17.01.2015 Views

Doping of the Metal Oxide Nanostructure and its Influence in ...

Doping of the Metal Oxide Nanostructure and its Influence in ...

Doping of the Metal Oxide Nanostructure and its Influence in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

www.afm-journal.de<br />

<strong>Dop<strong>in</strong>g</strong> <strong>of</strong> <strong>the</strong> <strong>Metal</strong> <strong>Oxide</strong> <strong>Nanostructure</strong> <strong>and</strong> <strong>its</strong><br />

<strong>Influence</strong> <strong>in</strong> Organic Electronics<br />

By Mi-Hyae Park, Juo-Hao Li, Ankit Kumar, Gang Li,* <strong>and</strong> Yang Yang*<br />

FULL PAPER<br />

Syn<strong>the</strong>siz<strong>in</strong>g metal oxides through <strong>the</strong> sol–gel process provides a convenient<br />

way for form<strong>in</strong>g a nanostructured layer <strong>in</strong> wide b<strong>and</strong> gap semiconductors. In<br />

this paper, a unique method <strong>of</strong> <strong>in</strong>troduc<strong>in</strong>g dopants <strong>in</strong>to <strong>the</strong> metal oxide<br />

semiconductor is presented. The doped TiO 2 is prepared by add<strong>in</strong>g a Cs 2 CO 3<br />

solution to a nanocrystall<strong>in</strong>e TiO 2 solution that is syn<strong>the</strong>sized via a nonhydrolytic<br />

sol–gel process. The properties <strong>of</strong> <strong>the</strong> TiO 2 :Cs layer are <strong>in</strong>vestigated<br />

<strong>and</strong> <strong>the</strong> results show stable nanostructure morphology. In addition to<br />

provid<strong>in</strong>g morphological stability, Cs <strong>in</strong> TiO 2 also gives rise to a more<br />

desirable work function for charge transport <strong>in</strong> organic electronics. Polymer<br />

solar cells based on <strong>the</strong> poly(3-hexylthiophene) (P3HT): methan<strong>of</strong>ullerene<br />

(PC 70 BM) system with <strong>the</strong> addition <strong>of</strong> a TiO 2 :Cs <strong>in</strong>terfacial layer exhibit<br />

excellent characteristics with a power conversion efficiency <strong>of</strong> up to 4.2%. The<br />

improved device performance is attributed to an improved polymer/metal<br />

contact, more efficient electron extraction, <strong>and</strong> better hole block<strong>in</strong>g<br />

properties. The effectiveness <strong>of</strong> this unique functionality also extends to<br />

polymer light emitt<strong>in</strong>g devices, where a lower driv<strong>in</strong>g voltage, improved<br />

efficiency, <strong>and</strong> extended lifetime are demonstrated.<br />

1. Introduction<br />

Electronic devices based on organic materials (small molecules <strong>and</strong><br />

polymers), such as organic light emitt<strong>in</strong>g devices (OLEDs), [1]<br />

organic photovoltaic cells (OPVs), [2] transistors, [3] bistable devices,<br />

<strong>and</strong> memory devices, [4] have attracted considerable attention. The<br />

most salient attribute <strong>of</strong> polymer electronics is <strong>the</strong> potential to be<br />

low-cost <strong>and</strong> versatile while hav<strong>in</strong>g low-energy consumption <strong>and</strong><br />

high-throughput process<strong>in</strong>g. [5] For polymer solar cells, <strong>the</strong> polymer/<br />

fullerene based bulk-heterojunction (BHJ) system is <strong>the</strong> most<br />

commonly used device architecture [6–8] for which a certified<br />

efficiency <strong>of</strong> 5.4% for a s<strong>in</strong>gle cell configuration was achieved. [9]<br />

In <strong>the</strong> field <strong>of</strong> organic electronics, <strong>the</strong> metal/organic <strong>in</strong>terface<br />

plays a critical role <strong>in</strong> <strong>in</strong>fluenc<strong>in</strong>g device performance. The<br />

[*] Dr. G. Li<br />

Solarmer Energy, Inc.<br />

El Monte, CA 91731 (USA)<br />

E-mail: gangl@solarmer.com<br />

Pr<strong>of</strong>. Y. Yang, M.-H. Park, J.-H. Li, A. Kumar<br />

Department <strong>of</strong> Materials Science <strong>and</strong> Eng<strong>in</strong>eer<strong>in</strong>g<br />

University <strong>of</strong> California Los Angeles<br />

Los Angeles, CA 90095 (USA)<br />

E-mail: yangy@ucla.edu<br />

DOI: 10.1002/adfm.200801639<br />

<strong>in</strong>terface can <strong>of</strong>ten be modified by an<br />

<strong>in</strong>sertion <strong>of</strong> a functional <strong>in</strong>terfacial layer to<br />

improve <strong>the</strong> device performance. Depend<strong>in</strong>g<br />

on <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong> material,<br />

<strong>the</strong> functional <strong>in</strong>terfacial layer can be<br />

employed <strong>in</strong> different configurations. Early<br />

prom<strong>in</strong>ent examples <strong>of</strong> functional <strong>in</strong>terfacial<br />

layers used <strong>in</strong> <strong>the</strong> development <strong>of</strong><br />

OLEDs <strong>and</strong> OPVs <strong>in</strong>clude: i) <strong>in</strong>troduction<br />

<strong>of</strong> LiF, CsF, AlO x , etc. as an electron buffer<br />

layer <strong>in</strong> OLEDs, [10–12] ii) application <strong>of</strong><br />

polyanil<strong>in</strong>e (PANI) [13] <strong>and</strong> poly(3,4-ethylenedioxythiophene):poly(styrene<br />

sulfonate)<br />

(PEDOT:PSS) as a hole transport/buffer<br />

layer, [14] iii) <strong>in</strong>sertion <strong>of</strong> a TiO x layer as an<br />

optical spacer/hole block<strong>in</strong>g layer, [15,16] <strong>and</strong><br />

iv) comb<strong>in</strong>ation <strong>of</strong> an n- <strong>and</strong> p-type<br />

transport layer for t<strong>and</strong>em OLEDs (e.g.,<br />

LiF–V 2 O 5 ). [17] The role <strong>of</strong> cesium as an<br />

effective <strong>in</strong>terfacial material has been<br />

proven. Recently, it has been shown that<br />

<strong>the</strong> use <strong>of</strong> salts, such as Cs 2 CO 3 or CsF, as a<br />

source <strong>of</strong> Cs component for an n-type<br />

<strong>in</strong>terfacial layer, can improve solar cell efficiency. [18] In addition,<br />

