resulting<br />

from the stress blocks within the<br />

depth h n the plastic resistance<br />

moment M pl,Rd at point B can be<br />

calculated by:<br />

M<br />

pl,Rd<br />

h n<br />

z pl<br />

=<br />

M<br />

D,Rd<br />

M pl,Rd<br />

−M<br />

Point B<br />

pln,Rd<br />

28


Plastic resistance moment at Point C<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

- 0,85 f cd<br />

-<br />

- 2h n<br />

+<br />

+<br />

-<br />

2 f sd<br />

+ 2h n =<br />

f yd<br />

+ +<br />

f sd<br />

0,85f cd 0,85f cd<br />

2f yd<br />

- - 2h -<br />

+<br />

n<br />

f yd<br />

+<br />

fsd<br />

+<br />

+<br />

+<br />

The bending resistance at point C<br />

is the same as the bending<br />

resistance at point B.<br />

M C,Rd = M pl,Rd<br />

The normal force results from the<br />

stress blocks in the zone 2h n.<br />

N C,Rd =2N D,Rd =N cpl,Rd =N pm,Rd<br />

Point B<br />

Point C<br />

h n<br />

z pl<br />

M pl,Rd<br />

+ =<br />

2h n<br />

N C,Rd<br />

2h n<br />

N c,Rd<br />

M c,Rd<br />

29


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Part 4:<br />

Simplified design method<br />

30


Simplified Method<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Methods of verification acc. to the simplified method<br />

Axial<br />

compression<br />

Design based on the<br />

European buckling curves<br />

κ<br />

λ K<br />

Design based on second order<br />

analysis with equivalent geometrical<br />

bow imperfections<br />

w o<br />

Resistance<br />

of member<br />

in combined<br />

compression<br />

and bending<br />

Design based on second order<br />

analysis with equivalent geometrical<br />

bow imperfections<br />

w o<br />

31


Scope of the simplified method<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

double symmetrical cross-section<br />

uniform cross-sections over the member length with rolled,<br />

cold-formed or welded steel sections<br />

steel contribution ratio<br />

A<br />

0 ,2 ≤ δ ≤ 0,9 δ =<br />

N<br />

relative slenderness<br />

Npl,Rk<br />

λ = ≤ 2,0<br />

N<br />

cr<br />

yd<br />

pl,Rd<br />

longitudinal reinforcement ratio<br />

a<br />

f<br />

0 ,3% ≤ ρ ≤ 6,0 % ρ =<br />

s<br />

s<br />

A<br />

A<br />

s<br />

c<br />

the ratio of the depth to the width of the composite crosssection<br />

should be within the limits 0,2 and 5,0<br />

32


Effects of creep of concrete<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

2000<br />

1500<br />

Load<br />

F [kN]<br />

F<br />

F u = 2022 kN<br />

short term test<br />

F u = 1697 kN<br />

long term test<br />

e<br />

w t<br />

w o<br />

L = 800 cm<br />

The horizontal deflection and<br />

the second order bending<br />

moments increase under<br />

permanent loads due to creep of<br />

concrete. This leads to a<br />

reduction of the ultimate load.<br />

1000<br />

30 cm<br />

500<br />

F v = 534 kN<br />

permanent<br />

load<br />

30 cm<br />

e=3 cm<br />

The effects of creep of<br />

concrete are taken into<br />

account in design by a<br />

reduced flexural stiffness of<br />

the composite cross-section.<br />

0<br />

20 40 60 80 100<br />

deflection w [mm]<br />

33


Effects of creep on the flexural stiffness<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

