12.11.2012 Views

AFM – Confocal Raman – SNOM and Tip Enhanced Raman ...

AFM – Confocal Raman – SNOM and Tip Enhanced Raman ...

AFM – Confocal Raman – SNOM and Tip Enhanced Raman ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>AFM</strong> – <strong>Confocal</strong> <strong>Raman</strong> – <strong>SNOM</strong> <strong>and</strong> <strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong> :<br />

Instrumentation <strong>and</strong> Applications<br />

Outlook:<br />

11. Introduction to NT NT-MDT MDT<br />

2. <strong>AFM</strong> – <strong>Confocal</strong> <strong>Raman</strong> – <strong>SNOM</strong> –<br />

TERS iinstrumentation t t ti<br />

3. <strong>AFM</strong> & “micro”- <strong>Raman</strong> studies:<br />

Graphene, nanowires, nanotubes,<br />

polymers, bio-objects etc.<br />

4. <strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong> Scattering:<br />

“nano – <strong>Raman</strong>” imaging<br />

5. Scanning Near Field Optical<br />

Microscopy (<strong>SNOM</strong>)<br />

www.ntmdt.com/device/ntegra-spectra<br />

Contact: Contact : Dr. Pavel Dorozhkin, dorozhkin@ntmdt.com


NT-MDT NT MDT Europe<br />

Eindhoven, NL<br />

NT-MDT America<br />

SSanta t Clara, Cl USA<br />

NT-MDT Basic offices modes worldwide<br />

www.ntmdt.com<br />

NT-MDT Head Office,<br />

Moscow, Russia<br />

Distributors<br />

Sales Representatives<br />

NT-MDT Shanghai<br />

Shanghai, China<br />

NT-MDT S&L<br />

Limerick Limerick, Irel<strong>and</strong>


NT-MDT Product line<br />

NANOFABs N NO s<br />

NanoLabs<br />

Ed Educations ti<br />

Accessories<br />

• More than 20 years on the SPM/<strong>AFM</strong> market<br />

y<br />

• More than 2400 SPM installations Worldwide<br />

• Offices: Moscow, Eindhoven, Limerick, San-Francisco, Shanghai


SPM modes:<br />

<strong>AFM</strong> (contact, intermittent contact), STM


ALL major <strong>AFM</strong> modes are integrated with RAMAN<br />

NT-MDT St<strong>and</strong>ard Measuring modes<br />

More than 30 possible different <strong>AFM</strong> modes<br />

INTEGRATED with <strong>Raman</strong>-<strong>Confocal</strong><br />

• STM<br />

• Contact <strong>AFM</strong><br />

• Lateral Force Microscopy<br />

• Resonant Mode -Semicontact<br />

• Noncontact <strong>AFM</strong> mode<br />

• Phase Imaging<br />

• Force Modulation (viscoelastisity)<br />

• Magnetic force Microcopy<br />

• Electrostatic Force Microscopy<br />

• Adhesion Force Imaging<br />

• <strong>AFM</strong> Lithography-Force<br />

• Spreading Resistance Imaging (SRI) in Currents 30fA-50nA<br />

• <strong>AFM</strong> Nanolitogrphy (voltage <strong>and</strong> scratching)<br />

• SScanning Capacitance C Imaging (SC (SCI) ) ( (dC/dZ, C/ dC/dV) C/ )<br />

• Scanning Kelvin probe microscopy (SKM)<br />

• Force distance curves<br />

• Force Volume<br />

• NNanomanipulation i l ti<br />

• Piezoresponce Mode<br />

• Sample heating for in-situ melting<br />

• I/V spectroscopy, I(Z) spectroscopy etc.<br />

• El Electrochemistry<br />

t h i t<br />

• <strong>SNOM</strong><br />

• ….<br />

SPM PROBES:<br />

- <strong>AFM</strong> cantilever (any type)<br />

- STM<br />

- tuning fork (shear force)<br />

- tuning fork (normal force)