Cs 2 CO 3 , which can be deposited ei<strong>the</strong>r by <strong>the</strong>rmal evaporation or<br />

solution process<strong>in</strong>g, can serve as an effective electron <strong>in</strong>jection/<br />

buffer layer, lead<strong>in</strong>g to record high white <strong>and</strong> red PLEDs<br />

efficiencies with significantly reduced driv<strong>in</strong>g voltages <strong>and</strong><br />

enhanced lifetimes. [19] Fur<strong>the</strong>rmore, comb<strong>in</strong>ed with novel<br />

p-type <strong>in</strong>terfacial layer materials, such as transition metal oxides<br />

(V 2 O 5 , MoO 3 ,WO 3 , etc.), we have successfully demonstrated<br />

efficient <strong>in</strong>verted polymer solar cells. [20,21]<br />

Semiconduct<strong>in</strong>g TiO 2 has been extensively studied as a<br />

promis<strong>in</strong>g material <strong>in</strong> a variety <strong>of</strong> applications <strong>in</strong>clud<strong>in</strong>g dyesensitized<br />

solar cells, photocatalysts, <strong>and</strong> organic photovoltaics.<br />

[22,23] Sol–gel chemistry is widely accepted as a valuable<br />

process used for prepar<strong>in</strong>g materials with well-controlled<br />

morphological <strong>and</strong> structural properties. However, it is widely<br />

accepted that <strong>the</strong> application <strong>of</strong> nanocrystall<strong>in</strong>e TiO 2 through <strong>the</strong><br />

typical sol–gel method <strong>in</strong> organic photovoltaics rema<strong>in</strong>s limited<br />

due to <strong>the</strong> hydro<strong>the</strong>rmal process<strong>in</strong>g or calc<strong>in</strong>ations required to<br />

<strong>in</strong>duce crystallization. [24] On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, a non-hydrolytic<br />

sol–gel process can provide several important advantages:<br />

i) <strong>the</strong> elim<strong>in</strong>ation <strong>of</strong> additional agents allows for less particle<br />

agglomeration; ii) no exposure to air is needed; <strong>and</strong> iii) <strong>the</strong><br />

elim<strong>in</strong>ation <strong>of</strong> water enables <strong>the</strong> formation <strong>of</strong> homogeneous<br />

films. [24] The use <strong>of</strong> nanocrystall<strong>in</strong>e anatase phase TiO 2 produced<br />

by a non-hydrolytic sol–gel process elim<strong>in</strong>ates <strong>the</strong> need for a high<br />

temperature s<strong>in</strong>ter<strong>in</strong>g process (400–500 8C), which would<br />

Adv. Funct. Mater. 2009, 19,1241–1246 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 1241


www.afm-journal.de<br />

FULL PAPER<br />

o<strong>the</strong>rwise <strong>in</strong>hibit <strong>the</strong> application <strong>of</strong> crystall<strong>in</strong>e TiO 2 <strong>in</strong> regular<br />

OPV structures. In addition, <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> dopants <strong>in</strong> sol–<br />

gel chemistry <strong>of</strong>fers a convenient method for produc<strong>in</strong>g<br />

functional materials. It has been demonstrated that <strong>the</strong> properties<br />

<strong>of</strong> metal oxides can be enhanced <strong>and</strong> tuned through <strong>the</strong> addition<br />

<strong>of</strong> various dopants <strong>and</strong> process<strong>in</strong>g methods. [25,26] The design <strong>and</strong><br />

syn<strong>the</strong>sis <strong>of</strong> functional materials formed by <strong>the</strong> sol–gel method<br />

via dop<strong>in</strong>g are be<strong>in</strong>g widely <strong>in</strong>vestigated <strong>and</strong> possess a great<br />

potential for <strong>the</strong> development <strong>of</strong> nanoscale technology.<br />

In this study, we present a method for dop<strong>in</strong>g metal oxides via a<br />

non-hydrolitic sol–gel method <strong>and</strong> demonstrate an approach to<br />

make efficient organic electronic devices. A functional <strong>in</strong>terfacial<br />

layer prepared by mix<strong>in</strong>g solution processable semiconduct<strong>in</strong>g<br />

metal oxides <strong>and</strong> salts is <strong>in</strong>serted <strong>in</strong>to <strong>the</strong> polymer electronic<br />

device. It is found that <strong>in</strong>troduc<strong>in</strong>g a nanoscale Cs doped TiO 2<br />

layer can enhance <strong>the</strong> solar cell performance. The effectiveness <strong>of</strong><br />

this unique approach was also exp<strong>and</strong>ed to polymer LEDs, where<br />

a lower driv<strong>in</strong>g voltage, improved efficiency <strong>and</strong> extended lifetime<br />

are demonstrated once aga<strong>in</strong>. The properties <strong>of</strong> <strong>the</strong> TiO 2 :Cs layer<br />

were <strong>in</strong>vestigated <strong>and</strong> a discussion <strong>of</strong> <strong>the</strong> source <strong>of</strong> improvement<br />

<strong>in</strong> device performance is presented.<br />

2. Results <strong>and</strong> Discussion<br />

2.1. Syn<strong>the</strong>sis <strong>and</strong> Characterization<br />

Syn<strong>the</strong>sis <strong>of</strong> crystall<strong>in</strong>e TiO 2 nanoparticles follows a previously<br />

published method. [27] A Cs doped TiO 2 was obta<strong>in</strong>ed by mix<strong>in</strong>g<br />

<strong>the</strong> <strong>in</strong>dividual solutions <strong>of</strong> Cs 2 CO 3 <strong>and</strong> TiO 2 toge<strong>the</strong>r. Transmission<br />

electron microscopy (TEM) images <strong>of</strong> TiO 2 <strong>and</strong> <strong>the</strong> TiO 2 :Cs<br />

are shown <strong>in</strong> Figure 1a <strong>and</strong> b, respectively. An overview image <strong>of</strong><br />

Figure 1. a) TEM images <strong>of</strong> TiO 2 <strong>and</strong> b) a Cs doped TiO 2 (TiO 2 :Cs).<br />

c) X-Ray powder diffraction patterns for TiO 2 (bottom), <strong>and</strong> TiO 2 :Cs<br />

overview (middle) <strong>and</strong> zoomed <strong>in</strong> (top). d) XPS pr<strong>of</strong>iles <strong>of</strong> TiO 2 (dot l<strong>in</strong>e)<br />

<strong>and</strong> TiO 2 :Cs (solid l<strong>in</strong>e) samples for Ti peak.<br />