The effects of creep of concrete are<br />

taken into account by an effective<br />

modulus of elasticity of concrete<br />

E<br />

c,eff<br />

E<br />

=<br />

N<br />

1+<br />

N<br />

G,Ed<br />

Ed<br />

cm<br />

ϕ(t,t<br />

notional size of the cross-section for<br />

the determination of the creep<br />

coefficient ϕ(t,t o )<br />

h<br />

o =<br />

2 A<br />

U<br />

c<br />

effective perimeter U of the crosssection<br />

b<br />

b<br />

o<br />

)<br />

E cm<br />

N Ed<br />

N G,Ed<br />

ϕ(t,t o )<br />

Secant modulus of concrete<br />

total design normal force<br />

part of the total normal force that is<br />

permanent<br />

creep coefficient as a function of the time at<br />

loading t o , the time t considered and the<br />

notional size of the cross-section<br />

In case of concrete filled hollow section the drying of the<br />

concrete is significantly reduced by the steel section. A<br />

good estimation of the creep coefficient can be<br />

achieved, if 25% of that creep coefficient is used, which<br />

results from a cross-section, where the notional size h o<br />

is determined neglecting the steel hollow section.<br />

h<br />

h<br />

ϕ t,eff<br />

= 0,25 ϕ(t,t o<br />

)<br />

U = 2(b + h) U ≈2h<br />

+ 0,5b<br />

34


Verification for axial compression with the<br />

European buckling curves<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

cross-section<br />

buckling about<br />

strong axis<br />

ν = 0,85<br />

buckling about<br />

weak axis<br />

ν = 0,85<br />

ρ s ≤3% ν = 1,00<br />

3%<br />

ρ s ≤ 6%<br />

ν = 1,00<br />

buckling<br />

curve<br />

b<br />

c<br />

a<br />

cr<br />

0,2 0,6 1,0 1,4 1,8<br />

< b<br />

N<br />

Verification:<br />

Ed ≤ 1,0<br />

NRd<br />

ν = 1,00<br />

ν<br />

= 0,85<br />

b<br />

b<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

N<br />

N<br />

χ =<br />

N<br />

pl,Rd<br />

Rd<br />

pl,Rd<br />

Design value of<br />

resistance<br />

= A<br />

a<br />

f<br />

yd<br />

b<br />

+<br />

a<br />

N<br />

A<br />

c<br />

= χ<br />

Rd N pl,Rd<br />

s<br />

f<br />

sd<br />

λ<br />

=<br />

+ ν A<br />

N<br />

N<br />

c<br />

pl,Rk<br />

cr<br />

λ =<br />

f<br />

cd<br />

≤<br />

2,0<br />

Npl,k<br />

N<br />

35


Relative slenderness<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

f<br />

cd<br />

f<br />

=<br />

γ<br />

ck<br />

c<br />

ν = 0,85<br />

relative slenderness:<br />

λ<br />

=<br />

N<br />

pl,Rk<br />

N<br />

cr<br />

≤<br />

2,0<br />

characteristic value of the plastic<br />

resistance to compressive forces<br />

N = A f + A ν f + A<br />

pl,Rk<br />

a<br />

yk<br />

c<br />

ck<br />

s<br />

f<br />

sk<br />

f<br />

cd<br />

f<br />

=<br />

γ<br />

ck<br />

c<br />

ν = 1,00<br />

elastic critical normal force<br />

N<br />

cr<br />

π<br />

=<br />

2<br />

(EJ)<br />

( βL)<br />

eff<br />

2<br />

β - buckling length factor<br />

effective flexural stiffness<br />

( EJ) eff = (EaJa<br />

+ Ke<br />

Ec,eff<br />

Jc<br />

+ EsJs<br />

)<br />

K e =0,6<br />

36


Verification for combined<br />

compression and bending<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N pl,Rd<br />

N Ed<br />

N<br />

w o<br />

equivalent<br />

geometrical bow<br />

imperfection<br />

Verification<br />

max M<br />

Ed<br />

≤ M<br />

Rd<br />

= α<br />

M<br />

α M<br />

= 0,9 for S235 and S355<br />

μ<br />

M<br />

pl,Rd<br />

w o<br />

α M<br />

= 0,8 for S420 and S460<br />

α M<br />

μ M pl,Rd<br />

M pl,N,Rd<br />

M<br />

bending moments taking into<br />

account second order effects:<br />

f yd<br />

(1-ρ) f yd<br />

+<br />

-<br />

M Rd<br />

0,85f cd<br />

f sd<br />

M pl,Rd<br />

V Ed<br />

M pl,N Rd<br />

N Ed<br />

The factor α M takes into account the<br />

difference between the full plastic and the<br />

elasto-plastic resistance of the cross-section<br />

resulting from strain limitations for concrete.<br />

-<br />

max M<br />

N<br />

cr<br />

(EI)<br />

with<br />

π<br />

=<br />

Ed<br />

2<br />

eff,II<br />

K<br />

= N<br />

(E J)<br />

β<br />

2<br />

= K<br />

e,II<br />

L<br />

Ed<br />

w<br />

eff,II<br />

2<br />

o<br />

=<br />

(E<br />

a<br />

J<br />

0,5<br />

o<br />

a<br />

1<br />

N<br />

1−<br />

N<br />

+<br />

K<br />

K<br />

e<br />

o<br />

Ed<br />

Effective flexural stiffness<br />

cr<br />

E<br />

c,eff<br />

= 0,9<br />

J<br />

c<br />

+<br />

E<br />

s<br />

J<br />

s<br />

)<br />

37


Equivalent initial bow imperfections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Buckling curve<br />

a b c<br />

3%<br />

< ρ s ≤ 6%<br />

ρ s ≤3%<br />

Member imperfection<br />

w o = L/300 w o = L/200 w o = L/150<br />

38


Imperfections for global analysis of frames<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

sway imperfection<br />

Global initial sway imperfection acc. to EN 1993-1-1:<br />

N Ed,1<br />

N Ed,2<br />

φ<br />

=<br />

φ<br />

o<br />

α<br />

m<br />

α<br />

h<br />

h<br />

φ φ Φ o basic value with Φ o = 1/200<br />

α h<br />

reduction factor for the height h in [m]<br />

α<br />

h<br />

=<br />

2<br />

h<br />

but<br />

2<br />

3<br />

≤ α<br />

h<br />

≤1,0<br />

equivalent forces<br />

α m<br />

reduction factor for the number of <strong>columns</strong> in a row<br />

Φ N Ed,1<br />

N Ed,1<br />

N Ed,2<br />

Φ N Ed,2<br />

α<br />

m<br />

=<br />

0,5<br />

⎢<br />

⎡ 1 +<br />

⎣<br />

1<br />

m<br />

⎤<br />

⎥<br />

⎦<br />

Φ N Ed,1<br />

Φ N Ed,2<br />

m is the number of <strong>columns</strong> in a row including only<br />

those <strong>columns</strong> which carry a vertical load N Ed not<br />

less than 50% of the average value of the column<br />

in a vertical plane considered.<br />

39


Frames sensitive against second order effects<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N Ed,1<br />