Inverted<br />

UUpright i ht


<strong>SNOM</strong><br />

ONE SPM BASEMENT & CONTROLLER –<br />

DIFFERENT INSTRUMENTS<br />

<strong>AFM</strong> + STM<br />

NT-MDT SPM’s abilities<br />

<strong>AFM</strong> - <strong>Confocal</strong> <strong>Raman</strong> -<br />

<strong>SNOM</strong> (UPRIGHT)<br />

<strong>AFM</strong> - <strong>Confocal</strong> <strong>Raman</strong> - <strong>SNOM</strong> (INVERTED)


NTEGRA Spectra<br />

Inverted microscope setup (for transparent samples)<br />

“<strong>AFM</strong> + <strong>SNOM</strong> + 3D confocal <strong>Raman</strong> microscope + TERS” system<br />

Lasers<br />

NTEGRA universal<br />

SPM platform<br />

Inverted microscope<br />

(Olympus (Olympus, Nikon …)<br />

)<br />

NTEGRA Spectra<br />

<strong>AFM</strong>-head<br />

<strong>Raman</strong> unit (NT-MDT) (NT MDT)<br />

Sample scanning stage<br />

(100x,1.4 NA objective inside)


NTEGRA Spectra in Upright setup<br />

“<strong>AFM</strong> + <strong>SNOM</strong> + 3D confocal <strong>Raman</strong> microscope + TERS”<br />

system for non-transparent samples<br />

NTEGRA Spectra<br />

<strong>Raman</strong> unit (Renishaw)<br />

Optical <strong>AFM</strong>-head<br />

with integrated 100x objective<br />

Sample scanner<br />

NTEGRA universal<br />

SPM platform


Combination of <strong>AFM</strong> with <strong>Raman</strong><br />

<strong>Confocal</strong><br />

<strong>Raman</strong>:<br />

imaging <strong>and</strong><br />

spectroscopy<br />

<strong>Confocal</strong><br />

fluorescence:<br />

iimaging i <strong>and</strong> d<br />

spectroscopy<br />

NTEGRA Spectra<br />

One object j – many y techniques q<br />

Atomic-force<br />

microscopy:<br />

mechanical,<br />

electrical, magnetic<br />

properties p p <strong>and</strong><br />

nanomanipulations<br />

<strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong> <strong>and</strong><br />

Fluorescence microscopy<br />

Near-field<br />

optical<br />

microscopy i<br />

Optical (white light)<br />

microscopy <strong>and</strong><br />

reflected laser<br />

confocal imaging<br />

Measurements in air, in liquid or in a controlled environment<br />

NTEGRA Spectra<br />

NTEGRA Spectra


NTEGRA Spectra<br />

NTEGRA Spectra<br />

<strong>Confocal</strong> <strong>Raman</strong>/Fluorescence - critical resolution


Resolution test: features 200 nm apart are clearly resolved<br />

<strong>Raman</strong> map measurement parameters:<br />

Objective: 100x, oil immersion<br />

Laser: 473 nm, Grating: 150 lines/mm<br />

Exposure time 0.3 sec<br />

Spectra per sec: >3<br />

PPoint i t number: b 200 200x200 200 pix<br />

i<br />

Sample: p Mineralic toothpaste p<br />

Resolution: < 200 nm<br />

Line #1, Integral intensity<br />

200 nm<br />

300 nm


Very high spectral resolution by Echelle grating<br />

Measurement parameters<br />

Laser: 473 nm<br />

Objective: 100x, 0.95 NA<br />

Grating: Echelle<br />

Actual pixels p of CCD camera are plotted p<br />

(26 µm pixel size)<br />

Spectral resolution:<br />

0281/cm(pixel 0.28 1/cm (pixel to pixel) for 473 nm laser<br />

0.11 1/cm (pixel to pixel) for 785 nm laser<br />

Si line, 1 st order


3D <strong>Raman</strong> mapping, Polystyrene microspheres<br />

X,Y - resolution: 200 nm<br />

Z – resolution: 500 nm<br />

10100<br />

1/cm<br />

3D <strong>Raman</strong> image<br />

XY cross-section<br />

scan size 10x10x14 µm µ


NTEGRA Spectra<br />

Upright configuration for <strong>AFM</strong> – <strong>Confocal</strong> <strong>Raman</strong> – TERS<br />