<strong>the</strong> TiO 2 nanoparticles illustrates that <strong>the</strong> material is entirely<br />

composed <strong>of</strong> nanosized particles that are homogeneously<br />

distributed throughout <strong>the</strong> material. As we cont<strong>in</strong>ue to blend<br />

with Cs 2 CO 3 , <strong>the</strong> TEM images show that <strong>the</strong> product consists <strong>of</strong><br />

markedly more monodispersed shapes. A comparison <strong>of</strong> <strong>the</strong> TEM<br />

images (not shown) <strong>of</strong> <strong>the</strong> TiO 2 <strong>and</strong> TiO 2 :Cs (taken 1 week after<br />

be<strong>in</strong>g exposed to air) shows that <strong>the</strong> mixture is stable <strong>and</strong> that <strong>the</strong><br />

product has not agglomerated upon addition <strong>of</strong> Cs 2 CO 3 . This may<br />

be expla<strong>in</strong>ed by Cs 2 CO 3 hav<strong>in</strong>g a stabiliz<strong>in</strong>g effect on <strong>the</strong> solution,<br />

which prevents <strong>the</strong> three-dimensional titania network from<br />

shr<strong>in</strong>k<strong>in</strong>g.<br />

The crystall<strong>in</strong>e phase evolution <strong>of</strong> <strong>the</strong>se two samples was<br />

monitored with an X-ray powder diffractometer (XRD data shown<br />

<strong>in</strong> Fig. 1c). The X-ray powder diffraction pattern for TiO 2 ,<br />

obta<strong>in</strong>ed by <strong>the</strong> sol–gel method, confirms <strong>the</strong> existence <strong>of</strong><br />

nanocrystall<strong>in</strong>e TiO 2 <strong>in</strong> <strong>the</strong> anatase phase, which agrees with <strong>the</strong><br />

literature. [24,27] All <strong>the</strong> peaks are ascribed to <strong>the</strong> anatase crystal<br />

structure without any secondary reaction impurities. The <strong>in</strong>dexed<br />

broad peaks <strong>in</strong>dicate <strong>the</strong> nanocrystall<strong>in</strong>e nature <strong>of</strong> TiO 2 with sizes<br />

between 7 <strong>and</strong> 8 nm. The XRD spectrum <strong>of</strong> TiO 2 :Cs, along with<br />

an enlarged spectrum, are shown. When Cs 2 CO 3 is added to<br />

TiO 2 , <strong>the</strong> peak patterns for both <strong>the</strong> anatase phase <strong>of</strong> TiO 2 as well<br />

as <strong>the</strong> CsCl cubic structure can be assigned to <strong>the</strong> XRD spectrum.<br />

The CsCl can be formed through <strong>the</strong> reactions <strong>of</strong> <strong>the</strong> residual<br />

benzyl chloride, which is a by-product from <strong>the</strong> stock TiO 2<br />

solution with cesium <strong>in</strong> Cs 2 CO 3 . The narrow peak width <strong>of</strong> CsCl<br />

shows highly ordered crystall<strong>in</strong>e characteristics <strong>of</strong> CsCl as<br />

compared to TiO 2 . On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>the</strong> existence <strong>of</strong><br />

nanocrystall<strong>in</strong>e anatase TiO 2 <strong>in</strong> <strong>the</strong> TiO 2 :Cs sample is evident<br />

from <strong>the</strong> similar peak width <strong>and</strong> <strong>in</strong>tensity from <strong>the</strong> enlarged XRD<br />

data.<br />

X-Ray photoemission spectroscopy (XPS) was performed to<br />

fur<strong>the</strong>r <strong>in</strong>vestigate <strong>the</strong> surface characteristics <strong>of</strong> TiO 2 <strong>and</strong> <strong>the</strong><br />

TiO 2 :Cs <strong>in</strong>terfacial layer. The data is shown <strong>in</strong> Figure 1d. The<br />

samples were prepared by sp<strong>in</strong> cast<strong>in</strong>g <strong>the</strong> films on an Ag-coated<br />

Si wafer, where <strong>the</strong> <strong>in</strong>strument was calibrated us<strong>in</strong>g an <strong>in</strong>ternal<br />

Ag st<strong>and</strong>ard. The atomic ratio <strong>of</strong> oxygen to titanium was<br />

estimated to be 1.99 based on <strong>the</strong> <strong>in</strong>tegrated area under <strong>the</strong><br />

element peak <strong>and</strong> <strong>the</strong> sensitivity factor, with commercially<br />

available crystall<strong>in</strong>e TiO 2 powder used as a reference (Sigma–<br />

Aldrich, used as received). The data imply that titanium dioxide<br />

prepared from <strong>the</strong> non-hydrolytic sol–gel method is chemically<br />

stoichiometric, which is also <strong>in</strong> good agreement with previously<br />

reported Ti 2p 3/2 peak position for TiO 2 . [28] We observe that <strong>the</strong> Ti<br />

2p 3/2 spectra for TiO 2 :Cs shifts toward a lower b<strong>in</strong>d<strong>in</strong>g energy by<br />

0.78 eV <strong>in</strong> comparison to <strong>the</strong> value for TiO 2 . We suspect that this<br />

change is attributed to <strong>the</strong> creation <strong>of</strong> partially reduced Ti ions,<br />

which is consistent with previous reports that <strong>the</strong> Ti (2p) peaks<br />

shift considerably to a lower b<strong>in</strong>d<strong>in</strong>g energy upon Cs or K<br />

adsorption. [29,30] The Cs 3d 5/2 peak position <strong>of</strong> TiO 2 :Cs shifted<br />

toward a lower b<strong>in</strong>d<strong>in</strong>g energy, compared to that <strong>of</strong> Cs 2 CO 3 ,<br />

which also supports <strong>the</strong> idea <strong>of</strong> charge transfer between TiO 2 <strong>and</strong><br />

Cs. <strong>Metal</strong> ions <strong>in</strong> an organic/<strong>in</strong>organic matrix can act as a dop<strong>in</strong>g<br />

component. This discrepancy <strong>in</strong> <strong>the</strong> XPS survey spectra may be<br />

expla<strong>in</strong>ed by <strong>the</strong> possible formation <strong>of</strong> Cs-doped TiO 2 materials.<br />

The energy levels <strong>of</strong> both TiO 2 <strong>and</strong> TiO 2 :Cs samples were<br />

determ<strong>in</strong>ed through electrochemical cyclic voltammetry (C-V)<br />