imperfections<br />

λ > 0,5<br />

N<br />

N<br />

pl,Rk<br />

L Ed, 2<br />

1<br />

φ 1<br />

φ 2<br />

N Ed,2<br />

L 2<br />

Within a global analysis, member imperfections in<br />

composite compression members may be<br />

neglected where first-order analysis may be<br />

used. Where second-order analysis should be<br />

used, member imperfections may be neglected<br />

within the global analysis if:<br />

λ<br />

≤ 0,5<br />

N<br />

N<br />

pl,Rk<br />

Ed,1<br />

w 0<br />

λ<br />

≤<br />

0,5<br />

N<br />

N<br />

pl,Rk<br />

Ed, i<br />

N Ed,1<br />

N Ed,2<br />

w<br />

4<br />

o N<br />

L2<br />

N Ed,1 φ N Ed,2 φ 2<br />

1<br />

equivalent<br />

w o<br />

forces<br />

q=8 N<br />

2 Ed, 2<br />

N L<br />

Ed,1 φ 1 2<br />

N Ed,2 φ 2<br />

w<br />

4<br />

L<br />

Ed,2<br />

o NEd,2<br />

2<br />

N<br />

λ =<br />

cr<br />

π<br />

=<br />

N<br />

2<br />

pl,Rk<br />

N<br />

cr<br />

(EJ)<br />

L<br />

2<br />

i<br />

eff<br />

( EJ) eff = (EaJa<br />

+ 0,6E c,eff Jc<br />

+ EsJs<br />

)<br />

40


Second order analysis<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N<br />

r M R<br />

r M R<br />

Bending moments including second order effects:<br />

⎛ r sin ε (1− ξ)<br />

+ sin ε ξ ⎞ ⎛ cos ε (0,5 − ξ)<br />

⎞<br />

M(<br />

ξ)<br />

= MR<br />

⎜<br />

⎟ + Mo<br />

⎜<br />

−1⎟<br />

⎝ sin ε ⎠ ⎝ cos ( ε / 2) ⎠<br />

EJ<br />

V<br />

z<br />

M ε⎛<br />

r cos ε (1− ξ)<br />

+ cos ε ξ ⎞ ⎛ sin ε (0,5 − ξ)<br />

⎞<br />

( ξ)<br />

=<br />

R<br />

⎜<br />

⎟ + Mo<br />

⎜<br />

−1⎟<br />

L ⎝ sin ε ⎠ ⎝ cos ( ε / 2) ⎠<br />

q<br />

L<br />

ζ M<br />

ζ<br />

M max<br />

M<br />

o<br />

=<br />

(q L<br />

2<br />

+ 8Nw<br />

o<br />

1<br />

)<br />

2<br />

ε<br />

ε=L<br />

Maximum bending moment at the point ξ M :<br />

N<br />

(E J)<br />

Ed<br />

eff,II<br />

⎛<br />

⎜<br />

⎝<br />

dM<br />

=<br />

dξ<br />

⎞<br />

0⎟<br />

⎠<br />

M<br />

max<br />

=<br />

[ 0,5M(1 + r) + M ]<br />

o<br />

2<br />

1+<br />

c<br />

cos(0,5 ε)<br />

−<br />

M<br />

0<br />

w o<br />

M R<br />

M R<br />

c =<br />

M (r −1)<br />

M(1+<br />

r) + 2M<br />

o<br />

1<br />

tan(0,5ε<br />

)<br />

ξ<br />

M<br />

= 0,5<br />

+<br />

arctan<br />

ε<br />

c<br />

41


Simplified calculation of second order effects<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

4,0<br />

3,0<br />

k<br />

r=1,0<br />

r=0,5<br />

r=0<br />

r M R<br />

N<br />

EJ<br />

r M R<br />

Exact solution:<br />

M<br />

max<br />

= 0,5M<br />

R<br />

r −1<br />

1<br />

c =<br />

1+<br />

r tan(0,5ε<br />

)<br />

2<br />

1+<br />

c<br />

(1+<br />

r)<br />

cos(0,5 ε)<br />

2,0<br />

r= - 0,5<br />

L<br />

ζ<br />

ζ M<br />

M max<br />

ξ<br />

M<br />

= 0,5 +<br />

arctan<br />

ε<br />

c<br />

ε=L<br />

N<br />

(E J)<br />

Ed<br />

eff,II<br />

M R<br />

simplified solution:<br />

1,0<br />

exact method<br />

simplified method<br />

N<br />

M R<br />

k =<br />

M<br />

M<br />

max<br />

R<br />

β<br />

=<br />

N<br />

1−<br />

N<br />

Ed<br />

cr<br />

β = 0 ,66 +<br />

β ≥<br />

0,44<br />

0,44r<br />

0,25 0,50 0,75 1,00<br />

N cr<br />

42


Background of the member imperfections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N Rd<br />