U i i t ti f<strong>AFM</strong> ith<br />

Unique integration of <strong>AFM</strong> with<br />

high resolution optical microscopy <strong>and</strong> spectroscopy


<strong>AFM</strong> with 100x 0.7 NA objective in upright configuration –<br />

for non-transparent samples<br />

Laser<br />

input&scanning<br />

module d l<br />

NTEGRA Spectra<br />

Probe<br />

deflectometer<br />

Optical <strong>AFM</strong> head<br />

(100x,0.7 NA<br />

objective inside)<br />

CCD video camera<br />

Imaging optics<br />

Beam splitter p 2<br />

Beam splitter 1<br />

<strong>AFM</strong> probe<br />

XYZ scanner<br />

NA=0.7<br />

400 nm resolution<br />

Excitation light<br />

Scattered light<br />

Laser<br />

deflectometer<br />

Sample<br />

objective


<strong>AFM</strong> cantilever under 100x objective (in upright geometry)<br />

Cantilever<br />

<strong>AFM</strong> Optical Image<br />

1 µm height letters are<br />

readable – thanks to<br />

100x objective<br />

(see next slide for <strong>AFM</strong>)<br />

Black spot at the apex of<br />

cantilever is the exact<br />

point there the tip<br />

touches substrate !!!<br />

<strong>AFM</strong> probe over a structured Si substrate.<br />

View through 0.7N 100x objective, resolution 400 nm<br />

Apex of opaque Si tip looks transparent on the image<br />

This unique observation is due to high aperture (0.7 NA) of the imaging objective<br />

NTEGRA Spectra


NTEGRA Spectra<br />

<strong>AFM</strong> – <strong>Confocal</strong> <strong>Raman</strong> “classical applications”<br />

Stress in Silicon<br />

Sili Silicon nanowires i<br />

Carbon nanotubes<br />

GGraphene h<br />

Bio objects<br />


Mapping stress in Si by spectral shift of 520 cm -1 line<br />

Stress distribution around nanoindentation in Silicon substrate<br />

<strong>AFM</strong> topography of indentation in<br />

silicon substrate<br />

σ(MPa) = -435 ∆ω (1/cm)<br />

NTEGRA Spectra<br />

Scan size: s 12xx12<br />

microon<br />

0.5 1/ cm<br />

Center of mass position shift of 520 1/cm silicon<br />

line – proportional to stress distribution around<br />

the indentation.<br />

Spectral resolution: better then 0.1 1/cm


Si nanowire – snapshot from the experiment<br />

cantilever apex<br />

cantilever cantilever<br />

nanowire<br />

nanowire laser spot<br />

NTEGRA Spectra + Renishaw <strong>Raman</strong> microscope


Si nanowire - comprehensive characterization in one<br />

sample p scan<br />

Optical image<br />

<strong>AFM</strong> topography<br />

<strong>Raman</strong> map (main Si b<strong>and</strong>)<br />

_____ 5 µm _____ 5 µm<br />

<strong>Raman</strong> map, Si b<strong>and</strong><br />

center of mass position<br />

_____ 5 µm _____ 5 µm<br />

Fluorescence map <strong>Raman</strong> map<br />

(Si nanoparticles b<strong>and</strong>)<br />

_____ 5 µm<br />

Stressed Si<br />

Pristine Si<br />

Si nanoparticles<br />

NT-MDT NTEGRA Spectra + Renishaw <strong>Raman</strong> microscope


Sample: SWCNs, <strong>Raman</strong> spectrum of nanotube bundle<br />

Grating: 600 lines/mm<br />

RBM D<br />

NTEGRA Spectra<br />

G +<br />

G -<br />

Laser: 473 nm<br />

2D


Intensity distribution of different <strong>Raman</strong> b<strong>and</strong>s &<br />

<strong>AFM</strong> topography image of individual NT bundle<br />

RBM-b<strong>and</strong> D-b<strong>and</strong> G - - b<strong>and</strong> G + - b<strong>and</strong><br />