<strong>and</strong> <strong>the</strong> energy <strong>of</strong>fset wavelength from <strong>the</strong> UV–Vis absorption<br />

spectra. The energy level diagram is shown <strong>in</strong> Figure 2.<br />

1242 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Funct. Mater. 2009, 19,1241–1246


www.afm-journal.de<br />

FULL PAPER<br />

Figure 2. Correspond<strong>in</strong>g energy level diagram <strong>of</strong> a device based on a<br />

TiO 2 :Cs <strong>in</strong>terfacial layer.<br />

2.2. Photovoltaic Device Performance<br />

The photovoltaic devices were fabricated us<strong>in</strong>g a blend <strong>of</strong> poly(3-<br />

hexylthiophene) (P3HT) <strong>and</strong> [6,6]-phenyl-C 71 -butyric acid methyl<br />

ester (PC 70 BM) with Al as <strong>the</strong> cathode. Cs 2 CO 3 ,TiO 2 , <strong>and</strong> <strong>the</strong><br />

TiO 2 :Cs were <strong>in</strong>serted <strong>in</strong>dividually as an <strong>in</strong>terfacial layer between<br />

<strong>the</strong> active layer <strong>and</strong> <strong>the</strong> cathode. The current density–voltage (J–V)<br />

characteristics under AM 1.5G one-sun illum<strong>in</strong>ation condition is<br />

shown <strong>in</strong> Figure 3a. Table 1 summarizes <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong><br />

device performance. A comparison <strong>of</strong> devices with an Al electrode<br />

to those with a Cs 2 CO 3 /Al electrode shows a decreas<strong>in</strong>g open<br />

circuit voltage (V oc ) <strong>and</strong> short circuit current density ( J sc ) upon<br />

<strong>in</strong>sertion <strong>of</strong> <strong>the</strong> Cs 2 CO 3 sp<strong>in</strong>-casted film. This implies that a<br />

Cs 2 CO 3 -only <strong>in</strong>terfacial layer does not provide <strong>the</strong> appropriate<br />

function <strong>in</strong> terms <strong>of</strong> charge extraction <strong>and</strong> charge transport to <strong>the</strong><br />

electrode. The <strong>in</strong>sertion <strong>of</strong> a TiO 2 layer between <strong>the</strong> active layer<br />

<strong>and</strong> <strong>the</strong> evaporated Al cathode layer leads to an <strong>in</strong>crease <strong>in</strong> V oc up<br />

to 0.46 V. It is known that <strong>the</strong> open circuit voltage is generally<br />

determ<strong>in</strong>ed by <strong>the</strong> difference between <strong>the</strong> highest occupied<br />

molecular orbital (HOMO) <strong>of</strong> <strong>the</strong> donor <strong>and</strong> <strong>the</strong> lowest<br />

unoccupied molecular orbital (LUMO) <strong>of</strong> <strong>the</strong> acceptor <strong>in</strong> <strong>the</strong><br />

case <strong>of</strong> an Ohmic contact between <strong>the</strong> active layer <strong>and</strong> <strong>the</strong><br />

cathode. [31] Thus, <strong>the</strong> <strong>in</strong>crease <strong>in</strong> V oc may arise from <strong>the</strong> work<br />

function <strong>of</strong> TiO 2 . The conduction b<strong>and</strong> level <strong>of</strong> TiO 2 is 4.3 eV, as<br />

determ<strong>in</strong>ed from <strong>the</strong> C-V experiments, which is slightly higher<br />

than <strong>the</strong> work function <strong>of</strong> 4.2 eV <strong>of</strong> <strong>the</strong> Al electrode. This results <strong>in</strong><br />

unfavorable electron charge extraction from <strong>the</strong> active layer to <strong>the</strong><br />

electrode <strong>and</strong> an S-shape J–V curve is observed. On <strong>the</strong> o<strong>the</strong>r<br />

h<strong>and</strong>, we clearly see an improvement <strong>in</strong> V oc , J sc , <strong>and</strong> fill factor (FF)<br />

for <strong>the</strong> devices fabricated with a functional TiO 2 :Cs layer,<br />

result<strong>in</strong>g <strong>in</strong> efficient device performances. The V oc <strong>in</strong>creases<br />

from 0.42 V (for <strong>the</strong> device with no <strong>in</strong>terlayer) to 0.58 V <strong>and</strong> <strong>the</strong> FF<br />

improves dramatically up to 67%. This yields <strong>the</strong> average power<br />

conversion efficiency (PCE) <strong>of</strong> 4.0% <strong>and</strong> <strong>the</strong> highest PCE<br />

Figure 3. a) J–V characteristics <strong>of</strong> a P3HT:PC 70 BM based photovoltaic cell<br />

with an evaporated Al cathode <strong>and</strong> different <strong>in</strong>terfacial layers (none;<br />

Cs 2 CO 3 ; TiO 2 ; TiO 2 :Cs), <strong>and</strong> b) external quantum efficiencies (EQE) <strong>of</strong><br />

<strong>the</strong> device with <strong>and</strong> without <strong>the</strong> TiO 2 :Cs <strong>in</strong>terfacial layer.<br />

achieved is 4.2%, which is comparable to a device with a Ca/Al<br />

electrode. As a result, TiO 2 :Cs is a promis<strong>in</strong>g c<strong>and</strong>idate for<br />

replac<strong>in</strong>g Ca, as it has been shown that <strong>in</strong>organic oxides are quite<br />

stable to oxygen <strong>and</strong> moisture. [32] One possible reason for<br />

<strong>the</strong> <strong>in</strong>creased performance <strong>of</strong> <strong>the</strong> devices with TiO 2 :Cs is <strong>the</strong><br />

formation <strong>of</strong> a better Ohmic contact that is created by <strong>the</strong><br />

decreased conduction b<strong>and</strong> level <strong>of</strong> <strong>the</strong> TiO 2 :Cs layer (3.93 eV)<br />

such that <strong>the</strong> <strong>in</strong>terfacial layer facilitates electron transport from<br />

<strong>the</strong> active layer to <strong>the</strong> cathode. Under dark conditions, <strong>the</strong><br />

rectification ratio is on <strong>the</strong> order <strong>of</strong> 10 6 , <strong>the</strong> serial resistance is<br />

Table 1. Summarized photovoltaic performance characterisitcs <strong>of</strong> correspond<strong>in</strong>g<br />

regular configuration devices with different <strong>in</strong>terfacial layers.<br />

Device V oc [V] J sc [mA/cm 2 ] PCE [%] FF [%]<br />

None 0.42 9.64 2.0 48<br />

Cs 2 CO 3 0.36 5.34 0.7 37<br />

TiO 2 0.46 10.48 2.4 50<br />

TiO 2 :Cs 0.58 10.76 4.2 67<br />

Adv. Funct. Mater. 2009, 19, 1241–1246 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 1243


www.afm-journal.de<br />

FULL PAPER<br />

considerably decreased to 1–2 V cm 2 , while <strong>the</strong> shunt resistance<br />

rema<strong>in</strong>s as high as 10 7 V cm 2 , mak<strong>in</strong>g it ideal for photovoltaics.<br />