N<br />

ε =L<br />

N<br />

(EJ)<br />

Rd<br />

Bending moment based on second<br />

order analysis:<br />

N Ed<br />

=N Rd<br />

eff,II<br />

= 8 wo<br />

(EJ) eff,II ⎡ 1 ⎤<br />

M<br />

⎢ −<br />

2<br />

⎥<br />

L ⎣cos(<br />

ε / 2)<br />

1<br />

⎦<br />

wo Resistance to axial compression<br />

μ M pl,Rd<br />

based on the European buckling<br />

curves:<br />

N<br />

= χ<br />

Rd N pl,Rd<br />

M Rd<br />

M pl,Rd<br />

M<br />

Bending resistance:<br />

M<br />

Rd<br />

= α<br />

M<br />

μ<br />

M<br />

pl,Rd<br />

The initial bow imperfections were<br />

recalculated from the resistance to<br />

compression calculated with the<br />

European buckling curves.<br />

Determination of the equivalent bow<br />

imperfection:<br />

w<br />

o<br />

α<br />

=<br />

8(EJ)<br />

M<br />

eff,II<br />

μ<br />

d<br />

M<br />

pl,Rd<br />

L<br />

2<br />

⎡ 1<br />

⎢<br />

⎣1−cos(<br />

ε / 2)<br />

⎤<br />

−1⎥<br />

⎦<br />

43


Geometrical bow imperfections –<br />

comparison with European buckling<br />

curves for axial compression<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

j<br />

500<br />

400<br />

1<br />

N ( )<br />

δ =<br />

δ N (w )<br />

Rd κ<br />

Rd<br />

o<br />

1,2<br />

1<br />

1,1<br />

2<br />

3<br />

1<br />

2<br />

3<br />

C20/S235<br />

C40/S355<br />

C60/S355<br />

300<br />

200<br />

j =<br />

L<br />

w o<br />

1,0 2,0<br />

2<br />

3<br />

λ<br />

The initial bow imperfection is a<br />

function of the related slenderness<br />

and the resistance of cross-sections.<br />

In Eurocode 4 constant values for w 0<br />

are used.<br />

1,0<br />

0,9<br />

0,8<br />

w o = l/300<br />

0,4 0,8 1,2 1,6 2,0<br />

The use of constant values for w o leads to<br />

maximum differences of 5% in<br />

comparison with the calculation based on<br />

the European buckling curves.<br />

λ<br />

44


Comparison of the simplified method with nonlinear<br />

calculations for combined compression<br />

and bending<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

1,0<br />

0,8<br />

N<br />

N pl,Rd<br />

Resistance as a function of the<br />

related slenderness<br />

Plastic cross-section<br />

resistance<br />

λ<br />

=<br />

N<br />

pl,Rk<br />

N<br />

cr<br />

λ k = 0,50<br />

λ k = 1,00<br />

λ k = 1,50<br />

0,6<br />

λ k = 2,00<br />

0,4<br />

general method<br />

0,2<br />

simplified method<br />

M<br />

0,2 0,4 0,6 0,8 1,0<br />

M pl,Rd<br />

45


Resistance to combined compression<br />

and biaxial bending<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Interaction<br />