<strong>AFM</strong> height g <strong>AFM</strong> phase<br />

Integration time: 100 ms / point. 50*150 points.<br />

Total spectrum was acquired at each point of the scan. After measurement, different <strong>Raman</strong><br />

b<strong>and</strong>s are chosen <strong>and</strong> their intensity distribution is analyzed. All the images (<strong>AFM</strong> + all <strong>Raman</strong><br />

maps) can obtained simultaneously, simultaneously in a single experiment experiment, without any moving of the sample<br />

or objective<br />

NTEGRA Spectra


2 nm<br />

Sensing individual SWNTs on Si substrate<br />

Spectral integration time at 1 point : 100 msec<br />

E (Horizontal pol.)<br />

E (vertical pol.)<br />

Topography <strong>Raman</strong> map (G-b<strong>and</strong>)


NTEGRA Spectra p<br />

<strong>AFM</strong> – <strong>Confocal</strong> <strong>Raman</strong> of Graphene


Lateral Force Microscopy<br />

Graphene, <strong>AFM</strong> + <strong>Confocal</strong> <strong>Raman</strong><br />

One experiment - multiple data<br />

Electrostatic Force<br />

Force Modulation Microscopy<br />

Microscopy<br />

Capacitance<br />

Microscopy<br />

<strong>Raman</strong> Map, Mass Center of<br />

2D (G’) B<strong>and</strong><br />

<strong>AFM</strong> Topography, Size: 30*30 µm<br />

Scanning Kelvin Probe<br />

Microscopy<br />

R<strong>Raman</strong> MMap, GG-b<strong>and</strong> b d<br />

Intensity<br />

<strong>Confocal</strong> Rayleigh<br />

Microscopy<br />

Data from: E. Kuznetsov,<br />

S. Timofeev, P. Dorozhkin, NT-MDT Co.


HIGH RESOLUTION <strong>AFM</strong> & STM<br />

The high-resolution <strong>AFM</strong> image showing<br />

an assembly of single-layer,<br />

functionalized Graphene sheets sheets.<br />

Some of the sheets are many square<br />

micrometers large. The thickness of each<br />

Atomic resolution STM image of graphite<br />

(HOPG)<br />

sheet is less than 1 nm. Image courtesy:<br />

Dr. Hannes Schniepp (The College of William & Mary, USA)


Nanowire<br />

Light Transport studies with NTEGRA Spectra<br />

Fibeer<br />

probe<br />

(X,YY,Z<br />

scan)<br />

EExcitation it ti points i t<br />

Laser excitation B<br />

Edge filter<br />

Collected light<br />

<strong>AFM</strong> A probe (X,Y,Z scan)<br />

Detection point<br />

Sample (on X,Y,Z-stage)<br />

High NA 100x objective<br />

(Z-movable)<br />

Laser excitation A<br />

X,Y,Z-movable objective<br />

Pinhole: adjustable (0-2 mm) & X,Y-movable<br />

NTEGRA Spectra<br />

To light registration:<br />

Excitation point<br />

`<br />

Emission from ends<br />

Emission from end<br />

Excitation point


Emission from end<br />

Light Transport studies with NTegra Spectra<br />

Excitation point<br />

NNanowire i iis llocally ll excited it d at t the th bbottom tt end. d RRed d curve shows h<br />

fluorescence spectrum taken at the excitation point. Blue curve is the<br />

transmitted light spectrum taken at the upper end of the nanowire. Green<br />

curve shows spectral transmission function of the nanowire<br />

NTEGRA Spectra


Beta-carotene distribution in algal cells<br />

Optical image <strong>Confocal</strong> Laser <strong>AFM</strong> topography<br />

Sample courtesy of Don McNaughton,<br />

Monash University, Australia<br />

NTEGRA Spectra<br />

β-carotene <strong>Raman</strong> b<strong>and</strong><br />

Tail of luminescence<br />

(centered at ~630 630 nm)


Beta-carotene distribution in algal cells<br />

Optical microscope image<br />

(with 100x objective)<br />

Image size:<br />

25x25 µm<br />

<strong>Confocal</strong> laser image <strong>AFM</strong>-image<br />

<strong>Raman</strong> map (ß-carotene) Luminescence map<br />

NTEGRA Spectra<br />

Magnetic Magnetic-,<br />

Kelvin-,<br />

Electrostatic-<br />

Acoustic Force- Force<br />

Capacitance –<br />

Spreading resistance …<br />

Scanning Probe images


Malaria infected red blood cell, <strong>AFM</strong>-<strong>Raman</strong><br />