It is believed that <strong>the</strong> TiO 2 :Cs layer can keep <strong>the</strong> hot Al<br />

electrode from diffus<strong>in</strong>g <strong>in</strong>to <strong>the</strong> active layer dur<strong>in</strong>g evaporation<br />

<strong>and</strong> can <strong>of</strong>fer good contact morphology between <strong>the</strong> active layer<br />

<strong>and</strong> <strong>the</strong> electrode. This is also supported by <strong>the</strong> dark current<br />

characteristics <strong>of</strong> <strong>the</strong> device with no <strong>in</strong>terlayer hav<strong>in</strong>g a similar<br />

shunt resistance as that <strong>of</strong> <strong>the</strong> TiO 2 :Cs layer but a higher serial<br />

resistance <strong>of</strong> several tens <strong>of</strong> V cm 2 . In addition, <strong>the</strong> highly<br />

negative valence b<strong>and</strong> level <strong>of</strong> <strong>the</strong> <strong>in</strong>terfacial layer serves as an<br />

efficient hole block<strong>in</strong>g layer, which is confirmed by <strong>the</strong> small<br />

leakage current for <strong>the</strong> TiO 2 :Cs based device. The external<br />

quantum efficiency (EQE) <strong>of</strong> both <strong>the</strong> reference device us<strong>in</strong>g no<br />

<strong>in</strong>terlayer <strong>and</strong> <strong>the</strong> device with a TiO 2 :Cs <strong>in</strong>terfacial layer is shown<br />

<strong>in</strong> Figure 3b; <strong>the</strong> EQE is consistent with J–V characteristics. We<br />

note that <strong>the</strong> device utiliz<strong>in</strong>g only a CsCl <strong>in</strong>terfacial layer does not<br />

display any <strong>of</strong> <strong>the</strong> improved device characteristics, <strong>in</strong>clud<strong>in</strong>g high<br />

V oc , high FF, <strong>and</strong> small serial resistance. This <strong>in</strong>dicates that<br />

although <strong>the</strong> CsCl seems to be a major component <strong>in</strong> <strong>the</strong> XRD<br />

data, <strong>the</strong> CsCl layer does not play a direct role <strong>in</strong> improv<strong>in</strong>g <strong>the</strong><br />

efficiency. Instead, <strong>the</strong> nanocrystall<strong>in</strong>e anatase phases derived<br />

from TiO 2 , such as doped TiO 2 , is a possible contributor to <strong>the</strong><br />

enhancement <strong>in</strong> efficiency. The related improvements <strong>in</strong> V oc <strong>and</strong><br />

FF were observed with a TiO 2 :CsF <strong>in</strong>terlayer, where CsF acts as<br />

ano<strong>the</strong>r source <strong>of</strong> Cs component, <strong>and</strong> also with several o<strong>the</strong>r<br />

polymer systems. However, fur<strong>the</strong>r <strong>in</strong>vestigation is required to<br />

clarify <strong>the</strong> mechanism.<br />

We used <strong>the</strong> charge extraction by l<strong>in</strong>early <strong>in</strong>creas<strong>in</strong>g voltage<br />

(CELIV) method to <strong>in</strong>vestigate <strong>the</strong> charge carrier transport<br />

characteristics <strong>of</strong> <strong>the</strong> TiO 2 :Cs layer for some <strong>of</strong> <strong>the</strong> representative<br />

regular configuration devices. In CELIV, <strong>the</strong> <strong>in</strong>itial rise speed<br />

provides <strong>in</strong>formation on <strong>the</strong> bulk conductivity <strong>of</strong> <strong>the</strong> sample <strong>and</strong><br />

<strong>the</strong> time <strong>of</strong> extraction current maximum, t max , is used for<br />

estimat<strong>in</strong>g <strong>the</strong> drift mobility <strong>of</strong> equilibrium charge carriers. [33]<br />

Under a ramp<strong>in</strong>g speed <strong>of</strong> 10 5 V cm 1 , CELIV extraction<br />

peaks were obta<strong>in</strong>ed as shown <strong>in</strong> Figure 4a. The change <strong>in</strong> t max<br />

is negligible, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> fairly consistent mobility values<br />

obta<strong>in</strong>ed from <strong>the</strong> different devices, all <strong>of</strong> which have mobilities<br />

on <strong>the</strong> order <strong>of</strong> 10 4 cm 2 V 1 s 1 . Impedance spectroscopy was<br />

used to measure <strong>the</strong> bulk conductivity <strong>of</strong> <strong>the</strong> samples. All <strong>of</strong> our<br />

devices fitted well to <strong>the</strong> R p –C p (resistor–capacitor <strong>in</strong> parallel)<br />

model where<strong>in</strong> <strong>the</strong> conductance (G ¼ 1/R p ) should be <strong>in</strong>dependent<br />

<strong>of</strong> <strong>the</strong> frequency <strong>and</strong> <strong>the</strong> susceptance ½B ¼ jð2pfC p ÞŠ should<br />

vary l<strong>in</strong>early with frequency. The conductance data derived with<br />

this method is shown <strong>in</strong> Figure 4b. The conductance for <strong>the</strong><br />

device with a TiO 2 :Cs layer was at least three orders <strong>of</strong> magnitude<br />

higher than <strong>the</strong> correspond<strong>in</strong>g Cs 2 CO 3 /Al or TiO 2 /Al devices.<br />

S<strong>in</strong>ce <strong>the</strong> number <strong>of</strong> charges extracted is directly proportional to<br />

<strong>the</strong> ratio <strong>of</strong> <strong>the</strong> conductivity divided by <strong>the</strong> mobility, we concluded<br />

that <strong>the</strong> devices with TiO 2 :Cs improve charge extraction from <strong>the</strong><br />

polymer active layer. Additional support for this argument can be<br />

observed from <strong>the</strong> CELIV data. The area under <strong>the</strong> current<br />

density–time curve is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> capacitive charges <strong>and</strong> <strong>the</strong><br />

equilibrium charges extracted from <strong>the</strong> device. Subtract<strong>in</strong>g <strong>the</strong><br />

capacitive charges [<strong>in</strong>itial current rise j(0)], we see that <strong>the</strong> area for<br />

<strong>the</strong> TiO 2 :Cs/Al device is larger than that for <strong>the</strong> TiO 2 /Al device.<br />