M z , N<br />

μ dz<br />

μz,Ed<br />

N<br />

N pl,Rd<br />

μ y, Ed<br />

N<br />

N<br />

pl,Rd<br />

μ dy<br />

Ed<br />

B<br />

Interaction<br />

M y , N<br />

Interaction<br />

M y , M z , N Ed<br />

The resistance is given by a threedimensional<br />

interaction relation. For<br />

simplification a linear interaction<br />

between the points A and B is used.<br />

M<br />

M<br />

M<br />

y,Rd<br />

z,Rd<br />

y,Ed<br />

M<br />

z,Ed<br />

(N<br />

(N<br />

Ed<br />

Ed<br />

= μ<br />

= μ<br />

)<br />

= μ<br />

) = μ<br />

y,Ed<br />

z,Ed<br />

M<br />

dy<br />

dz<br />

M<br />

M<br />

M<br />

y,Rd<br />

y,Rd<br />

pl,y,Rd<br />

pl,y,Rd<br />

A<br />

Approximation:<br />

μy,Ed<br />

μz,Ed<br />

+ ≤ 1,0<br />

μ μ<br />

dy<br />

dz<br />

approximation for the<br />

interaction curve:<br />

M<br />

M<br />

z<br />

pl,z,Rd<br />

Interaction<br />

M y , M z<br />

M<br />

M<br />

y<br />

pl,y, Rd<br />

μ<br />

μ<br />

μ<br />

y,Ed<br />

dy<br />

dy<br />

M<br />

M<br />

μ<br />

+<br />

μ<br />

y,Ed<br />

z,Ed<br />

dz<br />

pl,y,Rd<br />

≤ 1,0<br />

+<br />

μ<br />

dz<br />

M<br />

M<br />

z,Ed<br />

pl,z,Rd<br />

≤ 1,0<br />

46


Verification in case of compression an biaxial<br />

bending<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

For both axis a separate verification<br />

is necessary.<br />

μ<br />

μ<br />

dy<br />

dy<br />

M<br />

M<br />

M<br />

M<br />

y,Ed<br />

pl,y,Rd<br />

y,Ed<br />

pl,y,Rd<br />

≤<br />

+<br />

α<br />

μ<br />

M<br />

dz<br />

M<br />

M<br />

z,Ed<br />

μ<br />

dz<br />

pl,y,Rd<br />

M<br />

M<br />

z,Ed<br />

pl,y,Rd<br />

Verification for the interaction of biaxial<br />

bending.<br />

≤ 1,0<br />

Imperfections should be considered<br />

only in the plane in which failure is<br />

expected to occur. If it is not evident<br />

which plane is the most critical,<br />

checks should be made for both<br />

planes.<br />

≤<br />

α<br />

M<br />

N<br />

N pl,Rd<br />

N<br />

N<br />

N<br />

N pl,Rd<br />

N<br />

N<br />

Ed<br />

pl,Rd<br />

Ed<br />

pl,Rd<br />

μ dy<br />

μ dz<br />

α M = 0,9 for S235 and S355<br />

α M = 0,8 for S420 and S460<br />

M<br />

M<br />

M<br />

y,Rd<br />

pl,y,Rd<br />

M<br />

z,Rd<br />

pl,z,Rd<br />

47


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Part 5:<br />

Special aspects of <strong>columns</strong> with inner core profiles<br />

48


<strong>Composite</strong> <strong>columns</strong> – General Method<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Commerzbank Frankfurt<br />

Millennium Tower Vienna<br />

Highlight Center<br />

Munich<br />

New railway station in Berlin<br />

(Lehrter Bahnhof)<br />

49


<strong>Composite</strong> <strong>columns</strong> with concrete filled<br />

tubes and steel cores – special effects<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Resistance based on stress blocks (plastic<br />

resistance)<br />

tube core concrete<br />

f y f y f c<br />

M<br />

N<br />

Non linear resistance with strain limitation for concrete<br />

strains ε<br />

f y f y<br />

f c<br />

M<br />

α<br />

M<br />

=<br />

M<br />

μ M<br />

Rd<br />

pl,Rd<br />

Cross-sections with<br />

massive inner cores have<br />

a very high plastic shape<br />

factor and the cores can<br />

have very high residual<br />

stresses. Therefore these<br />

<strong>columns</strong> can not be<br />

design with the simplified<br />

method according to EN<br />

1944-1-1.<br />

σ ED<br />

N<br />

r<br />

50


Residual stresses and distribution of the<br />

yield strength<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

300<br />

σ ED [N/mm 2 ]<br />

f yk<br />

distribution of yield strenght<br />

f y (r)<br />

250<br />

200<br />

150<br />

100<br />

U<br />

A<br />

=<br />

π<br />

= π<br />

d k<br />

2<br />

d<br />

k<br />

/ 4<br />

d k<br />

r k<br />

f yk – characteristic value<br />

of the yield strenght<br />

fy(r)<br />

⎛<br />

= 0,95 + 0,1 ⎜<br />

fyk<br />

⎝<br />

r<br />

r<br />

k<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

50<br />

U/A [1/m]<br />

10 20 30 40 50<br />

d K<br />

[mm]<br />

residual stresses:<br />

400 200 130<br />

100<br />

80<br />

d K<br />

d<br />

σ ED<br />

σ<br />

E<br />

(r) = σ<br />

ED<br />

⎡<br />

2r<br />

⎢1−<br />

⎢<br />

⎣<br />

r<br />

2<br />

2<br />

K<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

r, r k<br />

51


General method – Finite Element Model<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

load introduction<br />

stresses in the tube<br />

initial bow imperfection<br />

cross-section<br />

stresses in concrete<br />

52


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Part 6:<br />

Load introduction and<br />

longitudinal shear<br />

53


Load introduction over the steel section<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N Ed<br />

load introduction by headed studs within the<br />

load introduction length L E<br />

P D L E < 2,0 d<br />

N c,Ed<br />

N a,Ed<br />

d<br />

A a<br />

N s,Ed<br />

A s<br />

A c<br />

L E<br />

⎧ 2d<br />

≤ ⎨<br />

⎩L / 3<br />

d minimum transverse dimension of<br />

the cross-section<br />

L<br />

member length of the column<br />

sectional forces of the cross-section :<br />

Npl,a<br />

Npl,s<br />

N a,Ed = NEd<br />

Ns,Ed<br />

= NEd<br />

Nc,Ed<br />

= N<br />

N<br />

N<br />

pl,Rd<br />

pl,Rd<br />

required number of studs n resulting from the<br />

sectional forces N Ed,c<br />

+ N Ed,s<br />

:<br />

V<br />

L,Ed<br />

⎡ Npl,a<br />

⎥ ⎥ ⎤<br />

= Nc,Ed<br />

+ Ns,Ed<br />

= NEd<br />

⎢1<br />

−<br />

⎢⎣<br />

Npl,<br />

Rd ⎦<br />

P Rd – design resistance of studs<br />

V = nP<br />

L,Rd<br />

Rd<br />

Ed<br />

N<br />

N<br />

pl,c<br />

pl,Rd<br />

54


G. Hanswille<br />

Load introduction for combined comression and<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