<strong>AFM</strong> topography <strong>Raman</strong> map<br />

C <strong>Raman</strong> spectra<br />

Hemozoin Hemoglobin<br />

<strong>AFM</strong> image of a trophozoite iRBC <strong>and</strong> a false color 3-cluster UHCA map of the same cell generated from<br />

the <strong>Raman</strong> spectra. Mean cluster spectra from the two clusters associated with hemozoin (blue) <strong>and</strong><br />

hemoglobin (green) are shown. This fixation protocol preserved the structural integrity of the iRBC <strong>and</strong><br />

sub-micron sized knobs can be seen on the surface of the cell in the <strong>AFM</strong> image.<br />

The size of these knobs were 20-50 nm in height <strong>and</strong> 100-150 nm in width which is the same as values<br />

previously reported <strong>and</strong> measured by SEM, TEM, <strong>and</strong> <strong>AFM</strong>.<br />

NTEGRA Spectra Data courtesy: Don MacNaughton, Monash Univ.


Polymer sample with protective cover layer - depth profile<br />

<strong>Raman</strong> spectrum versus sample depth<br />

Sample<br />

deepth,<br />

�m<br />

<strong>Raman</strong> shift<br />

Two layers are observed.<br />

The 2nd layer is 500 nm below the first layer<br />

<strong>and</strong> has a characteristic <strong>Raman</strong> line (620 cm<br />

NTEGRA Spectra<br />

-1 )<br />

Layer #2<br />

Layer #1<br />

Zoomed region<br />

0.5 �m


<strong>AFM</strong> -><br />

Scan size: 40 x 40 µm<br />

<strong>Raman</strong> -><br />

Polymer blend<br />

NT-MDT NTEGRA Spectra + Renishaw <strong>Raman</strong> microscope


NT-MDT + Renishaw INTEGRATED system<br />

Advertising leaflets of the Integrated system (issued by Renishaw <strong>and</strong> by NT-MDT)


NT-MDT + Renishaw INTEGRATED software<br />

1. Renishaw measurement setup<br />

menu is opened <strong>and</strong><br />

controlled from NT-MDT NT MDT<br />

NOVA software<br />

2. NT-MDT software FULLY<br />

controls the <strong>AFM</strong>-<strong>Raman</strong><br />

experiment (except rare<br />

adjustments j or calibrations of<br />

the system)<br />

NTEGRA Spectra


NT-MDT + Renishaw INTEGRATED software<br />

EXACTLY THE SAME DATA in two programs: NT-MDT & Wire-3<br />

All scans can be seen <strong>and</strong> analyzed in any software: <strong>AFM</strong> (height, phase etc) & <strong>Raman</strong><br />

maps. Data from NT-MDT Nova was exported into WIRE-3


<strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong> Scattering (TERS)<br />

A route to <strong>Raman</strong> microscopy py with subwavelength g spatial p<br />

resolution <strong>and</strong> single molecule sensitivity<br />

TERS – “inverted” SERS effect (scanning metal tip is a HOT SPOT)<br />

Electromagnetic field<br />

intensity around<br />

metal tip<br />

2RR)<br />

NTEGRA Spectra<br />

200-600 nm<br />

Metal <strong>AFM</strong> probe<br />

<strong>Enhanced</strong> <strong>Raman</strong><br />

signal<br />

Focused laser spot


NT-MDT provides all possible <strong>AFM</strong>/<strong>Raman</strong>/TERS configurations<br />

INVERTED UPRIGHT Side illumination + UPRIGHT<br />

excitation<br />

TERS collection<br />

TERS collection<br />

excitation<br />

TERS collection E<br />

excitation<br />

Different probe types <strong>and</strong> feedback mechanisms:<br />

<strong>AFM</strong> (contact, intermittent contact), STM, Tuning fork (normal force <strong>and</strong> shear force)<br />

Dual scan: 6 piezodriven coordinates (“laser + sample” or “tip + sample”)


<strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong><br />

INVERTED geometry (transparent samples)<br />

Sh Shear fforce


To find HOT POINT (Maximum enhancement):<br />

Scan - BY TIP; Measure - intensity of laser light scattered by the tip<br />

E<br />

200 nm ____<br />

HHot t point i t !<br />

Metal <strong>AFM</strong> probe<br />

xy&z-scan<br />

x,y & z scan<br />

Focused laser spot<br />

Etched Au wire<br />

1. Scan (XY&Z) by tip across<br />

the laser spot. p<br />

Measure <strong>Raman</strong> or Rayleigh<br />

scattered light<br />

2. Position tip inside “hot point”<br />

with high precision<br />

Scan by the sample to get<br />

TERS map<br />

Data courtesy of S. Kharintsev, J. Loos, G. Hoffman, G. de With, TUE, the Netherl<strong>and</strong>s <strong>and</strong> P. Dorozhkin, NT-MDT


TERS imaging of single-walled CNT bundle<br />

__ 200 nm<br />

<strong>Tip</strong> is away<br />

__ 200 nm<br />

Tube image width<br />

<strong>AFM</strong> topography<br />

is<br />

(h (height i<br />

~250<br />

ht<br />

250<br />

~ 5<br />

nm<br />

nm) )<br />

(limited by<br />

wavelength of light)<br />

<strong>Raman</strong> map<br />

(G-line)<br />

<strong>Tip</strong> p is approached<br />

pp<br />

Laser: 633 nm<br />

Tube image width is<br />

<strong>Tip</strong>: Etched gold wire ~50 nm (limited (<br />

only by size of the tip)<br />

S.S. Kharintsev, G. Hoffmann, P.S. Dorozhkin,<br />

G. de With, <strong>and</strong> J. Loos<br />

Nanotechnology 18 (2007), 315502<br />

<strong>Raman</strong> spectra <strong>and</strong> 2D confocal <strong>Raman</strong> maps (G (G-line) line) of carbon nanotube<br />

rope with <strong>and</strong> without enhancing <strong>AFM</strong> tip (GOLD wire)<br />

NTEGRA Spectra


TERS with Silver coated cantilevers<br />

<strong>AFM</strong> image of carbon nanotube<br />

bundle<br />

Scan size: 2x3 micron<br />

TERS image of the same<br />

bundle<br />

Image courtesy: Jacon Jao, Jao Renato Zenobi ETH Zurich, Zurich Switzerl<strong>and</strong>; GG.<br />

Hoffman, J. Loos, TUE, Eindhoven; <strong>and</strong> Pavel Dorozhkin, NT-MDT Russia<br />

NTEGRA Spectra<br />

`


<strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong><br />

UPRIGHT geometry t (non-transparent ( t t samples) l )<br />

100x<br />

0.7 NA<br />

TERS excitation<br />

TERS collection<br />

0.7 NA<br />

45°<br />

100 100x TERS collection ll ti<br />

0.7 NA<br />

E<br />

excitation


Looking for Hot Spot –<br />

laser beam is scanned across the cantilever<br />

0.7 NA<br />

45°<br />

Laser scanning module allows to position laser beam precisely at the apex of <strong>AFM</strong><br />

tip <strong>and</strong> fix it there - thanks to closed-loop operation of the scanning mirror


TERS in UPRIGHT geometry – Graphene<br />

Finding g HOT SPOT on <strong>AFM</strong> tipp<br />

<strong>Raman</strong> spectra from Graphene flake:<br />

--- Inside “hotspot”<br />

--- Outside “hotspot” hotspot<br />

--- Signal from tip (sample is removed)<br />

Data from: A. Schokin &<br />

PP. Dorozhkin Dorozhkin, NT‐MDT<br />

Laser beam is scanned across cantilever tip<br />

<strong>Raman</strong> signal from substrate measured<br />

cantilever


TERS on periodic Si-Ge structure, resolution ~50 nm<br />

Data courtesy: Dr. Peter Hermann et at., Fraunhofer CNT & AMD, Dresden<br />

TERS tool evaluation project, AMD Dresden & NT-MDT


Successful <strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong> experiment:<br />