Hence, more equilibrium charge carriers are extracted under no<br />

illum<strong>in</strong>ation for <strong>the</strong> TiO 2 :Cs/Al devices than for <strong>the</strong> TiO 2 /Al<br />

devices.<br />

Figure 4. a) CELIV extraction peaks <strong>and</strong> b) conductance data for <strong>the</strong> ITO/<br />

PEDOT/P3HT:PC 70 BM/<strong>in</strong>terfacial layer/Al device with Cs 2 CO 3 ; TiO 2 ;<br />

TiO 2 :Cs <strong>in</strong>terfacial layers.<br />

An <strong>in</strong>verted structure was <strong>in</strong>vestigated for polymer solar cells<br />

us<strong>in</strong>g Cs 2 CO 3 to modify <strong>the</strong> ITO electrode as a cathode <strong>and</strong> us<strong>in</strong>g<br />

a transition metal oxide V 2 O 5 as a hole buffer layer. We have<br />

reported <strong>in</strong>verted solar cells with an efficiency <strong>of</strong> 2.25% due to<br />

non-optimized <strong>in</strong>terfacial layer <strong>and</strong> active layer processes. [20] A<br />

thick buffer layer on top <strong>of</strong> <strong>the</strong> active materials can be applied <strong>in</strong><br />

<strong>in</strong>verted cells, so that <strong>the</strong> structure is more robust to transparent<br />

electrode deposition, e.g., ITO sputter<strong>in</strong>g. A lam<strong>in</strong>ation fabrication<br />

process <strong>of</strong> semitransparent <strong>and</strong> flexible solar cells based on<br />

<strong>the</strong> same <strong>in</strong>terface modification approach was recently shown. [34]<br />

Here, we apply a TiO 2 :Cs to replace <strong>the</strong> Cs 2 CO 3 layer <strong>and</strong><br />

demonstrated fabrication <strong>of</strong> highly efficient <strong>in</strong>verted polymer<br />

solar cell based on <strong>the</strong> P3HT <strong>and</strong> PCBM system. The structure <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>verted device is as follows: ITO/TiO 2 :Cs/P3HT:PC 70 BM/<br />

V 2 O 5 /Al. The dark <strong>and</strong> photo (AM1.5G, 100 mA cm 2 ) J–V curves<br />

<strong>of</strong> <strong>the</strong> device with a TiO 2 :Cs <strong>in</strong>terfacial layer are shown <strong>in</strong><br />

Figure 5. For <strong>the</strong> device with a TiO 2 :Cs layer, optimization <strong>of</strong> <strong>the</strong><br />

device fabrication process aga<strong>in</strong> leads to improvements <strong>in</strong> V oc <strong>and</strong><br />

FF. Subsequently, this results <strong>in</strong> a device efficiency <strong>of</strong> 3.9%, with<br />

<strong>the</strong> V oc , J sc , <strong>and</strong> FF be<strong>in</strong>g 0.60 V, 11.5 mA cm 2 , <strong>and</strong> 57%,<br />

respectively. The high rectification ratio is also attributed to <strong>the</strong><br />

improved <strong>in</strong>jection current under forward bias as shown from<br />

<strong>the</strong> dark current.<br />

1244 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Funct. Mater. 2009, 19,1241–1246


www.afm-journal.de<br />

Figure 5. J–V curve <strong>of</strong> an <strong>in</strong>verted solar cell with TiO 2 :Cs <strong>in</strong> <strong>the</strong> dark <strong>and</strong><br />

under illum<strong>in</strong>ation <strong>of</strong> AM 1.5.<br />

2.3. Polymer Light Emitt<strong>in</strong>g Devices (PLEDs) Performance<br />

In an effort to explore <strong>the</strong> effectiveness <strong>of</strong> <strong>the</strong> TiO 2 :Cs layer,<br />

green-polyfluorene based PLEDs were constructed with <strong>the</strong><br />

structure ITO/PEDOT:PSS(40 nm)/light emitt<strong>in</strong>g polymer (LEP)<br />

(80 nm)/<strong>in</strong>terfacial layer/Al, where <strong>the</strong> <strong>in</strong>terfacial layer is i) TiO 2 ,<br />

ii) Cs 2 CO 3 , <strong>and</strong> iii) TiO 2 :Cs, all <strong>in</strong> 2-ethoxyethanol. To exclude<br />

<strong>the</strong> solvent effects on <strong>the</strong> device performance, <strong>the</strong> solvent <strong>its</strong>elf<br />

was spun-cast between <strong>the</strong> LEP <strong>and</strong> Al to make a reference<br />

diode. Figure 6a shows a comparison <strong>of</strong> <strong>the</strong> current-density–<br />

voltage–brightness (J–V–L) characteristics <strong>of</strong> <strong>the</strong> devices with<br />

different <strong>in</strong>terfacial layers <strong>and</strong> <strong>its</strong> effect on device performance.<br />

The Cs 2 CO 3 <strong>in</strong>terfacial layer has been shown to be an effective<br />

electron-<strong>in</strong>jection layer, which leads to white <strong>and</strong> red emission<br />

PLEDs reach<strong>in</strong>g record highs <strong>in</strong> power efficiencies. [35,36] The<br />

significant improvements <strong>in</strong> device performances have been<br />

attributed to <strong>the</strong> formation <strong>of</strong> a low work-function complex <strong>and</strong><br />

surface dipole, which can facilitate electron <strong>in</strong>jection from <strong>the</strong><br />

cathode. [19] Surpris<strong>in</strong>gly, with <strong>the</strong> use <strong>of</strong> <strong>the</strong> TiO 2 :Cs <strong>in</strong>terfacial<br />

layer, fur<strong>the</strong>r improvements <strong>in</strong> both <strong>the</strong> current density <strong>and</strong><br />

brightness were observed <strong>in</strong> comparison to devices with only a<br />

Cs 2 CO 3 or TiO 2 <strong>in</strong>terfacial layer. As shown <strong>in</strong> Figure 6b, <strong>the</strong><br />

device with a TiO 2 :Cs <strong>in</strong>terfacial layer has a current efficiency <strong>of</strong><br />

11.5 cd A 1 or power efficiency <strong>of</strong> 14 lm w 1 at a bias <strong>of</strong> 2.8 V. The<br />

turn-on voltage (around 2.3 V) does not change, which implies<br />

that <strong>the</strong> PLEDs with <strong>the</strong> TiO 2 :Cs <strong>in</strong>terfacial layer may not fur<strong>the</strong>r<br />

lower <strong>the</strong> electron <strong>in</strong>jection barrier as compared to <strong>the</strong> reference<br />

devices. However, <strong>the</strong> <strong>in</strong>crease <strong>in</strong> current density <strong>and</strong> brightness<br />

suggests that <strong>the</strong> better charge balance should be responsible for<br />