bending<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

sectional forces due to N Ed<br />

und M Ed<br />

sectional forces based on plastic theory<br />

M Ed<br />

N Ed<br />

M Rd = Ma,Rd<br />

+ Mc+ s,Rd NRd<br />

= Na,Rd<br />

+ Nc+<br />

s,Rd<br />

N<br />

z pl<br />

-<br />

M a;Rd<br />

0,85f<br />

f cd<br />

sd<br />

M<br />

M Rd<br />

-<br />

c,+s,Rd<br />

+ =<br />

N pl,Rd<br />

1,0<br />

f yd<br />

+<br />

N a,Rd<br />

f sd<br />

N c+s,Rd<br />

N Rd<br />

N a,Ed<br />

N c,Ed + N s,Ed<br />

M c,Ed + M s,Ed<br />

M a,Ed<br />

N<br />

N<br />

N<br />

N<br />

Rd<br />

pl,Rd<br />

Ed<br />

pl, Rd<br />

E d<br />

R d<br />

E<br />

R<br />

d<br />

d<br />

N<br />

=<br />

N<br />

M<br />

M pl,Rd<br />

a,Ed<br />

a,Rd<br />

R<br />

=<br />

d<br />

M<br />

M<br />

=<br />

a,Ed<br />

a,Rd<br />

⎛<br />

⎜<br />

M<br />

⎝<br />

M<br />

=<br />

Ed<br />

pl,Rd<br />

N<br />

N<br />

⎞<br />

⎟<br />

⎠<br />

c+<br />

s,Ed<br />

c+<br />

s,Rd<br />

2<br />

⎛ N<br />

+ ⎜<br />

⎝<br />

N<br />

Ed<br />

=<br />

pl,Rd<br />

⎞<br />

⎟<br />

⎠<br />

M<br />

M<br />

2<br />

c+<br />

s,Ed<br />

c+<br />

s,Rd<br />

M<br />

M<br />

Ed<br />

pl,Rd<br />

M<br />

M<br />

Rd<br />

pl,Rd<br />

1,0<br />

E<br />

d<br />

=<br />

⎛<br />

⎜<br />

M<br />

⎝<br />

M<br />

Rd<br />

pl,Rd<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

⎛ N<br />

+ ⎜<br />

⎝<br />

N<br />

Rd<br />

pl,Rd<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

55


Load introduction – Example<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

sectional forces based on stress blocks:<br />

f yd<br />

f f cd sd -N s,i<br />

Nc<br />

+ s,Rd = Nc<br />

+ ∑Nsi<br />

- M -N<br />

a;Rd<br />

Z<br />

z pl - c s<br />

M c,+s,Rd Mc<br />

+ s,Rd = Nc<br />

zc<br />

+ ∑Nsi<br />

zsi<br />

z<br />

N c<br />

a,Rd<br />

Z s<br />

-N<br />

+<br />

c+s,Rd<br />

f sd N s,i<br />

shear forces of studs based on elastic theory shear forces of studs based on plastic theory<br />

2<br />

2<br />

⎡N<br />

c s,Ed M ⎤ ⎡<br />

c s,Ed M ⎤<br />

c s,Ed<br />

Nc<br />

+ s,Ed Mc<br />

+ s,Ed<br />

maxPEd<br />

⎢<br />

+ +<br />

xi⎥<br />

⎢<br />

+<br />

=<br />

+<br />

+ zi⎥<br />

max PEd<br />

= +<br />

⎢ n<br />

2<br />

2<br />

r ⎥ ⎢<br />

n eh<br />

0,5 n<br />

i<br />

r ⎥<br />

⎣<br />

∑ ⎦ ⎣ ∑<br />

i ⎦<br />

n – number of<br />

P Ed (N)<br />

z i<br />

x studs within the<br />

P i<br />

ed,v r i<br />

load introduction<br />

e h<br />

P length<br />

ed,h P Ed (M)<br />

N M<br />

c+s,Ed M c+s,Ed<br />

c+s,Ed<br />

N c+s,Ed<br />

56


Shear resistance of stud connectors welded<br />

to the web of partially encased I-Sections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

P Rd<br />

D c<br />

µP Rd<br />

/ 2<br />

µP Rd<br />

/ 2<br />

V = P + V<br />

L,Rd<br />

V<br />

LR,Rd<br />

Rd<br />

= μ<br />

P<br />

LR, Rd<br />

Rd<br />

Where stud connectors are attached to the web of a fully or<br />

partially concrete encased steel I-section or a similar<br />

section, account may be taken of the frictional forces that<br />

develop from the prevention of lateral expansion of the<br />

concrete by the adjacent steel flanges. This resistance may<br />

be added to the calculated resistance of the shear<br />

connectors. The additional resistance may be assumed to<br />

be on each flange and each horizontal row of studs, where μ<br />

is the relevant coefficient of friction that may be assumed.<br />

For steel sections without painting, μ may be taken as 0,5.<br />

P Rd<br />

is the resistance of a single stud.<br />

57


Shear resistance of stud connectors welded<br />

to the web of partially encased I-Sections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