Major requirements to experimental setup (<strong>AFM</strong> – <strong>Raman</strong> combination)<br />

1. Different geometry of <strong>AFM</strong> <strong>and</strong> high resolution <strong>Raman</strong> optics: bottom<br />

illumination/collection, top illumination/collection, side illumination/ top<br />

collection.<br />

2. Dual scan option (6 closed loop piezo coordinates): sample+laser<br />

scanning OR sample+tip scanning<br />

3. All <strong>AFM</strong> <strong>and</strong> <strong>Raman</strong> control must be integrated into one software package<br />

4. Very y low <strong>AFM</strong> noise (to ( keep p TERS tip p safely y very y<br />

close to sample), low drifts <strong>and</strong> high stability<br />

(to keep laser exactly on the hot<br />

spot p – with 10 nm precision) p )<br />

5. Good TERS tip


SCANNING NEAR-FIELD OPTICAL MICROSCOPY<br />

Straight quartz fiber with<br />

aperture (glued to tuning fork)<br />

Silicon cantilevers with<br />

aperture<br />

100x, 0.7 NA<br />

All <strong>SNOM</strong> modes are available:<br />

Collection, Transmission, Reflection<br />

(for all signals/modes: laser, fluorescence <strong>and</strong> spectroscopy)


AUTOMATIC alignment of laser spot <strong>and</strong> <strong>SNOM</strong> aperture<br />

laser spot is scanned: xx,y y Intensity of light transmitted<br />

through cantilever<br />

Precise location of <strong>SNOM</strong> aperture<br />

___ 10µm<br />

Laser spot is scanned in automatic regime across <strong>SNOM</strong> cantilever <strong>and</strong> transmitted<br />

signal is measured – to locate the <strong>SNOM</strong> aperture with very high accuracy (


<strong>SNOM</strong> transmission: Single lipofuscin granule<br />

Shear force topography <strong>SNOM</strong> transmission<br />

Single lipofuscin granule 400 nm in height <strong>and</strong> 1.7 – 2.7 µm in<br />

diameter. Two “humps” can be seen as well at shear-force image<br />

(left one). one) On the right image transmission at 420 nm can be seen seen.<br />

Quartz substrate transmission was subtracted so negative values can<br />

be referred to sample absorption <strong>and</strong> positive ones (most probably)<br />

to sample fluorescence.<br />

NTEGRA Spectra


<strong>SNOM</strong> spectroscopy: Single lipofuscin granule<br />

Point-localized spectroscopy of putative fluorescent region. The<br />

spectrum obtained corresponds well with the spectrum of pure<br />

A2E fluorophore thought to be the major cause of aging-related<br />

retina degeneration<br />

degeneration.<br />

NTEGRA Spectra


<strong>SNOM</strong> on photonic <strong>SNOM</strong> Lithography crystal performance optical fibers<br />

NTEGRA Spectra<br />

Overlay of simultaneously measured:<br />

Sample topography (orange/red palette) <strong>and</strong><br />

<strong>SNOM</strong> intensity (green palette)<br />

Data courtesy:<br />

Yinlan Ruan, Heike Ebendorff-Heidepriem, Tanya M. Monro<br />

Centre of Expertise in Photonics Photonics, School of Chemistry &<br />

Physics, University of Adelaide, Adelaide, 5000 Australia


<strong>SNOM</strong> measurements (VIS & IR) : Cr:YAG optical fibers


<strong>SNOM</strong> on Surface Plasmon Polaritons<br />

Data from:<br />

Antonell Nesci <strong>and</strong> Olivier J.F. Martin,<br />

EPFL, Lausanne, Switzerl<strong>and</strong>


<strong>SNOM</strong> on Surface Plasmon Polaritons<br />

Data from:<br />

Antonell Nesci <strong>and</strong> Olivier JJ.F. F Martin Martin,<br />

EPFL, Lausanne, Switzerl<strong>and</strong>


NTEGRA Spectra<br />

NTEGRA Spectra<br />

<strong>AFM</strong> – <strong>Raman</strong> – <strong>SNOM</strong> in controlled environment


<strong>SNOM</strong><br />

<strong>AFM</strong> + <strong>Raman</strong> + <strong>SNOM</strong> in LIQUID<br />