<strong>the</strong> efficiency enhancement. As discussed above, a nearly Ohmic<br />

contact is observed with <strong>the</strong> <strong>in</strong>terfacial layer <strong>of</strong> TiO 2 :Cs, supported<br />

by <strong>the</strong> conductivity <strong>and</strong> energy level alignment between <strong>the</strong><br />

organic materials <strong>and</strong> <strong>the</strong> metal cathode. Moreover, <strong>the</strong> valence<br />

b<strong>and</strong> level (7.6 eV) <strong>of</strong> <strong>the</strong> <strong>in</strong>terface layer is lower than <strong>the</strong> HOMO<br />

(5.4 eV) level <strong>of</strong> <strong>the</strong> organic active layer, provid<strong>in</strong>g a hole-block<strong>in</strong>g<br />

effect <strong>in</strong> our device structure. By comb<strong>in</strong><strong>in</strong>g <strong>the</strong> Ohmic contact<br />

<strong>and</strong> <strong>the</strong> hole-block<strong>in</strong>g effects, a better charge balance <strong>and</strong><br />

enhanced device performance can be achieved. Therefore,<br />

compared to PLEDs conta<strong>in</strong><strong>in</strong>g only a Cs 2 CO 3 or TiO 2 <strong>in</strong>terfacial<br />

layer, <strong>the</strong> TiO 2 :Cs layer exhib<strong>its</strong> <strong>the</strong> advantageous characteristics<br />

<strong>of</strong> both <strong>the</strong> lower work function <strong>and</strong> <strong>the</strong> hole-block<strong>in</strong>g effect from<br />

Cs 2 CO 3 <strong>and</strong> TiO 2 , respectively.<br />

FULL PAPER<br />

3. Conclusions<br />

In summary, we have demonstrated a novel approach for<br />

fabricat<strong>in</strong>g efficient organic electronic devices by <strong>in</strong>troduc<strong>in</strong>g<br />

dopants <strong>in</strong>to solution processable metal oxides as an <strong>in</strong>terfacial<br />

layer. The nanocrystall<strong>in</strong>e TiO 2 was syn<strong>the</strong>sized us<strong>in</strong>g a nonhydrolytic<br />

sol–gel approach <strong>and</strong> was mixed with a Cs 2 CO 3<br />

solution. Polymer solar cells based on <strong>the</strong> P3HT:PC 70 BM system<br />

with a TiO 2 :Cs <strong>in</strong>terfacial layer reached a PCE <strong>of</strong> 4.2% <strong>in</strong> regular<br />

configurations. Significant improvements <strong>in</strong> PLED performances<br />

have also been obta<strong>in</strong>ed. We anticipate that this study will<br />

stimulate fur<strong>the</strong>r research on metal oxides <strong>and</strong> salts as materials<br />

for comb<strong>in</strong>ed functional layers to achieve efficient charge<br />

transport properties.<br />

Figure 6. a) Current-density–voltage–brightness characteristics <strong>and</strong><br />

b) current efficiency for <strong>the</strong> ITO/PEDOT/LEP/EIL/Al device with different<br />

<strong>in</strong>terfacial layers (none; Cs 2 CO 3 ; TiO 2 ; TiO 2 :Cs).<br />

4. Experimental<br />

Material: All chemicals were purchased from Sigma–Aldrich <strong>and</strong> used<br />

as received. TiO 2 was syn<strong>the</strong>sized from a non-hydrolytic sol–gel approach<br />

described as follows: After stirr<strong>in</strong>g a solution <strong>of</strong> TiCl 4 , ethanol, <strong>and</strong> benzyl<br />

alcohol for 9 h at 80 8C, it was washed with diethyl e<strong>the</strong>r. The white TiO 2<br />

precipitate was obta<strong>in</strong>ed by centrifug<strong>in</strong>g <strong>the</strong> crude product. The f<strong>in</strong>al TiO 2<br />

solution was prepared by dispers<strong>in</strong>g it <strong>in</strong> ethanol. A solution <strong>of</strong> TiO 2 :Cs was<br />

obta<strong>in</strong>ed by blend<strong>in</strong>g 0.2 wt % <strong>of</strong> Cs 2 CO 3 <strong>in</strong> 2-ethoxyethanol solution with<br />

<strong>the</strong> TiO 2 solution (0.2 wt %) at a 1:1 volume ratio.<br />

Adv. Funct. Mater. 2009, 19, 1241–1246 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim 1245


www.afm-journal.de<br />

FULL PAPER<br />

Characterization: The nanotextures <strong>of</strong> TiO 2 <strong>and</strong> TiO 2 :Cs were characterized<br />

by TEM (JEOL JEM-2000FX). XRD analysis was performed with a<br />

PANalytical X’Pert Pro Powder Diffractometer on f<strong>in</strong>ely powdered samples<br />

us<strong>in</strong>g CuKa radiation. The powder samples conta<strong>in</strong><strong>in</strong>g TiO 2 <strong>and</strong> TiO 2 :Cs<br />

for XRD analysis were prepared by evaporat<strong>in</strong>g <strong>of</strong>f <strong>the</strong> solvent at 110 8C <strong>in</strong><br />

an oven. The XPS experiment was performed <strong>in</strong> an Omicron Nanotechnology<br />

system with a base pressure <strong>of</strong> 2 10 10 Torr. A MgKa radiation<br />

source was used for <strong>the</strong> XPS measurements. For CELIV analysis, <strong>the</strong> data<br />

were taken with a Tektronix TDS-430A digital oscilloscope <strong>and</strong> a Wavetek<br />

Datron 195 waveform generator. The impedance measurements were<br />

carried out us<strong>in</strong>g a HP4284A Precision LCR meter.<br />

Device Fabrication: The polymer blend <strong>of</strong> P3HT:PC 70 BM at a 1:1 weight<br />

ratio was sp<strong>in</strong>-casted at 800 rpm on top <strong>of</strong> a layer <strong>of</strong> PEDOT:PSS deposited<br />

on ITO-coated glass. This was followed by <strong>the</strong>rmal anneal<strong>in</strong>g at 110 8C. The<br />