P Rd<br />

P Rd<br />

P Rd<br />

P Rd<br />

P Rd P Rd<br />

V LR,Rd /2<br />

< 300 < 400 < 600<br />

V<br />

L,Rd<br />

=<br />

nP<br />

Rd<br />

+ V<br />

LR,Rd<br />

V<br />

LR,Rd<br />

=<br />

μ<br />

P<br />

Rd<br />

P Rd = min<br />

P<br />

P<br />

Rd,1<br />

Rd,2<br />

= 0,29 α<br />

= 0,8 ⋅ f<br />

u<br />

d<br />

2<br />

⎛<br />

⎜<br />

π d<br />

⎝ 4<br />

2<br />

f<br />

ck<br />

⎞<br />

⎟<br />

1<br />

⎠ γv<br />

E<br />

cm<br />

1<br />

γ<br />

v<br />

In absence of better information from tests, the clear distance between<br />

the flanges should not exceed the values given above.<br />

58


Shear resistance of stud connectors welded<br />

to the web of partially encased I-sections<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

F [kN]<br />

F<br />

F<br />

F<br />

F<br />

3500<br />

3000<br />

2500<br />

2000<br />

test series S1<br />

test series S2<br />

1500<br />

test S3/3<br />

1000<br />

test S1/3<br />

500<br />

w [mm]<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

59


Load introduction – longitudinal shear<br />

forces in concrete<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

N Ed<br />

b c<br />

D c<br />

D c<br />

θ<br />

Z s<br />

Z s<br />

Z θ<br />

s<br />

D c<br />

N Ed<br />

Longitudinal shear force in section I-I:<br />

V<br />

L,Ed<br />

=<br />

N<br />

Ed<br />

⎡ N<br />

⎢1<br />

−<br />

⎢⎣<br />

N<br />

pl,a<br />

pl,Rd<br />

⎤<br />

⎥<br />

⎥⎦<br />

A<br />

A<br />

c1<br />

c<br />

0,85 f<br />

0,85 f<br />

cd<br />

cd<br />

+ A<br />

+ A<br />

Longitudinal shear resistance of concrete struts:<br />

V<br />

L,Rd,max<br />

= 4<br />

c<br />

y<br />

ν 0,85<br />

f<br />

cd<br />

cot θ + tan θ<br />

L<br />

E<br />

θ =45 o<br />

s1<br />

s<br />

f<br />

f<br />

sd<br />

sd<br />

L E<br />

I<br />

I<br />

I<br />

ν = 0,6<br />

(1−<br />

(f<br />

ck<br />

/ 250))<br />

with<br />

f<br />

ck<br />

in<br />

N / mm<br />

2<br />

c y<br />

c y<br />

not directly connected concrete<br />

area A s1<br />

I<br />

longitudinal shear resistance of the stirrups:<br />

V<br />

L,Rd,s<br />

= 4<br />

A<br />

s<br />

s<br />

w<br />

f<br />

yd<br />

s w - spacing of stirrups<br />

cot θ<br />

A s<br />

- cross-section area of the stirrups<br />

L<br />

E<br />

60


Load introduction – longitudinal shear<br />

forces in concrete – test results<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

2000<br />

F [kN]<br />

F u<br />

= 1608 kN<br />

1500<br />

1000<br />

F<br />

w<br />

F<br />

test I/1<br />

500<br />

0<br />

0 2 4 6 8 10 12 14<br />

w [mm]<br />

61


Load introduction – Examples<br />

(Airport Hannover)<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Load introduction with<br />

gusset plates<br />

62


Load introduction with partially loaded<br />

end plates<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Load introduction with<br />

partially loaded end plates<br />

63


Load introduction with distance plates for<br />

<strong>columns</strong> with inner steel cores<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

distance plates<br />

Post Tower Bonn<br />

64


<strong>Composite</strong> <strong>columns</strong> with hollow sections –<br />

Load introduction<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

gusset plate<br />

stiffeners and<br />

end plates<br />

distance plates<br />

Stiffener<br />

σ c<br />

σ c<br />

Distance<br />

σ c<br />

plate<br />

65


Mechanical model<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

P<br />

cR,m<br />

= f<br />

c<br />

A<br />

1<br />

A<br />

A<br />

c<br />

1<br />

⎡<br />

⎢1+ η<br />

⎣<br />

cL<br />

t<br />

d<br />

f<br />

f<br />

y<br />

c<br />

⎤<br />

⎥<br />

⎦<br />

σ c<br />

σ a<br />

A 1<br />

Effect of partially<br />

loaded area<br />

Effect of<br />

confinement by the<br />

tube<br />

A c<br />

σ c,r<br />

η c,L = 3,5 η c,L = 4,9<br />

σ a,t<br />

σ a,t<br />

66


Typical load-deformation curves<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