<strong>AFM</strong><br />

NT-MDT Closed-liquid cell with heating<br />

Possible to use with <strong>AFM</strong> + <strong>SNOM</strong> + <strong>Confocal</strong> <strong>Raman</strong> (<strong>Confocal</strong><br />

fluorescence), ), work with living g cells. Flow-trough g ppossibility. y<br />

WORKS WITH <strong>AFM</strong>/<strong>SNOM</strong>/ RAMAN (INVERTED)<br />

NTEGRA Spectra


<strong>AFM</strong> – <strong>Raman</strong> – <strong>SNOM</strong> in Upright configuration in liquid<br />

100x<br />

100x<br />

NA = 1<br />

NA = 1<br />

280 nm<br />

- NA=1 (120º)<br />

2 mm<br />

280 nm<br />

- TERS in liquid for opaque samples<br />

- Cantilever based <strong>SNOM</strong> in liquid


Electrochemical cell for <strong>AFM</strong> – <strong>Raman</strong> in external magnetic field<br />

<strong>AFM</strong> quartz nose<br />

EC cell<br />

Transparent sample<br />

Cantilever<br />

objective<br />

• Microscope configuration: Inverted<br />

• Objectives used: any objective (Olympus,<br />

Nikon)<br />

• <strong>AFM</strong> modes in liquid: contact, noncontact<br />

• Sample: transparent (ITO, quartz with<br />

thin metal layer etc.)<br />

• Stabilized temperature p (-10º ( - +60º) )<br />

• External magnetic field (up to 0.2 T)<br />

NTEGRA Spectra<br />

EC cell<br />

objective


Ultra Stable <strong>AFM</strong> – <strong>Confocal</strong> <strong>Raman</strong> – TERS measurements<br />

in wide temperature range<br />

T = -30 - +80 ºC<br />

Drifts < 10 nm per 1ºC 1C < 10 nm per hour at all temperatures<br />

Couunts<br />

3000<br />

2750<br />

2500<br />

2250<br />

2000<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

<strong>Raman</strong> spectra of Graphene<br />

flake at T = -20, , +20, , +80 ºC<br />

<strong>Raman</strong> spectrums vs temperature<br />

T=25 C<br />

T= 80 C<br />

T= -20 C<br />

1400 1800 2200 2600 3000<br />

1200 1600 2000 2400 2800 3200<br />

<strong>Raman</strong> shift, cm-1


<strong>AFM</strong>-<strong>Raman</strong>-<strong>SNOM</strong>-TERS in CONTROLLED ATMOSPHERE<br />

Controlled atmosphere chamber for <strong>AFM</strong>-<strong>Raman</strong>-TERS<br />

(controlled temperature, humidity, inert gases etc.)<br />

NTEGRA Spectra


Modes<br />

NT MDT integrates<br />

<strong>AFM</strong>, <strong>SNOM</strong>, <strong>Confocal</strong> <strong>Raman</strong>/Fluorescence <strong>and</strong> TERS<br />

in one device<br />

• <strong>AFM</strong> (mechanical, electrical, magnetic properties<br />

<strong>and</strong> nanomanipulation – more than 30 modes)<br />

• White Light Microscopy <strong>and</strong> Reflected Laser<br />

(Rayleigh) <strong>Confocal</strong> Imaging<br />

• <strong>Confocal</strong> <strong>Raman</strong> Imaging <strong>and</strong> Spectroscopy<br />

• <strong>Confocal</strong> Fluorescence Imaging g g <strong>and</strong><br />

Spectroscopy<br />

• Scanning Near-Field Optical Microscopy<br />

• <strong>Tip</strong> <strong>Enhanced</strong> <strong>Raman</strong> <strong>and</strong> Fluorescence<br />

Microscopy (TERS, TEFS)<br />

www.ntmdt.com/device/ntegra-spectra<br />

Controlled environment<br />

•Temperature<br />

•Humidity<br />

•Gases<br />

•Liquid<br />

•Electrochemical environment<br />

•External magnetic field<br />

Contact : Dr. Pavel Dorozhkin, dorozhkin@ntmdt.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!