<strong>in</strong>terfacial layer was sp<strong>in</strong>-casted from each solution <strong>and</strong> that film was<br />

annealed at 80 8C. The device fabrication was completed by <strong>the</strong>rmal<br />

evaporation <strong>of</strong> 100 nm <strong>of</strong> Al as <strong>the</strong> cathode. For an <strong>in</strong>verted configuration<br />

device, <strong>the</strong> TiO 2 :Cs layer was sp<strong>in</strong>-casted on ITO-coated glass <strong>and</strong> <strong>the</strong>rmal<br />

anneal<strong>in</strong>g was performed at 150 8C for 30 m<strong>in</strong>. After sp<strong>in</strong>-cast<strong>in</strong>g a polymer<br />

blend solution <strong>of</strong> P3HT:PC 70 BM, ano<strong>the</strong>r <strong>the</strong>rmal anneal<strong>in</strong>g step was<br />

performed at 110 8C for 10 m<strong>in</strong>. The device fabrication was completed by<br />

<strong>the</strong>rmal evaporation <strong>of</strong> 5 nm <strong>of</strong> V 2 O 5 <strong>and</strong> 80 nm <strong>of</strong> Al as <strong>the</strong> anode.<br />

For OLED device fabrication, 1% green polyfluorene <strong>in</strong> p-xylene (as a<br />

LEP) was sp<strong>in</strong>-casted on a layer <strong>of</strong> PEDOT:PSS deposited on ITO-coated<br />

glass. The cathode was formed by sp<strong>in</strong> coat<strong>in</strong>g from each <strong>in</strong>terfacial layer<br />

solution, followed by <strong>the</strong>rmal deposition <strong>of</strong> Al.<br />

Acknowledgements<br />

This work was f<strong>in</strong>ancially supported by Solarmer Energy, Inc. (grant no.<br />

20061880) <strong>and</strong> UC-Discovery Grant (no. GCP05-10208). The authors thank<br />

Mr. Hyun Cheol Lee for record<strong>in</strong>g TEM images.<br />

Received: November 7, 2008<br />

Published onl<strong>in</strong>e: February 25, 2009<br />

[1] C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett. 1987, 51, 913.<br />

[2] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.<br />

[3] Z. Bao, A. J. Lov<strong>in</strong>ger, A. Dodabalapur, Appl. Phys. Lett. 1996, 69, 3066.<br />

[4] L. P. Ma, J. Liu, Y. Yang, Appl. Phys. Lett. 2002, 80, 2997.<br />

[5] S. R. Forrest, Nature 2004, 428, 911.<br />

[6] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat.<br />

Mater. 2005, 4, 864.<br />

[7] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D.<br />

C. Bradley, M. Giles, I. McCulloch, C. Ha, M. Ree, Nat. Mater. 2006, 5, 197.<br />

[8] D. W. Sievers, V. Shrotriya, Y. Yang, J. Appl. Phys. 2006, 100, 114509.<br />

[9] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger,<br />

G. C. Bazan, Nat. Mater. 2007, 6, 497.<br />

[10] L. S. Hung, C. W. Tang, M. G. Mason, Appl. Phys. Lett. 1997, 70, 152.<br />

[11] D. Grozea, A. Turak, X. D. Feng, Z. H. Lu, D. Johnson, R. Wood, Appl. Phys.<br />

Lett. 2002, 81, 3173.<br />

[12] Z. K<strong>in</strong>, Y. H<strong>in</strong>o, H. Kajii, Y. Ohmori, Mol. Cryst. Liq. Cryst. 2007, 462, 225.<br />

[13] Y. Yang, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 1245.<br />

[14] F. Jonas, W. Krafft, B. Muys, Macromol. Symp. 1995, 100, 169.<br />

[15] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv.<br />

Mater. 2006, 18, 572.<br />

[16] A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, S. Yoshikawa, Appl.<br />

Phys. Lett. 2007, 90, 163517.<br />

[17] C.-W. Chu, C.-W. Chen, S.-H. Li, E. H.-E. Wu, Y. Yang, Appl. Phys. Lett. 2005,<br />

86, 253503.<br />

[18] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 2008, 92,<br />

173303.<br />

[19] J. Huang, Z. Xu, Y. Yang, Adv. Funct. Mater. 2007, 17, 1966.<br />

[20] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 2006, 88,<br />

253503.<br />

[21] V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Appl. Phys. Lett. 2006, 88,<br />

073508.<br />

[22] B. O’Regan, M. Grätzel, Nature 1991, 353, 737.<br />

[23] C. C. Oey, A. B. Djurišić, H. Wang, K. K. Y. Man, W. K. Chan, M. H. Xie,<br />

Y. H. Leung, A. P<strong>and</strong>ey, J.-M. Nunzi, P. C. Chui, Nanotechnology 2006, 17,<br />

706.<br />

[24] M. Niederberger, M. H. Bartl, G. D. Stucky, Chem. Mater. 2002, 14, 4364.<br />

[25] J. C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Chem. Mater. 2002, 14, 3808.<br />

[26] C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout, J. L. Gole, Nano Lett.<br />

2003, 3, 1049.<br />

[27] J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.<br />

[28] M. Z. Atashbar, H. T. Sun, B. Gong, W. Wlodarski, R. Lamb, Th<strong>in</strong> Solid Films<br />

1998, 326, 238.<br />

[29] A. W. Grant, C. T. Campbell, Phys. Rev. B 1997, 55, 1844.<br />

[30] P. J. Hardman, R. Casanova, K. Prabhakaran, C. A. Muryn, P. L. W<strong>in</strong>cott,<br />

G. Thornton, Surf. Sci. 1992, 269, 677.<br />

[31] C. J. Brabec, A. Crav<strong>in</strong>o, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T.<br />

Rispens, L. Sanchez, J. C. Hummelen, Adv. Funct. Mater. 2001, 11, 374.<br />

[32] M. D. Butterworth, R. Corradi, J. Johal, S. F. Lascelles, S. Maeda, S. P.<br />

Armes, J. Colloid Interf. Sci. 1995, 174, 510.<br />

[33] G. Juška, K. Arlauskas, M. Viliunas, K. Genevičius, R. Österbacka, H. Stubb,<br />

Phys. Rev. B 2000, 62, R16235.<br />

[34] J. Huang, G. Li, Y. Yang, Adv. Mater. 2008, 20, 415.<br />

[35] J. Huang, G. Li, E. Wu, Q. Xu, Y. Yang, Adv. Mater. 2006, 18, 114.<br />

[36] J. Huang, T. Watanabe, K. Ueno, Y. Yang, Adv. Mater. 2007, 19, 739.<br />

1246 ß 2009 WILEY-VCH Verlag GmbH & Co. KGaA, We<strong>in</strong>heim Adv. Funct. Mater. 2009, 19,1241–1246

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!