P [MN]<br />

2.5<br />

series SXIII<br />

P u<br />

2.0<br />

P u,stat<br />

P<br />

1.5<br />

1.0<br />

δ<br />

0.5<br />

δ [mm]<br />

0 5 10 15 20 25 30 35<br />

P [MN]<br />

5.0<br />

4.0<br />

3.0<br />

P<br />

P u<br />

P u,stat<br />

series SV<br />

2.0<br />

1.0<br />

δ<br />

δ [mm]<br />

0<br />

5 10 15<br />

20<br />

67


Test evaluation according to EN 1990<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

r e [MN]<br />

10,0<br />

P c,Rm<br />

8,0<br />

6,0<br />

41 tests<br />

V r<br />

= 0.14<br />

4,0<br />

P c,Rk = 0.78 P c,Rm<br />

σ a,x<br />

σ c<br />

A 1<br />

2,0<br />

P c,Rd = 0.66 P c,Rm<br />

r t [MN]<br />

2,0 4,0 6,0 8,0 10,0<br />

A c<br />

P<br />

cR,m<br />

= f<br />

c<br />

A<br />

1<br />

⎡<br />

⎢1+ η<br />

⎢⎣<br />

cL<br />

t<br />

d<br />

f<br />

f<br />

y<br />

c<br />

⎤<br />

⎥<br />

⎥⎦<br />

A<br />

A<br />

c<br />

1<br />

σ a,y<br />

σ c,r<br />

σ a,y<br />

68


Load distribution by end plates<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

~1d<br />

F [kN]<br />

6000<br />

F u<br />

4000<br />

F u = 6047 kN<br />

F u,stat = 4750 kN<br />

δ u = 7.5 mm<br />

t s<br />

t p<br />

σ c<br />

2000<br />

b c<br />

5,0 10,0 15,0<br />

δ [mm]<br />

b = t + 5 t<br />

c<br />

s<br />

p<br />

69


Design rules according to EN 1994-1-1<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

σ<br />

c,Rd<br />

= f<br />

cd<br />

⎡<br />

⎢1+ η<br />

⎣<br />

cL<br />

t<br />

d<br />

f<br />

f<br />

yk<br />

ck<br />

⎤<br />

⎥<br />

⎦<br />

A<br />

A<br />

c<br />

1<br />

≤<br />

Ac<br />

f<br />

A<br />

1<br />

cd<br />

≤<br />

f<br />

yd<br />

t s<br />

Load distribution 1:2,5<br />

t p<br />

A 1<br />

f ck<br />

t<br />

d<br />

f yk<br />

A 1<br />

A c<br />

η c,L<br />

concrete cylinder strength A<br />

wall thickness of the tube A1<br />

diameter of the tube<br />

yield strength of structural steel<br />

loaded area<br />

cross section area of the concrete<br />

confinement factor<br />

η c,L<br />

= 4,9 (tube)<br />

η c,L<br />

= 3,5 (square hollow sections)<br />

c ≤<br />

20<br />

σ c,Rd<br />

b c<br />

b = t + 5 t<br />

c<br />

s<br />

p<br />

b c<br />

70


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Verification outside the areas of load introduction Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

F<br />

δ<br />

A<br />

pure bond<br />

(adhesion)<br />

B<br />

mechanical<br />

interlock<br />

σ r<br />

C<br />

friction<br />

Outside the area of load introduction,<br />

longitudinal shear at the interface<br />

between concrete and steel should be<br />

verified where it is caused by<br />

transverse loads and / or end<br />

moments. Shear connectors should<br />

be provided, based on the distribution<br />

of the design value of longitudinal<br />

shear, where this exceeds the design<br />

shear strength τ Rd<br />

.<br />

In absence of a more accurate<br />

method, elastic analysis, considering<br />

long term effects and cracking of<br />

concrete may be used to determine<br />

the longitudinal shear at the interface.<br />

71


Design shear strength τ Rd<br />

G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

b c<br />

b<br />

τ Rd,o = 0,30 N/mm 2<br />

concrete<br />

encased<br />

sections<br />

y<br />

c y<br />

c y<br />

c z<br />

h<br />

c z<br />

h c<br />

τ<br />

Rd<br />

= τ<br />

Rd,o<br />

β<br />

c<br />

⎡ cz,min<br />

⎤<br />

β c = 1 + 0,02 cz<br />

⎢1<br />

− ≤2,5<br />

c<br />

⎥<br />

⎣ z ⎦<br />

c z - nominal concrete cover [mm]<br />

z<br />

c z,min =40mm (minimum value)<br />

concrete filled tubes<br />

τ Rd<br />

= 0,55 N/mm 2<br />

flanges of partially<br />

encased I-sections<br />

τ Rd<br />

= 0,20 N/mm 2<br />

concrete filled<br />

rectangular hollow<br />

sections<br />

τ Rd<br />

= 0,40 N/mm 2<br />

webs of partially<br />

encased I-sections<br />

τ Rd<br />

= 0,0 N/mm 2<br />

72


G. Hanswille<br />

Univ.-Prof. Dr.-Ing.<br />

Institute for Steel and<br />

<strong>Composite</strong> Structures<br />

University of Wuppertal-Germany<br />

Thank you very<br />

much for your kind<br />

attention<br />

73

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!